首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mutational studies of human DNA helicase B (HDHB) have suggested that its activity is critical for the G1/S transition of the cell cycle, but the nature of its role remains unknown. In this study, we show that during G1, ectopically expressed HDHB localizes in nuclear foci induced by DNA damaging agents and that this focal pattern requires active HDHB. During S and G2/M, HDHB localizes primarily in the cytoplasm. A carboxy-terminal domain from HDHB confers cell cycle-dependent localization, but not the focal pattern, to a reporter protein. A cluster of potential cyclin-dependent kinase phosphorylation sites in this domain was modified at the G1/S transition and maintained through G2/M of the cell cycle in vivo, coincident with nuclear export of HDHB. Serine 967 of HDHB was the major site phosphorylated in vivo and in vitro by cyclin-dependent kinases. Mutational analysis demonstrated that phosphorylation of serine 967 is crucial in regulating the subcellular localization of ectopically expressed HDHB. We propose that the helicase of HDHB operates primarily during G1 to process endogenous DNA damage before the G1/S transition, and it is largely sequestered in the cytoplasm during S/G2.  相似文献   

3.
Wang P  Wu Y  Ge X  Ma L  Pei G 《The Journal of biological chemistry》2003,278(13):11648-11653
beta-Arrestin1 and beta-arrestin2 play a key role in the regulation of G protein-coupled receptor-mediated signaling, whereas the subcellular distribution of beta-arrestin1 and beta-arrestin2 has been shown to be quite different. In this study, we found that although both beta-arrestin1 and beta-arrestin2 are able to interact with ubiquitin-protein isopeptide ligase (E3) Mdm2, only expression of beta-arrestin2 leads to the relocalization of Mdm2 from the nucleus to the cytoplasm. Further study reveals that beta-arrestin2 but not beta-arrestin1 shuttles between the cytoplasm and nucleus in a leptomycin B-sensitive manner. A hydrophobic amino acid-rich region (VXXXFXXLXL) at the C terminus of beta-arrestin2 was further demonstrated to serve as a nuclear export signal responsible for the extranuclear localization of beta-arrestin2. In the corresponding region of beta-arrestin1, there is a single amino acid difference (Glu instead of Leu in beta-arrestin2), and mutation of Glu to Leu conferred to beta-arrestin1 similar subcellular distribution to that of beta-arrestin2. Moreover, data from a series of deletion mutations demonstrated that the N domain (residues 1-185) was indispensable for the nuclear localization of both beta-arrestins, and the results from a Val to Asp point mutation in the N domain also supported this notion. In addition, our data showed that nucleocytoplasmic shuttling of beta-arrestin2 was required, via protein/protein interaction, for the cytoplasmic relocalization of Mdm2 and JNK3, another well known beta-arrestin2-binding protein. Our study thus suggests that both the nuclear export signal motif and the N domain of beta-arrestins are critical for the regulation of their subcellular localization and that beta-arrestin2 may modulate the function of its binding partners such as Mdm2 and JNK3 by alteration of their subcellular distribution.  相似文献   

4.
Ubiquitination of proteins and their degradation within the proteasome has emerged as the major proteolytic mechanism used by mammalian cells to regulate cytosolic and nuclear protein levels. Substrate ubiquitylation is mediated by ubiquitin (Ub) ligases, also called E3 Ub ligases. HECT-E3 Ub ligases are characterized by the presence of a C-terminal HECT domain that contains the active site for Ub transfer onto substrates. Among the many E3 Ub ligases, the family homologous to E6-Ap C-terminus (HECT) E3 Ub ligases, which includes the yeast protein Rsp5p and the mammalian homolog NEDD4, AIP4/Itch, and Smurf, has been shown to ubiquitylate membrane proteins and, in some instances, to induce their degradation. In this report, we have identified Syntaxin 8 as a binding protein to a novel HECT domain protein, HECT domain containing 3 (HECTd3), by yeast two-hybrid screen. Besides HECT domain, HECTd3 contains an anaphase-promoting complex, subunit 10 (APC10) domain. Our co-immunoprecipitation experiments show that Syntaxin 8 directly interacts with HECTd3 and that the overexpression of HECTd3 promotes the ubiquitination of Syntaxin 8. Immunofluorescence results show that Syntaxin 8 and HECTd3 have similar subcellular localization.  相似文献   

