首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since vitamin E deficiency is associated with increased susceptibility of erythrocytes to hemolysis, we investigated the presence of tocopherol binding sites in human red blood cells. Erythrocytes were found to have specific binding sites for d-α-[3H]tocopherol with properties of receptors. Kinetic studies of binding demonstrated two binding sites: one with high affinity (equilibrium association constant Ka = 2.6·107 M?1), low capacity (7600 sites/cell) and the second with low affinity (Ka = 1.24·106 M?1), high capacity (150000 sites/cell). These sites are at least partly protein in nature.  相似文献   

2.
The binding of high specific activity, radioactive Concanavalin A to cultured normal human fibroblasts was investigated. We report the presence of two classes of Concanavalin A binding sites on the plasma membranes of these cells. These classes of binding sites are distinguished by their affinities for the lectin. Scatchard analysis of the binding data indicates the presence of a class of high affinity sites which are saturated at about 0.25 μg/ml of Concanavalin A. The other, lower affinity binding sites are not saturated until 50–100 μg/ml Concanavalin A levels are achieved. At 4°C the Ka for the high affinity sites varies between 1.5 – 5 × 109 M?1 depending on the method used to label the Concanavalin A. For the lower affinity sites Ka varies between 1 – 4 × 106 M?1. The average number of high affinity sites per cell is 8 × 105 representing less than 1% of the total receptor sites for the lectin.  相似文献   

3.
The kinetics of uptake and retention of β-ecdysone by imaginal discs from late third instar larvae of Drosophila melanogaster correspond well with those of the first synthetic response of discs to hormone, an increase in RNA synthesis.Competition studies indicate the presence of two types of hormone binding sites, specific and non-specific. The specific sites are saturated at hormone concentrations which fully induce morphogenesis. Results are consistent with the hypothesis that analogs which induce morphogenesis at differing concentrations bind to the same sites. Experiments with the inhibitors N-ethylmaleimide, actinomycin d, and cycloheximide suggest that the binding sites are pre-existing in the cell and require functional sulfhydryl groups for binding.Specific binding, binding that is competed by excess unlabeled β-ecdysone, is saturable (70–80 nM). Kinetic rate constants for this specific binding were estimated to be ka = 1.5 × 105M?1 min?1, kd = 3 × 10?2 min?1. The equilibrium dissociation constant calculated from the kinetic rate constants was Keq = 2 × 10?7M compared to 1.7 × 10?7M β-ecdysone required to induce morphogenesis in vitro and 2.5 × 10?7M determined to be the in vivo concentration at the time of induction of morphogenesis.  相似文献   

4.
Porphyrins are a chemical class that is widely used in drug design. Cationic porphyrins may bind to DNA guanine quadruplexes. We report the parameters of the binding of 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium) porphyrin (P1) and 5,10,15,20-tetrakis(N-etoxycarbonylmethyl-4-pyridinium) porphyrin (P2) to antiparallel telomeric G-quadruplex formed by d(TTAGGG)4 sequence (TelQ). The binding constants (K i ) and the number of binding sites (N j ) were determined from absorption isotherms generated from the absorption spectra of complexes of P1 and P2 with TelQ. Compound P1 demonstrated a high affinity to TelQ (K i = (40 ± 6) × 106 M?1, N 1 = 1; K 2 = (5.4 ± 0.4) × 106 M?1, N 2 = 2). In contrast, the binding constants of P2-TelQ complexes (K 1 = (3.1 ± 0.2) × 106 M?1, N 1 = 1; K 2 = (1.2 ± 0.2) × 106 M?1, N 2 = 2) were one order of magnitude smaller than the corresponding values for P2-TelQ complexes. Measurements of the quantum yield and fluorescence lifetime of the drug’s TelQ complexes revealed two types of binding sites for P1 and P2 on the quadruplex oligonucleotide. We concluded that strong complexes can result from the interaction of the porphyrins with TTA loops whereas the weaker complexes are formed with G-quartets. The altered TelQ conformation detected by the circular dichroism spectra of P1-TelQ complexes can be explained by the disruption of the G-quartet. We conclude that peripheral carboxy groups contribute to the high affinity of P1 for the antiparallel telomeric G-quadruplex.  相似文献   

