首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autosomal DNA polymorphisms can provide new information and understanding of both the origins of and relationships among modern Native American populations. At the same time that autosomal markers can be highly informative, they are also susceptible to ascertainment biases in the selection of the markers to use. Identifying markers that can be used for ancestry inference among Native American populations can be considered separate from identifying markers to further the quest for history. In the current study, we are using data on nine Native American populations to compare the results based on a large haplotype‐based dataset with relatively small independent sets of single nucleotide polymorphisms. We are interested in what types of limited datasets an individual laboratory might be able to collect are best for addressing two different questions of interest. First, how well can we differentiate the Native American populations and/or infer ancestry by assigning an individual to her population(s) of origin? Second, how well can we infer the historical/evolutionary relationships among Native American populations and their Eurasian origins? We conclude that only a large comprehensive dataset involving multiple autosomal markers on multiple populations will be able to answer both questions; different small sets of markers are able to answer only one or the other of these questions. Using our largest dataset, we see a general increasing distance from Old World populations from North to South in the New World except for an unexplained close relationship between our Maya and Quechua samples. Am J Phys Anthropol, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
The Y chromosomes of 549 individuals from Siberia and the Americas were analyzed for 12 biallelic markers, which defined 15 haplogroups. The addition of four microsatellite markers increased the number of haplotypes to 111. The major Native American founding lineage, haplogroup M3, accounted for 66% of male Y chromosomes and was defined by the biallelic markers M89, M9, M45, and M3. The founder haplotype also harbored the microsatellite alleles DYS19 (10 repeats), DYS388 (11 repeats), DYS390 (11 repeats), and DYS391 (10 repeats). In Siberia, the M3 haplogroup was confined to the Chukotka peninsula, adjacent to Alaska. The second major group of Native American Y chromosomes, haplogroup M45, accounted for about one-quarter of male lineages. M45 was subdivided by the biallelic marker M173 and by the four microsatellite loci alleles into two major subdivisions: M45a, which is found throughout the Americas, and M45b, which incorporates the M173 variant and is concentrated in North and Central America. In Siberia, M45a haplotypes, including the direct ancestor of haplogroup M3, are concentrated in Middle Siberia, whereas M45b haplotypes are found in the Lower Amur River and Sea of Okhotsk regions of eastern Siberia. Among the remaining 5% of Native American Y chromosomes is haplogroup RPS4Y-T, found in North America. In Siberia, this haplogroup, along with haplogroup M45b, is concentrated in the Lower Amur River/Sea of Okhotsk region. These data suggest that Native American male lineages were derived from two major Siberian migrations. The first migration originated in southern Middle Siberia with the founding haplotype M45a (10-11-11-10). In Beringia, this gave rise to the predominant Native American lineage, M3 (10-11-11-10), which crossed into the New World. A later migration came from the Lower Amur/Sea of Okhkotsk region, bringing haplogroup RPS4Y-T and subhaplogroup M45b, with its associated M173 variant. This migration event contributed to the modern genetic pool of the Na-Dene and Amerinds of North and Central America.  相似文献   

3.
Y chromosome DNA polymorphisms in two African populations.   总被引:5,自引:4,他引:5       下载免费PDF全文
Y chromosome-specific DNA polymorphisms were detected using probe p49f after restriction with TaqI enzyme on samples coming from two African populations: Bantus and Pygmies. All the main TaqI alleles at five Y loci already found in Caucasians are also found in these two populations; 12 of the 16 Caucasian haplotypes were found in these two African populations, and two new haplotypes are Pygmy specific. A proposed phylogeny of the various haplotypes that was derived by using the parsimony criterion established that haplotypes XIII and XVIII, respectively the most frequent one and only one present in Pygmies, are probably ancestral.  相似文献   

4.
mtDNA sequence variation was examined in 60 Native Americans (Mixtecs from the Alta, Mixtecs from the Baja, Valley Zapotecs, and Highland Mixe) from southern Mexico by PCR amplification and high-resolution restriction endonuclease analysis. Four groups of mtDNA haplotypes (haplogroups A, B, C, and D) characterize Amerind populations, but only three (haplogroups A, B, and C) were observed in these Mexican populations. The comparison of their mtDNA variation with that observed in other populations from Mexico and Central America permits a clear distinction among the different Middle American tribes and raises questions about some of their linguistic affiliations. The males of these population samples were also analyzed for Y-chromosome RFLPs with the probes 49a, 49f, and 12f2. This analysis suggests that certain Y-chromosome haplotypes were brought from Asia during the colonization of the Americas, and a differential gene flow was introduced into Native American populations from European males and females.  相似文献   