5.
p21cip1 is a protein with a dual function in oncogenesis depending mainly on its intracellular localization: tumor suppressor in the nucleus and oncogenic in the cytoplasm. After DNA damage, p21cip1 increases and accumulates in the nucleus to ensure cell cycle arrest. We show here that the nuclear accumulation of p21cip1 is not only a consequence of its increased levels but to a DNA damage cellular response, which is ataxia telangiectasia and Rad3 related (ATR)/ataxia telangiectasia mutated (ATM) and p53 independent. Furthermore, after DNA damage, p21cip1 not only accumulates in the nucleoplasm but also in the disrupted nucleolus. Inside the nucleolus, it is found in spherical structures, which are not a protrusion of the nucleoplasm. The steady‐state distribution of p21cip1 in the nucleolus resulted from a highly dynamic equilibrium between nucleoplasmic and nucleolar p21cip1 and correlated with the inhibition of p21cip1 nuclear export. Most interestingly, inhibition of ribosomal export after expressing a dominant‐negative mutant of nucleophosmin induced p21cip1 accumulation in the nucleus and the nucleolus in the absence of DNA damage. This proved the existence of a nucleolar export route to the cytoplasm for p21cip1 in control conditions that would be inhibited upon DNA damage leading to nuclear and nucleolar accumulation of p21cip1.  相似文献   

6.
7.
8.
9.
Polo-like kinases (Plk1-4) are emerging as an important class of proteins involved in many aspects of cell cycle regulation and response to DNA damage. Here, we report the cloning of a fifth member of the polo-like kinase family named Plk5. DNA and protein sequence analyses show that Plk5 shares more similarities with Plk2 and Plk3 than with Plk1 and Plk4. Consistent with this observation, we show that mouse Plk5 is a DNA damage inducible gene. Mouse Plk5 protein localizes predominantly to the nucleolus, and deletion of a putative nucleolus localization signal (NoLS) within its N-terminal moiety disrupts its nucleolar localization. Ectopic expression of Plk5 leads to cell cycle arrest in G1, decreased DNA synthesis, and to apoptosis, a characteristic it shares with Plk3. Interestingly, in contrast to mouse Plk5 gene, the sequence of human Plk5 contains a stop codon that produces a truncated protein lacking part of the kinase domain.  相似文献   

10.
Human cells are prone to a range of natural environmental stresses and administered agents that damage or modify DNA, resulting in a cellular response typified by either cell death, or a cell cycle arrest, to permit repair of the genomic damage. DNA damage often elicits movement of proteins from one subcellular location to another, and the redistribution of proteins involved in genomic maintenance into distinct nuclear DNA repair foci is well documented. In this review, we discuss the DNA damage-induced trafficking of proteins to and from other distinct subcellular organelles including the nucleolus, mitochondria, Golgi complex and centrosome. The extent of intracellular transport suggests a dynamic and possibly co-ordinated role for protein trafficking in the DNA damage response.  相似文献   

11.

Background  

Ubiquitination serves multiple cellular functions, including proteasomal degradation and the control of stability, function, and intracellular localization of a wide variety of proteins. NEDD4L is a member of the HECT class of E3 ubiquitin ligases. A defining feature of NEDD4L protein isoforms is the presence or absence of an amino-terminal C2 domain, a class of subcellular, calcium-dependent targeting domains. We previously identified a common variant in human NEDD4L that generates isoforms that contain or lack a C2 domain.  相似文献   