5.
We studied interaction of the lectin from the bark of Golden Rain shrub (Laburnum anagyroides, LABA) with a number of basic fucose-containing carbohydrate antigens by changes in its tryptophan fluorescence. The strongest LABA binding was observed for the trisaccharide H of type 6 [α-L-Fucp-(1-2)-β-D-Galp-(1-4)-D-Glc, K a = 4.2 × 103 M?1]. The following antigens were bound with a weaker affinity: H-disaccharide α-L-Fucp-(1-2)-D-Gal, a glucoanalogue of tetrasaccharide Ley α-L-Fucp-(1-2)-β-D-Galp-(1-4)-[α-L-Fucp-(1-3)]-D-Glc, and 6-fucosyl-N-acetylglucosamine, a fragment of core of the N-glycans family (K a 1.1?1.7 × 103 M?1). The lowest binding was observed for L-fucose (K a = 2.7 × 102 M?1) and trisaccharide Lea, (β-Galp-(1-3)-[α-L-Fucp-(1-4)]-GlcNAc (K a = 6.4 × 102 M?1). The Led, Lea, and Lex pentasaccharides and Leb hexasaccharide were not bound to LABA.  相似文献   

6.
Abstract: We identified and characterized 125I-endothelin-1 (125I-ET-1) binding sites in tumor capillaries isolated from human glioblastomas, using the quantitative receptor autoradiographic technique with pellet sections. Quantification was done using the computerized radioluminographic imaging plate system. High-affinity ET receptors were localized in capillaries from glioblastomas and the surrounding brain tissues (KD = 4.7 ± 1.0 × 10?10 and 1.6 ± 0.3 × 10?10M, respectively; Bmax = 161 ± 38 and 140 ± 37 fmol/mg, respectively; mean ± SEM, n = 5). BQ-123, a selective antagonist for the ETA receptor, potently competed for 125I-ET-1 binding to sections of the microvessels with IC50 values of 5.1 ± 0.3 and 5.1 ± 1.5 nM, and 10?6M BQ-123 displaced 84 and 58% of ET binding to capillaries from tumors and brains, respectively. In addition, competition curves obtained in the presence of increasing concentrations of ET-3 showed two components (IC50 = 5.7 ± 2.5 × 10?10 and 1.4 ± 0.2 × 10?6M for tumor microvessels, 1.8 ± 0.6 × 10?10 and 1.1 ± 0.3 × 10?6M for brain microvessels, respectively). Our results indicate that (a) the method we used is simple and highly sensitive for detecting and characterizing various receptors in tumor capillaries, especially in the case of a sparse specimen, and (b) capillaries in glioblastomas express specific high-affinity ET binding sites, candidates for biologically active ET receptors, which predominantly belong to the ETA subtype.  相似文献   

7.
Abstract

The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the recombinant proteinase inhibitor eglin c (eglin c), of the soybean Bowman-Birk proteinase inhibitor (BBI) and of its chymotrypsin and trypsin inhibiting fragments (F-C and F-T, respetively) to Leuproteinase, the leucine specific serine proteinase from spinach (Spinacia oleracea L.) leaves, has been investigated. On lowering the pH from 9.5 to 4.5, values of Ka (at 21°C) for complex formation decrease thus reflecting the acidic pK-shift of the hystidyl catalytic residue from ~6.9, in the free Leu-proteinase, to ~5.1, in the enzyme: inhibitor adducts. At pH 8.0, values of the apparent thermodynamic parameters for the proteinase:inhibitor complex formation are: Leu-proteinase:eglin c - Ka = 2.2 × 1011 M-1, δG°= - 64kJ/mol, δH° = + 5.9kJ/mol, and δS° = + 240J/molK; Leu-proteinase:BBI - Ka = 3.2 × 1010 M-1, δG° = - 59kJ/mol, δH°= + 8.8kJ/mol, and δS° = + 230J/molK; and Leu-proteinase:F-C - Ka = 1.1 × 106 M-1, δG°= - 34kJ/mol, δH° = + 18J/mol, and δS° = + 180J/molK (values of Ka, δG° and δS° were obtained at 21.0°C; values of δH° were temperature-independent over the range explored, i.e. between 10.0°C and 40.0°C). F-T does not inhibit Leu-proteinase up to an inhibitor concentration of 1.0 × 10-3 M, suggesting that the upper limit of Ka is 1 × 102 M-1. Considering the known molecular models, the observed binding behaviour of eglin c, BBI, F-C and F-T to Leu-proteinase has been related to the inferred stereochemistry of the enzyme/inhibitor contact region  相似文献   