5.
Y-specific 49a/TaqI haplotypes were determined for 831 individuals drawn from 21 different southern African populations. A total of 31 new haplotypes were observed, some of which contained new alleles or allelic variants. Duplication, in addition to CpG mutation, is implicated in the generation of certain allelic variants. Cluster analysis of genetic distances between the populations, calculated using the 49a/TaqI haplotype frequencies, revealed a basic split between African and non-African populations. Hybrid groups cluster with the caucasoid groups, indicating that male gene flow has occurred from the latter into the former. Clustering of the negroid and Khoisan groups is not what might have been expected from the known linguistic affinities. It is suggested that the 49a/TaqI haplotype analysis of these populations is not sufficiently sensitive to distinguish between many of the populations. The Y-specific 49a/PvuII polymorphism was studied in 127 individuals from southern African populations, and 17 polymorphic fragments ranging in size from 3.6 kb to greater than 48 kb were identified. A total of 53 PvuII haplotypes were observed, corresponding to only 30 TaqI haplotypes. There appears to be poor correlation between the two polymorphisms.  相似文献   

6.
Bovine Y chromosome microsatellite polymorphisms   总被引:1,自引:0,他引:1  
Thirty-eight bovine Y chromosome (BTAY) microsatellites (MS) were assessed for polymorphisms in DNA samples obtained from 17 unrelated bulls. Thirty-three of these microsatellites are new and were used for the construction of a first generation radiation hybrid map for BTAY (Liu et al., 2002). Five MS had been previously reported and were used as positive controls. Fourteen out of 38 MS were found to be polymorphic; the remaining 24 were uninformative among the animals tested. The number of hemizygous loci per MS within individual ranged from two to over 20. Seven MS presented smear- or ladder-like bands, a unique feature for Y chromosome multi-copy hemizygous MS loci. The locus length variance, within individual, ranged from 2 to 42 bp corresponding to the MS with the minimum and maximum number of loci observed, respectively. Within the 14 polymorphic MS, the five pseudoautosomal MS, on average, were more polymorphic (35.3%) than the nine Y-specific MS (19.6%). Haplotypes resulting from combinations of these polymorphic loci will provide a powerful tool for future studies on the origin of domestic cattle and the evolution of bovid species.  相似文献   

7.
Microdeletions on the short arm of the Y chromosome have defined three non-overlapping regions (AZFa, b, c) recurrently deleted among infertile males. These regions contain several genes or gene families involved in male germ-cell development and maintenance. Even though a meiotic origin for these microdeletions is assumed, the mechanisms and causes leading to microdeletion formation are largely unknown. In order to assess whether some Y chromosome groups (or haplogroups) are predisposed to, or protected against, deletion formation during male meiosis, we have defined and compared Y chromosome haplogroup distribution in a group of infertile/subfertile males harbouring Yq deletions and in a relevant Northwestern European control population. Our analyses suggest that Y chromosome deletion formation is, at least in the study populations, a stochastic event independent of the Y chromosome background on which they arise and may be caused by other genetic and/or environmental factors.  相似文献   

8.
9.
Y chromosome haplotypes reveal prehistorical migrations to the Himalayas   总被引:30,自引:1,他引:29  
By using 19 Y chromosome biallelic markers and 3 Y chromosome microsatellite markers, we analyzed the genetic structure of 31 indigenous Sino-Tibetan speaking populations (607 individuals) currently residing in East, Southeast, and South Asia. Our results showed that a T to C mutation at locus M122 is highly prevalent in almost all of the Sino-Tibetan populations, implying a strong genetic affinity among populations in the same language family. Furthermore, the extremely high frequency of H8, a haplotype derived from M122C, in the Sino-Tibetan speaking populations in the Himalayas including Tibet and northeast India indicated a strong bottleneck effect that occurred during a westward and then southward migration of the founding population of Tibeto-Burmans. We, therefore, postulate that the ancient people, who lived in the upper-middle Yellow River basin about 10,000 years ago and developed one of the earliest Neolithic cultures in East Asia, were the ancestors of modern Sino-Tibetan populations.  相似文献   

