首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
All retroviruses encapsidate their genome as a dimer of homologous single-stranded RNAs. The dimerization initiation site (DIS) of human immunodeficiency virus type 1 (HIV-1) is located in the 5'-untranslated region of the viral genome and consists of a hairpin with a 6 nt self-complementary loop sequence. Genomic RNA dimerization, a crucial step for virion infectivity, is promoted by the formation of a loop-loop complex (or kissing complex) between two DIS hairpins. Crystal structures for the subtypes A, B and F of the HIV-1 DIS kissing complex have now been solved at 2.3 A, 1.9 A and 1.6 A, respectively. They revealed a polymorphism of bulged-out residues showing clearly that their conformation is not a mere consequence of crystal packing. They also provide more insights into ion binding, hydration, and RNA conformation and flexibility. In particular, we observed the binding of spermine to the loop-loop helix, which displaced a magnesium cation important for subtype A DIS dimerization. The excellent agreement between X-ray structures and the results of chemical probing and interference data on larger viral RNA fragments shows that the crystal structures are relevant for the DIS kissing complex present in solution and in viral particles. Accordingly, these structures will be helpful for designing new drugs derived from aminoglycoside antibiotics and targeted against the RNA dimerization step of the viral life-cycle.  相似文献   

2.
3.
To understand the molecular mechanism of light-driven proton pumps, the structures of the photointermediates of bacteriorhodopsin have been intensively investigated. Low-resolution diffraction techniques have demonstrated substantial conformational changes at the helix level in the M and N intermediates, between which there are noticeable differences. The intermediate structures at atomic resolution have also been solved by x-ray crystallography. Although the crystal structures have demonstrated local structural changes, such as hydrogen bond network rearrangements including water molecules, the large conformational changes at the helix level are not necessarily observed. Furthermore, the two reported crystal structures of an intermediate accumulated using a common method were distinct. To reconcile these apparent discrepancies, low-resolution projection maps were calculated from the crystal structures and compared to the low-resolution intermediate structures obtained using native membranes. The crystal structures can be categorized into three groups, which qualitatively correspond to the low-resolution structures of the M1-type, M2-type, and N-type determined in the native membrane. Based on these results, we conclude that at least three types of intermediate structures play a role during the photocycle.  相似文献   

4.
The displacement of probes that bind selectively to subdomains IIA or IIIA on human serum albumin (HSA) by competing compounds has been followed using fluorescence spectroscopy, and has therefore been used to assign a primary binding site for these compounds in the presence and absence of fatty acids. The crystal structures have also been solved for three compounds: a matched pair of carboxylic acids whose binding strength to HSA unexpectedly decreased as the lipophilicity increased; and a highly bound sulphonamide that appeared not to displace the probes in the displacement assay. The crystallography results support the findings from the fluorescence displacement assay. The results indicate that drug binding to subdomain IB might also be important location for certain compounds.  相似文献   

5.
RNA binding strategies of ribosomal proteins.   总被引:5,自引:0,他引:5       下载免费PDF全文
Structures of a number of ribosomal proteins have now been determined by crystallography and NMR, though the complete structure of a ribosomal protein-rRNA complex has yet to be solved. However, some ribosomal protein structures show strong similarity to well-known families of DNA or RNA binding proteins for which structures in complex with cognate nucleic acids are available. Comparison of the known nucleic acid binding mechanisms of these non-ribosomal proteins with the most highly conserved surfaces of similar ribosomal proteins suggests ways in which the ribosomal proteins may be binding RNA. Three binding motifs, found in four ribosomal proteins so far, are considered here: homeodomain-like alpha-helical proteins (L11), OB fold proteins (S1 and S17) and RNP consensus proteins (S6). These comparisons suggest that ribosomal proteins combine a small number of fundamental strategies to develop highly specific RNA recognition sites.  相似文献   

