首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rylux BSU and Congo red bind to chitin, interfere with proper cell-wall assembly, and stimulate chitin synthesis by increasing, most probably, chitin synthase 3 (ChS3) levels inSaccharomyces cerevisiae. On the other hand, the antibiotic nikkomycin Z inhibits chitin synthesis competitively. As ChS3 is the critical target of nikkomycin Z, its effect was tested in cells inhibited in growth by Rylux BSU or Congo red. Nikkomycin Z counteracted this inhibition but did not counteract aberrant cell-wall formation. These results indicate that chitin synthesis stimulation is the key step in Rylux BSU and Congo red inhibition and support the idea that increase in chitin synthesis represents a compensatory response to damaged cell-wall structure. As Rylux BSU and Congo red bind to newly synthesized chitin, further damage is caused in the wall and the response works in this case contrariwise. Nikkomycin Z breaks this vicious circle by counteracting the chitin synthesis stimulation.  相似文献   

2.
尼可霉素是一种新的抗真菌抗生素,在分离到的20多种活性单组分中,X、Z、I、J为主要生物活性组分。本文介绍了尼可霉素的结构,结构与活性的关系及其生物合成途径中有关基因的研究进展。  相似文献   

3.

Background  

Nikkomycins are a group of peptidyl nucleoside antibiotics and act as potent inhibitors of chitin synthases in fungi and insects. Nikkomycin X and Z are the main components produced by Streptomyces ansochromogenes. Of them, nikkomycin Z is a promising antifungal agent with clinical significance. Since highly structural similarities between nikkomycin Z and X, separation of nikkomycin Z from the culture medium of S. ansochromogenes is difficult. Thus, generating a nikkomycin Z selectively producing strain is vital to scale up the nikkomycin Z yields for clinical trials.  相似文献   

4.
Nikkomycin Z inhibits chitin synthase in vitro but does not exhibit antifungal activity against many pathogens. Assays of chitin synthase isozymes and growth assays with isozyme mutants were used to demonstrate that nikkomycin Z is a selective inhibitor of chitin synthase 3. The resistance of chitin synthase 2 to nikkomycin Z in vitro is likely responsible for the poor activity of this antibiotic against Saccharomyces cerevisiae.  相似文献   

5.
A novel mode of reversed-phase high-performance liquid chromatography in which the mobile phase reacts chemically with the compounds to be separated was developed. Nikkomycin X and nikkomycin Z, two natural isomeric nucleoside peptide antibiotics, move as a single peak on a C18 reversed-phase column using an aqueous trifluoroacetic acid mobile phase. Addition of sodium bisulfite (1.0%) to the mobile phase results in the formation of a polar bisulfite addition product with nikkomycin X, but not with nikkomycin Z, inside the HPLC column. This type of reactive chromatography, or chemochromatography, led to the analytical and preparative separation of nikkomycins X and Z which are normally very intractable to separation by conventional chromatographic techniques.  相似文献   

6.
The uptake of tritiated nikkomycin Z, a potent inhibitor of chitin synthetase, is mediated by a peptide transport system in Candida albicans. Kinetic transport assays with radioactive di- and tripeptides and competition studies suggest that two distinct systems operate in this yeast. Nikkomycin Z was transported through one of these systems, common to di- and tripeptides. A peptide transport-deficient mutant was isolated on the basis of its resistance to nikkomycin Z. The mutant lost most of its capacity to take up dipeptides but simultaneously increased its ability to transport tripeptides. These results indicate that C. albicans handles peptides through multiple transport systems and adjusts their expression to environmental conditions.  相似文献   

7.
Transport and hydrolysis of peptides in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
The transport and hydrolysis of several radioactive di- and tripeptides in Saccharomyces cerevisiae was studied. A peptide-transport-deficient mutant isolated on the basis of its resistance to nikkomycin Z lost most of its capacity to take up di- and tripeptides. The transport kinetics of [14C]methionylglycine, [14C]methionylsarcosine and [3H]nikkomycin Z indicated that peptide transport is not dependent on intracellular hydrolysis. Intact cells had some peptidase activity towards methionylsarcosine but not towards nikkomycin Z. The relationship between this activity and peptide transport is discussed.  相似文献   

8.
Nikkomycin was found to be a potent growth inhibitor of Candida albicans through competitive inhibition of chitin synthase [Ki = 0.16 microM (0.1 microgram ml-1)]. The activity of the peptide-nucleoside drug was antagonized by both peptone and defined peptides. Transported dipeptides were effective antagonists while transported oligopeptides were not. A mutant of C. albicans resistant to the effects of nikkomycin through a transport defect was unable to transport dipeptides, while oligopeptide uptake was apparently unaffected. At least two peptide permeases are operational in this organism.  相似文献   