8.
The thermodynamics of ethidium ion binding to the double strands formed by the ribooligonucleotides rCA5G + rCU5G and the analogous deoxyribo-oligonucleotides dCA5G + dCT5G were determined by monitoring the absorbance versus temperature at 260 and 283 nm at several concentrations of oligonucleotides and ethidium bromide. A maximum of three ethidium ions bind to the oligonucleotides, which is consistent with intercalation and nearest-neighbor exclusion. For the ribo-oligonucleotide the binding mechanism is complex. Either two sites (assumed to be the intercalation sites at the two ends of the oligonucleotide) bind more strongly by a factor of 140 than the third site, or all sites are identical, but there is strong anticooperativity on binding (cooperativity parameter, 0.1). In sharp contrast, the binding to the same sequence (with thymine substituted for uracil) in the deoxyribo-oligonucleotide showed all sites equivalent and no cooperativity. For the ribo-oligonucleotides the enthalpy for ethidium binding is ?14 kcal/mol. The equilibrium constants at 25°C depend on the model; either K = 6 × 105M?1 for the two strong sites (4 × 103M?1 for the weak site) or K = 2.5 × 105M?1 for the intrinsic constant of the anticooperative model. For the equivalent deoxyribo-oligonucleotide the enthalpy of binding is -9 kcal/mol and the equilibrium constant at 25°C is a factor of 10 smaller (K = 2.5 × 104M?1).  相似文献   

9.
R Meidan  Y Koch 《Life sciences》1981,28(17):1961-1967
The binding of luteinizing hormone-releasing hormone (LHRH) to dispersed rat pituitary cells was studied by using 125I-labeled analogues of the neurohormone: a superactive agonist [D Ser (But)6]LHRH(1–9) ethylamide and an antagonist DpGlu1, DPhe2, DTrp3,6-LHRH. Although these cells were exposed to proteolytic enzymes, their ability to respond to LHRH stimulation by gonadotropin release, is preserved. The time course of binding of the two analogues at different temperatures has demonstrated that highest specific binding is evident at 4°C and that equilibrium is reached after 90 min of incubation at this temperature. Incubation of pituitary cells with the labeled analogues together with increasing concentrations of LHRH or unlabeled analogues exhibited parallel competition curves, suggesting binding to the same receptor sites but with different affinities. Biologically inactive analogues of LHRH or unrelated peptides such as TRH did not compete for binding sites. Ka values for the agonist, LHRH and the antagonist were 2.1 × 109M?1, 0.92 × 108M?1 and 0.76 × 109M?1, respectively, and the binding capacity was 116 fmoles/106 pituitary cells.  相似文献   

10.
The three-dimensional model of the CtCBM35 (Cthe 2811), i.e. the family 35 carbohydrate binding module (CBM) from the Clostridium thermocellum family 26 glycoside hydrolase (GH) β-mannanase, generated by Modeller9v8 displayed predominance of β-sheets arranged as β-sandwich fold. Multiple sequence alignment of CtCBM35 with other CBM35s showed a conserved signature sequence motif Trp-Gly-Tyr, which is probably a specific determinant for mannan binding. Cloned CtCBM35 from Clostridium thermocellum ATCC 27405 was a homogenous, soluble 16 kDa protein. Ligand binding analysis of CtCBM35 by affinity electrophoresis displayed higher binding affinity against konjac glucomannan (K a = 2.5 × 105 M?1) than carob galactomannan (K a = 1.4 × 105 M?1). The presence of Ca2+ ions imparted slightly higher binding affinity of CtCBM35 against carob galactomannan and konjac glucomannan than without Ca2+ ion additive. However, CtCBM35 exhibited a low ligand-binding affinity K a = 2.5 × 10?5 M?1 with insoluble ivory nut mannan. Ligand binding study by fluorescence spectroscopy showed K a against konjac glucomannan and carob galactomannan, 2.4 × 105 M?1 and 1.44 × 105 M?1, and ΔG of binding ?27.0 and ?25.0 kJ/mol, respectively, substantiating the findings of affinity electrophoresis. Ca2+ ions escalated the thermostability of CtCBM35 and its melting temperature was shifted to 70°C from initial 55°C. Therefore thermostable CtCBM35 targets more β-(1,4)-manno-configured ligands from plant cell wall hemicellulosic reservoir. Thus a non-catalytic CtCBM35 of multienzyme cellulosomal enzymes may gain interest in the biofuel and food industry in the form of released sugars by targeting plant cell wall polysaccharides.  相似文献   