12.
We describe the creation of a pluripotent ubiquitin-conjugating enzyme (E2) generated through a single amino acid substitution within the catalytic domain of RAD6 (UBC2). This RAD6 derivative carries out the stress-related function of UBC4 and the cell cycle function of CDC34 while maintaining its own DNA repair function. Furthermore, it carries out CDC34's function in the absence of the CDC34 carboxy-terminal extension. By using sequence and structural comparisons, the residues that define the unique functions of these three E2s were found on the E2 catalytic face partitioned to either side by a conserved divide. One of these patches corresponds to a binding site for both HECT and RING domain proteins, suggesting that a single substitution in the catalytic domain of RAD6 confers upon it the ability to interact with multiple ubiquitin protein ligases (E3s). Other amino acid substitutions made within the catalytic domain of RAD6 either caused loss of its DNA repair function or modified its ability to carry out multiple E2 functions. These observations suggest that while HECT and RING domain binding may generally be localized to a specific patch on the E2 surface, other regions of the functional E2 face also play a role in specificity. Finally, these data also indicate that RAD6 uses a different functional region than either UBC4 or CDC34, allowing it to acquire the functions of these E2s while maintaining its own. The pluripotent RAD6 derivative, coupled with sequence, structural, and phylogenetic data, suggests that E2s have diverged from a common multifunctional progenitor.  相似文献   

13.
The G(1) cyclins of budding yeast drive cell cycle initiation by different mechanisms, but the molecular basis of their specificity is unknown. Here we test the hypothesis that the functional specificity of G(1) cyclins is due to differential subcellular localization. As shown by indirect immunofluorescence and biochemical fractionation, Cln3p localization appears to be primarily nuclear, with the most obvious accumulation of Cln3p to the nuclei of large budded cells. In contrast, Cln2p localizes to the cytoplasm. We were able to shift localization patterns of truncated Cln3p by the addition of nuclear localization and nuclear export signals, and we found that nuclear localization drives a Cln3p-like functional profile, while cytoplasmic localization leads to a partial shift to a Cln2p-like functional profile. Therefore, forcing Cln3p into a Cln2p-like cytoplasmic localization pattern partially alters the functional specificity of Cln3p toward that of Cln2p. These results suggest that there are CLN-dependent cytoplasmic and nuclear events important for cell cycle initiation. This is the first indication of a cytoplasmic function for a cyclin-dependent kinase. The data presented here support the idea that cyclin function is regulated at the level of subcellular localization and that subcellular localization contributes to the functional specificity of Cln2p and Cln3p.  相似文献   

14.
15.
16.
The human immunodeficiency virus rev gene product regulates the expression of viral structural genes. It was recently shown that Rev regulates the export of viral structural mRNAs from the nucleus to the cytoplasm. Analysis of Rev subcellular localization reveals marked accumulation in the nucleolus, suggesting a role for the nucleolus in this export process. We report here the identification of amino acid residues critical to the nucleolar localization of Rev. Consistent with this finding, a Rev/beta-galactosidase fusion protein, harboring this region of Rev, localized entirely within the nucleolus. Of most significance, mutations that eliminated nucleolar localization markedly diminished Rev function, even though accumulation in the nucleoplasm was retained. These findings support a model whereby Rev-induced export of human immunodeficiency virus structural mRNAs from the nucleus to the cytoplasm is likely to involve nucleolar events.  相似文献   

17.
Parathyroid hormone-related protein is responsible for hypercalcemia induced by various tumors. The similarity of its N-terminus to that of parathyroid hormone enables parathyroid hormone-related protein to share parathyroid hormone's signaling properties, but the rest of the molecule possesses distinct functions including a role in the nucleus/nucleolus in reducing apoptosis and enhancing cell proliferation. We have previously shown that parathyroid hormone-related protein nuclear import is mediated by importin β1. Here we use fluorescence recovery after photobleaching for the first time to show that, in living cells, parathyroid hormone-related protein is exported from the nucleus in a leptomycin B-sensitive manner, implicating CRM1 as the parathyroid hormone-related protein nuclear export receptor. Leptomycin B treatment significantly reduced the rate of nuclear export 4 −10-fold, thereby increasing parathyroid hormone-related protein concentration in the nucleus/nucleolus about 2-fold. Intriguingly, this also led to a 2-fold reduced nuclear import rate. Inhibiting the nuclear export of a protein able to shuttle between nucleus and cytoplasm through distinct receptors thus can also affect nuclear import, indicating that the subcellular localization of a protein containing distinct nuclear import and export signals is the product of an integrated system. Although there have been several recent studies examining the dynamics of intranuclear transport using fluorescence recovery after photobleaching, this represents, to our knowledge, the first use of the technique to examine the kinetics of nucleocytoplasmic flux in living cells.  相似文献   