6.
The three-dimensional crystal structure of thermitase complexed with eglin-c in the presence of 100 mM calcium has been determined and refined at 2.0-A resolution to a R-factor of 16.8%. This crystal structure is compared with previously determined structures of thermitase at 0 and 5 mM calcium concentration. In the presence of 100 mM calcium all three calcium binding sites in thermitase are fully occupied. At 100 mM CaCl2 the "weak" calcium binding is occupied by a calcium ion, which is chelated by three protein ligands and four water molecules in a pentagonal bipyramid geometry. Thermitase has, apparently, a monovalent and divalent cation binding position at 2.5-A distance from each other at this site. At low calcium concentrations the monovalent-ion position is occupied by a sodium or potassium ion. The "medium strength" binding site shows in the presence of 100 mM CaCl2 a square antiprism arrangement with eight ligands, of which seven are donated by the protein. At low calcium concentrations we observe a distorted pentagonal bipyramid coordination at this site. The largest difference between these two conformations is observed for ligand Asp-60, which has two conformations with 0.8-A difference in C alpha positions. The "strong" calcium binding site has a pentagonal bipyramid coordination and is fully occupied in all three structures. Structural changes on binding calcium to the weak and "medium strength" calcium binding sites of thermitase are limited to the direct surroundings of these sites. Thermitase resembles in this respect subtilisin BPN' and does not exhibit long-range shifts as have been reported for proteinase K.  相似文献   

7.
Tertiary interactions are critical for proper RNA folding and ribozyme catalysis. RNA tertiary structure is often condensed through long-range helical packing interactions mediated by loop-receptor motifs. RNA structures displaying helical packing by loop-receptor interactions have been solved by X-ray crystallography, but not by NMR. Here, we report the NMR structure of a 30 kDa GAAA tetraloop-receptor RNA complex. In order to stabilize the complex, we used a modular design in which the RNA was engineered to form a homodimer, with each subunit containing a GAAA tetraloop phased one helical turn apart from its cognate 11-nucleotide receptor domain. The structure determination utilized specific isotopic labeling patterns (2H, 13C and 15N) and refinement against residual dipolar couplings. We observe a unique and highly unusual chemical shift pattern for an adenosine platform interaction that reveals a spectroscopic fingerprint for this motif. The structure of the GAAA tetraloop-receptor interaction is well defined solely from experimental NMR data, shows minor deviations from previously solved crystal structures, and verifies the previously inferred hydrogen bonding patterns within this motif. This work demonstrates the feasibility of using engineered homodimers as modular systems for the determination of RNA tertiary interactions by NMR.  相似文献   

8.
V Biou  F Shu    V Ramakrishnan 《The EMBO journal》1995,14(16):4056-4064
The structures of the two domains of translational initiation factor IF3 from Bacillus stearothermophilus have been solved by X-ray crystallography using single wavelength anomalous scattering and multiwavelength anomalous diffraction. Each of the two domains has an alpha/beta topology, with an exposed beta-sheet that is reminiscent of several ribosomal and other RNA binding proteins. An alpha-helix that protrudes out from the body of the N-terminal domain towards the C-terminal domain suggests that IF3 consists of two RNA binding domains connected by an alpha-helix and that it may bridge two regions of the ribosome. This represents the first high resolution structural information on a translational initiation factor.  相似文献   

9.
The complex molecular motions central to the functions of helicases have long attracted attention. Protein crystallography has provided transformative insights into these dynamic conformational changes, however important questions about the true nature of helicase configurations during the catalytic cycle remain. Using pulsed EPR (PELDOR or DEER) to measure interdomain distances in solution, we have examined two representative helicases: PcrA from superfamily 1 and XPD from superfamily 2. The data show that PcrA is a dynamic structure with domain movements that correlate with particular functional states, confirming and extending the information gleaned from crystal structures and other techniques. XPD in contrast is shown to be a rigid protein with almost no conformational changes resulting from nucleotide or DNA binding, which is well described by static crystal structures. Our results highlight the complimentary nature of PELDOR to crystallography and the power of its precision in understanding the conformational changes relevant to helicase function.  相似文献   

10.
Halogenation of bases is a widespread method used for solving crystal structures of nucleic acids. However, this modification may have important consequences on RNA folding and thus on the success of crystallization. We have used a combination of UV thermal melting, steady-state fluorescence, X-ray crystallography, and gel electrophoresis techniques to study the influence of uridine halogenation (bromination or iodination) on the RNA folding. The HIV-1 Dimerization Initiation Site is an RNA hairpin that can adopt an alternative duplex conformation and was used as a model. We have shown that, unexpectedly, the RNA hairpin/duplex ratio is strongly dependent not only on the presence but also on the position of halogenation.  相似文献   

11.
Crystallization of a maltose-binding protein MCL1 fusion has yielded a robust crystallography platform that generated the first apo MCL1 crystal structure, as well as five ligand-bound structures. The ability to obtain fragment-bound structures advances structure-based drug design efforts that, despite considerable effort, had previously been intractable by crystallography. In the ligand-independent crystal form we identify inhibitor binding modes not observed in earlier crystallographic systems. This MBP-MCL1 construct dramatically improves the structural understanding of well-validated MCL1 ligands, and will likely catalyze the structure-based optimization of high affinity MCL1 inhibitors.  相似文献   