10.
Sixteen biallelic markers (SRY10831a, SRY10831b, SRY4064, SRY2627, 92R7, P2, P3, M34, M9, M3, M2, YAP, M60, M89, M213, M216) located in the nonrecombinant region of the Y chromosome were analyzed in 209 individuals belonging to six Brazilian populations: four Afro-Brazilian populations, one population of white European descendants, and one population of Japanese descendants. The results showed that most of the Y chromosomes of the Afro-Brazilians were from sub-Saharan Africa and that the proportion of Y chromosomes of European origin was greater than that of Y chromosomes of Amerindian origin. No typical African or Amerindian haplogroup was detected among Japanese individuals, and only one white individual showed a typical African haplogroup. Haplogroup P-92R7, which is highly frequent in the Portuguese and Italian populations, was the most frequent among whites (54%), and haplogroup K-M9, which shows wide geographic distribution and is absent in Africa, was the most frequent among Japanese individuals (65.6%). The two semi-isolated Afro-Brazilian populations showed the highest and the lowest genetic diversity, respectively. These differences probably reflect the effect of greater or smaller gene flow between a small isolated group and other populations. These findings show that the process of admixture does not occur homogeneously, with a tendency toward preferential marriages within the ethnic group and a clear direction in unions between European men and Amerindian or African women in the past. The results agree with historical and social data about the formation of the Brazilian population and reveal some of the factors that contribute to its heterogeneity.  相似文献   

11.
A total of 63 binary polymorphisms and 10 short tandem repeats (STRs) were genotyped on a sample of 2,344 Y chromosomes from 18 Native American, 28 Asian, and 5 European populations to investigate the origin(s) of Native American paternal lineages. All three of Greenberg's major linguistic divisions (including 342 Amerind speakers, 186 Na-Dene speakers, and 60 Aleut-Eskimo speakers) were represented in our sample of 588 Native Americans. Single-nucleotide polymorphism (SNP) analysis indicated that three major haplogroups, denoted as C, Q, and R, accounted for nearly 96% of Native American Y chromosomes. Haplogroups C and Q were deemed to represent early Native American founding Y chromosome lineages; however, most haplogroup R lineages present in Native Americans most likely came from recent admixture with Europeans. Although different phylogeographic and STR diversity patterns for the two major founding haplogroups previously led to the inference that they were carried from Asia to the Americas separately, the hypothesis of a single migration of a polymorphic founding population better fits our expanded database. Phylogenetic analyses of STR variation within haplogroups C and Q traced both lineages to a probable ancestral homeland in the vicinity of the Altai Mountains in Southwest Siberia. Divergence dates between the Altai plus North Asians versus the Native American population system ranged from 10,100 to 17,200 years for all lineages, precluding a very early entry into the Americas.  相似文献   

12.
Summary We analyzed DNA from 34 Polish and 63 Dutch cystic fibrosis (CF) patients and their families using the polymorphic markers XV2c and KM19, which are in linkage disequilibrium with the CF mutation. Strong linkage disequilibrium was found in the Dutch population sample, but the haplotypes of the Polish chromosomes showed a significantly less extreme disequilibrium. Our data and previous studies indicate that the highest degree of homogeneity of the CF defect and hence the best possible use of the XV2c/KM19/CF linkage disequilibrium for CF carrier detection/exclusion is in populations of northern European origin.  相似文献   

13.
Haplotypes derived from five polymorphic restriction sites were determined in 50 Carrier-Sekani and 70 Mvskoke chromosomes, and the results were integrated with those previously obtained for 11 South American Indian populations. Eleven haplotypes were identified in the Mvskokes, while five were observed in the Carrier-Sekani. As in South American natives, haplotype 2 (+----) and 6 (-++ -+) were the most prevalent among the Mvskoke (46% and 30%, respectively). In the Carrier-Sekani, haplotype 2 was also the most common, but haplotype 5 (-+ -++) was somewhat more frequent (18%) than 6 (12%). High heterozygosities, as well as genetic differentiation, were observed among these two North American and two other South American groups (Mapuche and Xavante). They could be due to non-Indian admixture in the Mvskoke and Mapuche, but the findings in the other two populations require some other type of explanation.  相似文献   