11.
The binding property between a ligand and its receptor is very important for numerous biological processes. In this study, we developed a high epidermal growth factor receptor (EGFR)‐expression cell membrane chromatography (CMC) method to investigate the binding characteristics between EGFR and the ligands gefitinib, erlotinib, canertinib, afatinib, and vandetanib. Competitive binding analysis using gefitinib as the marker was used to investigate the interactions that occurred at specific binding sites on EGFR. The ability of displacement was measured from the HEK293‐EGFR/CMC column on the binding sites occupied by gefitinib for these ligands, which revealed the following order: gefitinib (KD, 8.49 ± 0.11 × 10?7 M) > erlotinib (KD, 1.07 ± 0.02 × 10?6 M) > canertinib (KD, 1.41 ± 0.07 × 10?6 M) > afatinib (KD, 1.80 ± 0.12 × 10?6 M) > vandetanib (KD, 1.99 ± 0.03 × 10?6 M). This order corresponded with the values estimated by frontal displacement analysis and the scores obtained with molecular docking. Furthermore, thermodynamic analysis indicated that the hydrogen bond or Van der Waals force was the main interaction force in the process of EGFR binding to all 5 ligands. Overall, these results demonstrate that a CMC method could be an effective tool to investigate the binding characteristics between ligands and receptors.  相似文献   

12.
The rates of formation and dissociation of concanavalin A with some 4-methylumbelliferyl and p-nitrophenyl derivatives of α- and β-D-mannopyranosides and glucopyranosides were measured by fluorescence and spectral stopped-flow methods. All process examined were uniphasic. The second-order formation rate constants varied only from 6.8 · 104 to 12.8 · 104 M?. s?1, whereas the first-order dissociation rate constants ranged from 4.1. to 220 s?1, all at ph 5.0, I = 0.3 M, and 25°C. Dissociation rates thus controlled the value of binding constant. The effect of temperature on these reactions was examined, from which enthalpies and entropies of activation and of reaction could be calculated. The effects of pH at 25°C on the reaction rates of 4-methylumbelliferyl α-D-mannopyranoside and 4-methylumbelliferyl α-D-glucopyranoside with concanavalin A were examined. The value of the binding constant Kap (derived from the kinetics) at any pH could be related to the intrinsic binding constant K by the expression Kap = KaK(Ka + [H+])?1. The values of Ka, the ionization constant of the protein segment responsive to sugar binding, were 3 · 10?4 M and 1 · 10?4 M for 4-methylumbelliferyl α-D-mannopyranoside and 4-methylumbelliferyl α-D-glucopyranoside, respectively. The binding constant of p-nitrophenyl α-D-mannopyranoside is surprisingly much less sensitive to a pH change from 5.0 to 2.7. Ionic strength had little effect on the binding characteristics of 4-methylumbelliferyl α-D-mannopyranoside to concanavalin A at pH 5.2 and 25°C.  相似文献   

13.
  • 1.1. The interaction of haemopexin and albumin with TPPS4 was studied by measuring the absorption and fluorescence spectra. Haemopexin was found to have one strong TPPS4 binding center (Ka = 3 × 107M−1).
  • 2.2. Haem-haemopexin complex appears to have no specific binding site for TPPS4. Occupation of the specific binding center of haemopexin molecule by a haem abolishes TPPS4 binding.
  • 3.3. Albumin was found to possess one strong TPPS4 binding center (Ka = 3 × 106M−1) besides two or three weak binding sites (Ka = 2 × 105M−1).
  • 4.4. Haern-albumin complex possesses only one weak TPPS4 binding site (Ka = 7 × lO5M−1). These observations suggest identity of primary binding sites of TPPS4 and haem on albumin molecule.
  相似文献   