12.
Thiol peroxidase, Tpx, has been shown to be a target protein of the salicylidene acylhydrazide class of antivirulence compounds. In this study we present the crystal structures of Tpx from Y. pseudotuberculosis (ypTpx) in the oxidised and reduced states, together with the structure of the C61S mutant. The structures solved are consistent with previously solved atypical 2-Cys thiol peroxidases, including that for "forced" reduced states using the C61S mutant. In addition, by investigating the solution structure of ypTpx using small angle X-ray scattering (SAXS), we have confirmed that reduced state ypTpx in solution is a homodimer. The solution structure also reveals flexibility around the dimer interface. Notably, the conformational changes observed between the redox states at the catalytic triad and at the dimer interface have implications for substrate and inhibitor binding. The structural data were used to model the binding of two salicylidene acylhydrazide compounds to the oxidised structure of ypTpx. Overall, the study provides insights into the binding of the salicylidene acylhydrazides to ypTpx, aiding our long-term strategy to understand the mode of action of this class of compounds.  相似文献   

13.
There have been several studies suggesting that protein structures solved by NMR spectroscopy and X-ray crystallography show significant differences. To understand the origin of these differences, we assembled a database of high-quality protein structures solved by both methods. We also find significant differences between NMR and crystal structures—in the root-mean-square deviations of the C α atomic positions, identities of core amino acids, backbone, and side-chain dihedral angles, and packing fraction of core residues. In contrast to prior studies, we identify the physical basis for these differences by modeling protein cores as jammed packings of amino acid-shaped particles. We find that we can tune the jammed packing fraction by varying the degree of thermalization used to generate the packings. For an athermal protocol, we find that the average jammed packing fraction is identical to that observed in the cores of protein structures solved by X-ray crystallography. In contrast, highly thermalized packing-generation protocols yield jammed packing fractions that are even higher than those observed in NMR structures. These results indicate that thermalized systems can pack more densely than athermal systems, which suggests a physical basis for the structural differences between protein structures solved by NMR and X-ray crystallography.  相似文献   

14.
The Saccharomyces cerevisiae ribosomal protein L30 autoregulates its own expression by binding to a purine-rich internal loop in its pre-mRNA and mRNA. NMR studies of L30 and its RNA complex showed that both the internal loop of the RNA as well as a region of the protein become substantially more ordered upon binding. A crystal structure of a maltose binding protein (MBP)-L30 fusion protein with two copies in the asymmetric unit has been determined. The flexible RNA-binding region in the L30 copies has two distinct conformations, one resembles the RNA bound form solved by NMR and the other is unique. Structure prediction algorithms also had difficulty accurately predicting this region, which is consistent with conformational flexibility seen in the NMR and X-ray crystallography studies. Inherent conformational flexibility may be a hallmark of regions involved in intermolecular interactions.  相似文献   

15.
The structure of the RNA-dependent RNA polymerase (RdRP) from the rabbit hemorrhagic disease virus has been determined by x-ray crystallography to a 2.5-A resolution. The overall structure resembles a "right hand," as seen before in other polymerases, including the RdRPs of polio virus and hepatitis C virus. Two copies of the polymerase are present in the asymmetric unit of the crystal, revealing active and inactive conformations within the same crystal form. The fingers and palm domains form a relatively rigid unit, but the thumb domain can adopt either "closed" or "open" conformations differing by a rigid body rotation of approximately 8 degrees. Metal ions bind at different positions in the two conformations and suggest how structural changes may be important to enzymatic function in RdRPs. Comparisons between the structures of the alternate conformational states of rabbit hemorrhagic disease virus RdRP and the structures of RdRPs from hepatitis C virus and polio virus suggest novel structure-function relationships in this medically important class of enzymes.  相似文献   