9.
The genes nikQ and nikR were identified by sequencing DNA of the nikkomycin biosynthetic gene cluster from Streptomyces tendae Tü901/8c. The nikQ gene encodes a P450 cytochrome, and the predicted NikR gene product shows 48-56% sequence identity with uracil phosphoribosyltransferases from eukaryotic organisms. The nikQ and nikR genes were inactivated separately by insertion of a kanamycin-resistance cassette. Inactivation of the nikQ gene abolished synthesis of nikkomycins containing 4-formyl-4-imidazolin-2-one as the base (nikkomycins X and I), whereas production of nikkomycins containing uracil (nikkomycins Z and J) was not affected. Nikkomycin X and I production could be restored by feeding 4-formyl-4-imidazolin-2-one to the nikQ mutants, indicating that NikQ is responsible for its formation from L-histidine. Disruption of the nikR gene resulted in formation of decreased amounts of nikkomycins X and I, whereas nikkomycins Z and J were synthesized at wild-type levels. A fluorouracil-resistant nikR mutant lacking uracil phosphoribosyltransferase (UPRTase) activity did not synthesize nikkomycins X and I and accumulated 4-formyl-4-imidazolin-2-one in its culture filtrate, whereas formation of nikkomycins Z and J was unimpaired. The mutant was complemented to nikkomycin X and I production by nikR expressed from the mel promoter of plasmid pIJ702. The nikR gene expressed in Escherichia coli led to the production of UPRTase activity. Our results indicate that NikR converts 4-formyl-4-imidazolin-2-one to yield 5'-phosphoribosyl-4-formyl-4-imidazolin-2-one, the precursor of nikkomycins containing this base.  相似文献   

10.
Xie Z  Niu G  Li R  Liu G  Tan H 《Current microbiology》2007,55(6):537-542
Nikkomycins are highly potent inhibitors of chitin synthase. The nikkomycin biosynthetic gene cluster has been cloned from Streptomyces asochromogenes. Two cytochrome P450 monooxygenase genes (sanQ, sanH) and one ferredoxin gene (sanI) were found in the cluster. It was reported that SanQ is involved in the hydroxylation of l-His, a key step in 4-formyl-4-imidazolin-2-one base biosynthesis. Here, we have studied the function of sanH and sanI. Disruption of sanH abolished the production of nikkomycin X and Z, but it accumulated one dominant component nikkomycin Lx, which is the nikkomycin X analog lacking the hydroxy group at the pyridyl residue. The sanI disruption mutant accumulated predominantly nikkomycin Lx in addition to nikkomycin X and Z. The nikkomycin production profile of the sanH and sanI double disruption mutant was the same as that of the sanH disruption mutant. These results confirmed that SanH is essential for the hydroxylation of pyridyl residue in nikkomycin biosynthesis of S. ansochromogenes and first demonstrated that SanI is an effective electron donor for SanH, but not for SanQ in vivo.  相似文献   

11.
A reversed-phase, C-18 HPLC method for separation, with baseline resolution, of the chitin synthase inhibitors nikkomycin X and Z is described. This permits, for the first time, satisfactory identification of nikkomycin X and Z contained in a mixture. The use of 30 mM ammonium formate (pH 4.7) containing the ion-pair agent heptanesulfonic acid (1 mM) was critical for the successful separation of these fungicides.  相似文献   

12.
As a first step toward identifying novel genes of wall metabolism in filamentous fungi, we have screened a collection of Aspergillus nidulans mutants for strains exhibiting hypersensitivity toward the chitin binding agent Calcofluor White (CFW). This strategy has been used previously to identify cell wall mutants in Saccharomyces cerevisiae. We have identified 10 mutants representing eight loci, designated calA through calH, for Calcofluor hypersensitivity. All cal mutants are impaired for sporulation at 30 C or 42 C or both, and in eight of the 10 mutations this sporulation defect shows at least partial osmotic remediability. All cal mutants show elevated sensitivity to one or more of the following agents: Caspofungin, Nikkomycin, Tunicamycin, Congo red and SDS, which are recognized wall-compromising agents or have been shown to be inhibitory to wall integrity mutants in yeast. Seven of the 10 cal mutants show swelling at elevated temperature, which in most cases is osmotically remediable. Spore swelling also can be induced at 30 C in all but one of the cal mutants by germination in the presence of one or more of the following: Caspofungin, Nikkomycin or Tunicamycin. Analysis of wall sugars showed no major changes in mutant strains. We also report that the chitin synthase inhibitor Nikkomycin induces excessive spore swelling during germination in all tested strains that have wild type cell wall metabolism (GR5, A4, A28 and AH12) at 42 C but not at 30 C. This effect mimics that of certain temperature-sensitive swollen cell (swo) mutations.  相似文献   