14.
Narrow concentration intervals were used, covering 10?6– 10?4M desaspidin. The interaction with glycolysis involves three steps, the inhibitor constants (Ki:s) being in turn 2.7 × 10?5M, 1.3 × 10?4M, and high. About 18% of total glycolysis is inhibited in each of the two first steps, and 65% left for the third reaction. After compensation for glycolysis, oxidative phosphorylation may show a sudden jump to about 10% inhibition at 1.5 × 10?5M desaspidin, the possible Ki of the reaction starting here being very high. Correcting for glycolysis, desaspidin affects total Photophosphorylation in two steps, with the Ki values of 7.8 × 10?5M and 4.6 × 10?4M respectively. Inhibition in the first step is about 27% of the total photophosphorylation. By applying 10?6M DCMU[/3-(3, 4-dichlorophenyl)-l, l-dimethy lurea], one can abolish non-cyclic photophosphorylation. Desaspidin then reacts in a single step with a Ki of 1.4 × 10?4M. At 5 × 10?5M DCMU, also the pseudocyclic photophosphorylation is abolished. The remaining, true cyclic photophosphorylation has a single Ki of 2.3 × 10?5M for desaspidin. Under non-cyclic conditions, the true cyclic process contributes about 25% to total Photophosphorylation. Under pseudocyclic conditions, no cyclic photophosphorylation occurs. Under true cyclic conditions, the non-cyclic and pseudocyclic processes are inoperative. This indicates a regulative system, so that either (1) the (non-cyclic + true cyclic), (2) only the pseudocyclic, or (3) only the true cyclic systems can be traced, dependent on the level of DCMU applied. There are two sites for non-cyclic Photophosphorylation, one of them common to the pseudocyclic pathway. Cyclic photophosphorylation has a third site, different from the other two.  相似文献   

15.
Abstract

The effect of pH and temperature on the apparent association equilibrium constant (Ka) for the binding of the bovine and porcine pancreatic secretory trypsin inhibitor (Kazal-type inhibitor, PSTI) to human leukocyte elastase has been investigated. At pH8.0, values of the apparent thermodynamic parameters for human leukocyte elastase: Kazal-type inhibitor complex formation are: bovine PSTT – Ka = 6.3 × 104M?1, δ5G° = -26.9kJ/mol, δH° = +11.7kJ/mol, and δS° = +1.3 × 102 entropy units; porcine PSTI –Ka = 7.0 × 103M?1,δG° = -21.5kJ/mol, δH° = +13.0kJ/mol, and δS° = +1.2 × 102 entropy units (values of Ka δG° and δS° were obtained at 21.0°C; values of δH° were temperature independent over the range (between 5.0°C and 45.0°C) explored). On increasing the pH from 4.5 to 9.5, values of Ka for bovine and porcine PSTI binding to human leukocyte elastase increase thus reflecting the acidic pK-shift of the His57 catalytic residue from ?7.0, in the free enzyme, to ?5.1, in the serine proteinase: inhibitor complexes. Thermodynamics of bovine and porcine PSTI binding to human leukocyte elastase has been analyzed in parallel with that of related serine (pro)enzyme/Kazal-type inhibitor systems. Considering the known molecular models, the observed binding behaviour of bovine and porcine PSTI to human leukocyte elastase was related to the inferred stereochemistry of the serine proteinase/inhibitor contact region(s).  相似文献   

16.
Lymphocyte plasma membranes bind 45Ca2+ with three affinity sites: KAl = 4.0 . 106 M?1, KA2 = 8.5 . 104 M?1 and KA3 = 4.2 . 102 M?1, and Ca2+ binding capacities are 0.10, 1.2 and 85 nmoles Ca2+/mg protein. In the presence of 15 μg/ml ConA the Ca2+ binding constants were KA1 = 4.6 . 106 M?1, KA2 = 4.4 . 104 M?1 and KA3 = 4.2 . 102 M?1. The Ca2+ binding capacity was increased by ConA, to 0.13, 2.4 and 91 nmoles/mg protein. The Ca2+ ATPase activity of lymphocyte membranes was increased by ConA from 1 to 2 μmol P/protein × h. The 45Ca2+ uptake was stimulated by ConA and PHA to about 16 %.  相似文献   