14.
DNA samples from Falasha Jews and Ethiopians were studied with the Y-chromosome-specific DNA probe p49a to screen for TaqI restriction polymorphisms and haplotypes. Two haplotypes (V and XI) are the most widespread in Falashas and Ethiopians, representing about 70% of the total number of haplotypes in Ethiopia. Because the Jewish haplotypes VII and VIII are not represented in the Falasha population, we conclude that the Falasha people descended from ancient inhabitants of Ethiopia who converted to Judaism.  相似文献   

15.
A number of studies based on linguistic, dental and genetic data have proposed that the colonization of the New World took place in three separate waves of migration from North-East Asia. Recently, other studies have suggested that only one major migration occurred. It is the aim of this study to assess these opposing migration hypotheses using molecular-typed HLA class II alleles to compare the relationships between linguistic and genetic data in contemporary Native American populations. Our results suggest that gene flow and genetic drift have been important factors in shaping the genetic landscape of Native American populations. We report significant correlations between genetic and geographical distances in Native American and East Asian populations. In contrast, a less clear-cut relationship seems to exist between genetic distances and linguistic affiliation. In particular, the close genetic relationship of the neighbouring Na-Dene Athabaskans and Amerindian Salishans suggests that geography is the more important factor. Overall, our results are most congruent with the single migration model.  相似文献   

16.
Genetic diversity of 60 X-chromosome single nucleotide polymorphisms (XSNPid panel) in populations of Siberian Tatars and Tuvinians is described. A close spectrum of allele frequencies and a low level of their genetic differentiation (Gst = 0.021) is revealed. High discriminating power of the XSNPid panel in populations under study is demonstrated. The random matching probability (MP) of multilocus genotypes in males is 1.12 × 10–18 in Siberian Tatars and 7.77 × 10–16 in Tuvans. In females, MP is several orders of magnitude lower: 1.51 × 10–25 in Siberian Tatars and 1.83 × 10–23 in Tuvinians.  相似文献   

17.
18.
A system has been developed using a microscope photometer to measure the DNA content of individual chromosomes. After correcting for the systematic and statistical errors the measured values are highly reproducible. Data are presented of measurements of human Y chromosomes from a cytogenetically normal population. When compared with the C-banding pattern from the same specimens the DNA content is found to change in discrete steps of 1.36×10–14 g or 13.26×106 bp for each of the Y chromosome polymorphic types.  相似文献   

19.
High-resolution Y chromosome haplotype analysis was performed in 143 paternally unrelated Israeli and Palestinian Moslem Arabs (I&P Arabs) by screening for 11 binary polymorphisms and six microsatellite loci. Two frequent haplotypes were found among the 83 detected: the modal haplotype of the I&P Arabs (approximately 14%) was spread throughout the region, while its one-step microsatellite neighbor, the modal haplotype of the Galilee sample (approximately 8%), was mainly restricted to the north. Geographic substructuring within the Arabs was observed in the highlands of Samaria and Judea. Y chromosome variation in the I&P Arabs was compared to that of Ashkenazi and Sephardic Jews, and to that of North Welsh individuals. At the haplogroup level, defined by the binary polymorphisms only, the Y chromosome distribution in Arabs and Jews was similar but not identical. At the haplotype level, determined by both binary and microsatellite markers, a more detailed pattern was observed. Single-step microsatellite networks of Arab and Jewish haplotypes revealed a common pool for a large portion of Y chromosomes, suggesting a relatively recent common ancestry. The two modal haplotypes in the I&P Arabs were closely related to the most frequent haplotype of Jews (the Cohen modal haplotype). However, the I&P Arab clade that includes the two Arab modal haplotypes (and makes up 32% of Arab chromosomes) is found at only very low frequency among Jews, reflecting divergence and/or admixture from other populations.  相似文献   

20.
The central Siberian origin for native American Y chromosomes.   总被引:12,自引:7,他引:12       下载免费PDF全文
Y chromosomal DNA polymorphisms were used to investigate Pleistocene male migrations to the American continent. In a worldwide sample of 306 men, we obtained 32 haplotypes constructed with the variation found in 30 distinct polymorphic sites. The major Y haplotype present in most Native Americans was traced back to recent ancestors common with Siberians, namely, the Kets and Altaians from the Yenissey River Basin and Altai Mountains, respectively. Going further back, the next common ancestor gave rise also to Caucasoid Y chromosomes, probably from the central Eurasian region. This study, therefore, suggests a predominantly central Siberian origin for Native American paternal lineages for those who could have migrated to the Americas during the Upper Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号