13.
圈卷产色链霉菌分化及其特性的研究   总被引:1,自引:3,他引:1  
链霉菌分化的分子生物学研究是一个饶有兴趣并富有挑战性的世界前沿研究课题.在原核生物的分化研究中,主要以枯草杆菌(Bacillus subtilis)作为模式系统,但枯草杆菌的生命周期尤其是分化过程远比链霉菌简单,不象链霉菌有基质菌丝、气生菌丝、菌丝螺旋和孢子分隔那样的发育分化过程[1].在真核生物中也有分化研究的报道,如构巢曲霉、酵母等.由于真核生物的基因结构比原核生物复杂得多,弄清分化中基因调控的关系就更加困难.因此,选用链霉菌作分化研究的材料有其独一无二的优越性.国际上有关链霉菌的分子生物学研究,近年来主要以链霉菌的抗生素生物合成基因和链霉菌的分化基因两个大的方面作为研究的热点和主攻方向,并展开了一些开拓性的研究.  相似文献   

14.
Cell wall integrity is crucial for fungal growth, development and stress survival. In the model yeast Saccharomyces cerevisiae, the cell integrity Mpk1/Slt2 MAP kinase and calcineurin pathways monitor cell wall integrity and promote cell wall remodelling under stress conditions. We have identified the Cryptococcus neoformans homologue of the S. cerevisiae Mpk1/Slt2 MAP kinase and have characterized its role in the maintenance of cell integrity in response to elevated growth temperature and in the presence of cell wall synthesis inhibitors. C. neoformans Mpk1 is required for growth at 37 degrees C in vitro, and this growth defect is suppressed by osmotic stabilization. C. neoformans mutants lacking Mpk1 are attenuated for virulence in the mouse model of cryptococcosis. Phosphorylation of Mpk1 is induced in response to perturbations of cell wall biosynthesis by the antifungal drugs nikkomycin Z (a chitin synthase inhibitor), caspofungin (a beta-1,3-glucan synthase inhibitor), or FK506 (a calcineurin inhibitor), and mutants lacking Mpk1 display enhanced sensitivity to nikkomycin Z and caspofungin. Lastly, we show that calcineurin and Mpk1 play complementing roles in regulating cell integrity in C. neoformans. Our studies demonstrate that pharmacological inhibition of the cell integrity pathway would enhance the activity of antifungal drugs that target the cell wall.  相似文献   

15.
Summary Nikkomycin Z (NZ) is a competitive inhibitor of chitin synthase III in the yeast Saccharomyces cerevisiae. Myosin type II-deficient yeast strains (myo1) display a dramatic reduction in growth when chitin synthase III activity is inhibited by NZ, supporting the contention that actomyosin motility plays an important role in maintaining cell wall integrity. A proposed inhibitor of cortical actin polymerization in vitro, 2,3-butanedione monoxime (BDM), also inhibits growth of wild-type yeast strains at a concentration of 20 mM. In this study, we assayed for potential in vivo interplay between BDM-sensitive cell functions and cell wall chitin synthesis by testing for increased sensitivity to NZ during co-treatment with BDM at sub-inhibitory concentrations. Our results show that BDM can increase the sensitivity of yeast cells to Nikkomycin Z.  相似文献   

16.
Batch cultivations of the nikkomycin Z producer Streptomyces tendae were performed in three different parallel bioreactor systems (milliliter-scale stirred-tank reactors, shake flasks and shaken microtiter plate) in comparison to a standard liter-scale stirred-tank reactor as reference. Similar dry cell weight concentrations were measured as function of process time in stirred-tank reactors and shake flasks, whereas only poor growth was observed in the shaken microtiter plate. In contrast, the nikkomycin Z production differed significantly between the stirred and shaken bioreactors. The measured product concentrations and product formation kinetics were almost the same in the stirred-tank bioreactors of different scale. Much less nikkomycin Z was formed in the shake flasks and MTP cultivations, most probably due to oxygen limitations. To investigate the non-Newtonian shear-thinning behavior of the culture broth in small-scale bioreactors, a new and simple method was applied to estimate the rheological behavior. The apparent viscosities were found to be very similar in the stirred-tank bioreactors, whereas the apparent viscosity was up to two times increased in the shake flask cultivations due to a lower average shear rate of this reactor system. These data illustrate that different engineering characteristics of parallel bioreactors applied for process development can have major implications for scale-up of bioprocesses with non-Newtonian viscous culture broths.  相似文献   