17.
The principle of competitive binding assay in combination with an immobilized lectin (concanavalin A), in close proximity to an oxygen sensor, has been used to quantify carbohydrates and to determine association constants for lectin-carbohydrate interactions. Methyl α-d-mannopyranoside was determined down to 0.5 μg/ml. Ka (maltose) and Ka (maltotriose) was found to be 2.1 × 103 and 1.7 × 103m?1, respectively, which are comparable to values quoted in the literature of approximately 2.8 × 103m?1 for both maltose and maltotriose. Furthermore, the estimation of the bonus effect, due to multipoint attachment, for a low-molecular-weight dextran is discussed.  相似文献   

18.
The influence of water-soluble cationic meso-tetra-(4?N-oxyethylpyridyl)porphyrin (H2TOEPyP4) and it’s metallocomplexes with Ni, Cu, Co, and Zn on hydrodynamic and spectral behavior of DNA solutions has been studied by UV/Vis absorption and viscosity measurement. It was shown that the presence of planar porphyrins such as H2TOEPyP4, NiTOEPyP4, and СuTOEPyP4 leads to an increase in viscosity at relatively small concentrations, and then decrease to stable values. Such behavior is explained by intercalation of these porphyrins in DNA structure because the intercalation mode involves the insertion of a planar molecule between DNA base pairs which results in a decrease in the DNA helical twist and lengthening of the DNA. Further decrease of viscosity is explained by the saturation intercalation sites and occurs outside the binding mode. But, in the case of porphyrins with axial ligands such as CoTOEPyP4 and ZnTOEPyP4, the hydrodynamic parameters decrease, which is explained by self-stacking of these porphyrins in DNA surface. This data are proved by spectral measurements. The results obtained from titration experiments were used for calculation of binding parameters: the binding constant K b and the number of binding sites per base pair n. Obtained data reveal that K b varies between 3.4 and 5.4?×?106?M?1 for a planar porphyrins, a range typical for intercalation mode interactions, and 5.6?×?105?M?1 and 1.8?×?106?M?1 for axial porphyrins. In addition, the exclusion parameter n also testifies that at intercalation, (n~2) the adjacent base pairs are removed to place the planar molecules, and for outside binders to pack on the surface needs too few places (n~0.5–1). It is apparent that the binding is somewhat stronger at intercalation. The viscometric and spectrophotometric measurements are in good agreement.  相似文献   

19.
Glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) was partially purified by fractionation with ammonium sulfate and phosphocellulose chromatography. The Km value for glucose-6-phosphate is 1.6 × 10?4 and 6.3 × 10?4M at low (1.0–6.0 × 10?4M) and high (6.0–30.0 × 10?4M) concentrations of the substrate, respectively. The Km value for NADP+ is 1.4 × 10?5M. The enzyme is inhibited by NADPH, 5-phosphoribosyl-1-pyrophosphate, and ATP, and it is activated by Mg2+, and Mn2+. In the presence of NADPH, the plot of activity vs. NADP+ concentration gave a sigmoidal curve. Inhibition of 5-phosphoribosyl-1-pyrophosphate and ATP is reversed by Mg2+ or a high pH. It is suggested that black gram glucose-6-phosphate dehydrogenase is a regulatory enzyme of the pentose phosphate pathway.  相似文献   

20.
The serine protease enteropeptidase exhibits a high level of substrate specificity for the cleavage sequence DDDDK~ X, making this enzyme a useful tool for the separation of recombinant protein fusion domains. In an effort to improve the utility of enteropeptidase for processing fusion proteins and to better understand its structure and function, two substitution variants of human enteropeptidase, designated R96Q and Y174R, were created and produced as active (>92%) enzymes secreted by Pichia pastoris with yields in excess of 1.7 mg/Liter. The Y174R variant showed improved specificities for substrates containing the sequences DDDDK (kcat/KM = 6.83 × 106 M?1 sec?1) and DDDDR (kcat/KM = 1.89 × 107 M?1 sec?1) relative to all other enteropeptidase variants reported to date. BPTI inhibition of Y174R was significantly decreased. Kinetic data demonstrate the important contribution of the positively charged residue 96 to extended substrate specificity in human enteropeptidase. Modeling shows the importance of the charge–charge interactions in the extended substrate binding pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号