16.
BACKGROUND: Structures have recently been solved at 8 A resolution for both Ca2+-ATPase from rabbit sarcoplasmic reticulum and H+-ATPase from Neurospora crassa. These cation pumps are two distantly related members of the family of P-type ATPases, which are thought to use similar mechanisms to generate ATP-dependent ion gradients across a variety of cellular membranes. We have undertaken a detailed comparison of the two structures in order to describe their similarities and differences as they bear on their mechanism of active transport. RESULTS: Our first important finding was that the arrangement of 10 transmembrane helices was remarkably similar in the two molecules. This structural homology strongly supports the notion that these pumps use the same basic mechanism to transport their respective ions. Despite this similarity in the membrane-spanning region, the cytoplasmic regions of the two molecules were very different, both in their disposition relative to the membrane and in the juxtaposition of their various subdomains. CONCLUSIONS: On the basis of the crystallization conditions, we propose that these two crystal structures represent different intermediates in the transport cycle, distinguished by whether cations are bound to their transport sites. Furthermore, we propose that the corresponding conformational change (E2 to E1 ) has two components: the first is an inclination of the main cytoplasmic mass by 20 degrees relative to the membrane-spanning domain; the second is a rearrangement of the domains comprising the cytoplasmic part of the molecules. Accordingly, we present a rough model for this important conformational change, which relays the effects of cation binding within the membrane-spanning domain to the nucleotide-binding site, thus initiating the transport cycle.  相似文献   

17.
The M-box riboswitch couples intracellular magnesium levels to expression of bacterial metal transport genes. Structural analyses on other riboswitch RNA classes, which typically respond to a small organic metabolite, have revealed that ligand recognition occurs through a combination of base-stacking, electrostatic, and hydrogen-bonding interactions. In contrast, the M-box RNA triggers a change in gene expression upon association with an undefined population of metals, rather than responding to only a single ligand. Prior biophysical experimentation suggested that divalent ions associate with the M-box RNA to promote a compacted tertiary conformation, resulting in sequestration of a short sequence tract otherwise required for downstream gene expression. Electrostatic shielding from loosely associated metals is undoubtedly an important influence during this metal-mediated compaction pathway. However, it is also likely that a subset of divalent ions specifically occupies cation binding sites and promotes proper positioning of functional groups for tertiary structure stabilization. To better elucidate the role of these metal binding sites, we resolved a manganese-chelated M-box RNA complex to 1.86 Å by X-ray crystallography. These data support the presence of at least eight well-ordered cation binding pockets, including several sites that had been predicted by biochemical studies but were not observed in prior structural analysis. Overall, these data support the presence of three metal-binding cores within the M-box RNA that facilitate a network of long-range interactions within the metal-bound, compacted conformation.  相似文献   

18.
Crystallizing RNA has been an imperative and challenging task in the world of RNA research. Assistive methods such as chaperone-assisted RNA crystallography (CARC), employing monoclonal antibody fragments (Fabs) as crystallization chaperones have enabled us to obtain RNA crystal structures by forming crystal contacts and providing initial phasing information. Despite the early successes, the crystallization of large RNA-Fab complex remains a challenge in practice. The possible reason for this difficulty is that the Fab scaffold has not been optimized for crystallization in complex with RNA. Here, we have used the surface entropy reduction (SER) technique for the optimization of ΔC209 P4-P6/Fab2 model system. Protruding lysine and glutamate residues were mutated to a set of alanines or serines to construct Fab2SMA or Fab2SMS. Expression with the shake flask approach was optimized to allow large scale production for crystallization. Crystal screening shows that significantly higher crystal-forming ratio was observed for the mutant complexes. As the chosen SER residues are far away from the CDR regions of the Fab, the same set of mutations can now be directly applied to other Fabs binding to a variety of ribozymes and riboswitches to improve the crystallizability of Fab-RNA complex.  相似文献   

19.
Three-dimensional structures of only a handful of membrane proteins have been solved, in contrast to the thousands of structures of water-soluble proteins. Difficulties in crystallization have inhibited the determination of the three-dimensional structure of membrane proteins by x-ray crystallography and have spotlighted the critical need for alternative approaches to membrane protein structure. A new approach to the three-dimensional structure of membrane proteins has been developed and tested on the integral membrane protein, bacteriorhodopsin, the crystal structure of which had previously been determined. An overlapping series of 13 peptides, spanning the entire sequence of bacteriorhodopsin, was synthesized, and the structures of these peptides were determined by NMR in dimethylsulfoxide solution. These structures were assembled into a three-dimensional construct by superimposing the overlapping sequences at the ends of each peptide. Onto this construct were written all the distance and angle constraints obtained from the individual solution structures along with a limited number of experimental inter-helical distance constraints, and the construct was subjected to simulated annealing. A three-dimensional structure, determined exclusively by the experimental constraints, emerged that was similar to the crystal structure of this protein. This result suggests an alternative approach to the acquisition of structural information for membrane proteins consisting of helical bundles.  相似文献   

20.
Ribonuclease (RNase) P is a site‐specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix‐loop‐helix protein‐binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 Å. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号