17.
Streptomyces halstedii K122 was previously found to produce antifungal compounds on solid substrates that inhibit radial growth of fungi among Ascomycetes, Basidiomycetes, Deuteromycetes, Oomycetes, and Zygomycetes, and strongly affected hyphal branching and morphology. During growth of S. halstedii K122 in submerged culture, no antifungal activity could be detected. However, cultivation of S. halstedii in thin (1 mm) liquid substrate layers in large surface-area tissue culture flasks caused intense growth and sporulation of S. halstedii K122, and the biologically active compounds could be extracted from the mycelium with methanol. Antifungal compounds were purified using C18 solid phase extraction and silica gel column chromatography, and identified as bafilomycins B1 and C1, using 2D NMR and FAB MS. Production of bafilomycins, which are specific inhibitors of vacuolar ATPases, has not been reported from S. halstedii previously. Minimum inhibitory concentrations (MIC) of bafilomycins B1 and C1, amphotericin B, and nikkomycin Z were determined at pH 5.5 and 7.0 for the target fungi Aspergillus fumigatus, Mucor hiemalis, Penicillium roqueforti, and Paecilomyces variotii. Penicillium roqueforti was the most sensitive species to all the compounds investigated. The MIC values for amphotericin B were 0.5-4 micrograms.mL-1 for the fungi tested, and pH did not affect the toxicity. The MIC values for nikkomycin Z ranged from < 0.5 microgram.mL-1 for Mucor hiemalis to > 500 micrograms.mL-1 for Aspergillus fumigatus, and pH had no influence on toxicity. Bafilomycins B1 and C1 were equally active against the fungal species tested, with MIC values in the range of < 0.5-64 micrograms.mL-1. All fungi were more sensitive to both bafilomycin B1 and C1 at pH 7.0 than at pH 5.5.  相似文献   

18.
Streptomyces tendae Tü901 produces nikkomycins belonging to the nucleoside peptide antibiotics. Mutants defective in histidine catabolism were isolated and characterized with regard to their histidine ammonium-lyase activity and antibiotic synthesis. In the histidine ammonialyase-negative mutant hut-11 which was unimpaired in nikkomycin production histidine aminotransferase activity was detected as an additional histidine metabolizing enzyme. A protein exhibiting histidine aminotransferase activity could be demonstrated on non-denaturing gels of hut-11 crude extracts. Using optimized assay conditions, histidine aminotransferase activity was investigated in the strain hut-11 during growth in nikkomycin production medium. Maximal activity was reached at the end of exponential growth prior to nikkomycin production. In the presence of bromopyruvate, an effective inhibitor of histidine aminotransferase activity in vitro, production of nikkomycin Z and X was markedly reduced in hut-11.  相似文献   

19.
Fluconazole, ketoconazole and tioconazole were shown to act synergistically in vitro with the antibiotic nikkomycin X/Z on the pathogenic fungus Candida albicans. The phenomenon was demonstrated using a checkerboard technique and growth inhibition experiments. The azole antifungal agents, even at concentrations not affecting growth, decreased the incorporation of the 14C-label from [14C]glucose into chitin of the candidal cell wall. After 3 h incubation with tioconazole, 1 microgram ml-1, the incorporation of the radiolabelled glucose into chitin of intact cells and regenerating spheroplasts of C. albicans was inhibited by 43% and 30%, respectively. Moreover, the relative chitin content was approximately 45% lower than that of control cells. The chitin content increased after prolonged incubation with azoles, thus confirming the known phenomenon of azole-induced uncoordinated chitin synthesis and deposition. On the other hand, azole derivatives had very little effect on the rate of nikkomycin transport into C. albicans cells. A sequential blockade mechanism of synergism is proposed.  相似文献   

20.
Fungal infections in humans, wildlife, and plants are a growing concern because of their devastating effects on human and ecosystem health. In recent years, populations of many amphibian species have declined, and some have become extinct due to chytridiomycosis caused by the fungal pathogen Batrachochytrium dendrobatidis. For some endangered amphibian species, captive colonies are the best intermediate solution towards eventual reintroduction, and effective antifungal treatments are needed to cure chytridiomycosis and limit the spread of this pathogen in such survival assurance colonies. Currently, the best accepted treatment for infected amphibians is itraconazole, but its toxic side effects reduce its usefulness for many species. Safer antifungal treatments are needed for disease control. Here, we show that nikkomycin Z, a chitin synthase inhibitor, dramatically alters the cell wall stability of B. dendrobatidis cells and completely inhibits growth of B. dendrobatidis at 250 μM. Low doses of nikkomycin Z enhanced the effectiveness of natural antimicrobial skin peptide mixtures tested in vitro. These studies suggest that nikkomycin Z would be an effective treatment to significantly reduce the fungal burden in frogs infected by B. dendrobatidis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号