18.
Y Zhang  Y Xiong 《Molecular cell》1999,3(5):579-591
The mammalian ARF-INK4a locus uniquely encodes two cell cycle inhibitors by using separate promoters and alternative reading frames. p16INK4a maintains the retinoblastoma protein in its growth suppressive state while ARF stabilizes p53. We report that human ARF protein predominantly localizes to the nucleolus via a sequence within the exon 2-encoded C-terminal domain and is induced to leave the nucleolus by MDM2. ARF forms nuclear bodies with MDM2 and p53 and blocks p53 and MDM2 nuclear export. Tumor-associated mutations in ARF exon 2 disrupt ARF's nucleolus localization and reduce ARF's ability to block p53 nuclear export and to stabilize p53. Our results suggest an ARF-regulated MDM2-dependent p53 stabilization and link the human tumor-associated mutations in ARF with a functional alteration.  相似文献   

19.
GNL3L is an evolutionarily conserved high molecular weight GTP binding nucleolar protein belonging to HSR1-MMR1 subfamily of GTPases. The present investigation reveals that GNL3L is a nucleo-cytoplasmic shuttling protein and its export from the nucleus is sensitive to Leptomycin B. Deletion mutagenesis reveals that the C-terminal domain (amino acids 501–582) is necessary and sufficient for the export of GNL3L from the nucleus and the exchange of hydrophobic residues (M567, L570 and 572) within the C-terminal domain impairs this process. Results from the protein-protein interaction analysis indicate that GNL3L interaction with CRM1 is critical for its export from the nucleus. Ectopic expression of GNL3L leads to lesser accumulation of cells in the ‘G2/M’ phase of cell cycle whereas depletion of endogenous GNL3L results in ‘G2/M’ arrest. Interestingly, cell cycle analysis followed by BrdU labeling assay indicates that significantly increased DNA synthesis occurs in cells expressing nuclear export defective mutant (GNL3L∆NES) compared to the wild type or nuclear import defective GNL3L. Furthermore, increased hyperphosphorylation of Rb at Serine 780 and the upregulation of E2F1, cyclins A2 and E1 upon ectopic expression of GNL3L∆NES results in faster ‘S’ phase progression. Collectively, the present study provides evidence that GNL3L is exported from the nucleus in CRM1 dependent manner and the nuclear localization of GNL3L is important to promote ‘S’ phase progression during cell proliferation.  相似文献   

20.
In C2C12 myoblasts, endogenous histone deacetylase HDAC4 shuttles between cytoplasmic and nuclear compartments, supporting the hypothesis that its subcellular localization is dynamically regulated. However, upon differentiation, this dynamic equilibrium is disturbed and we find that HDAC4 accumulates in the nuclei of myotubes, suggesting a positive role of nuclear HDAC4 in muscle differentiation. Consistent with the notion of regulation of HDAC4 intracellular trafficking, we reveal that HDAC4 contains a modular structure consisting of a C-terminal autonomous nuclear export domain, which, in conjunction with an internal regulatory domain responsive to calcium/calmodulin-dependent protein kinase IV (CaMKIV), determines its subcellular localization. CaMKIV phosphorylates HDAC4 in vitro and promotes its nuclear-cytoplasmic shuttling in vivo. However, although 14-3-3 binding of HDAC4 has been proposed to be important for its cytoplasmic retention, we find this interaction to be independent of CaMKIV. Rather, the HDAC4.14-3-3 complex exists in the nucleus and is required to confer CaMKIV responsiveness. Our results suggest that the subcellular localization of HDAC4 is regulated by sequential phosphorylation events. The first event is catalyzed by a yet to be identified protein kinase that promotes 14-3-3 binding, and the second event, involving protein kinases such as CaMKIV, leads to efficient nuclear export of the HDAC4.14-3-3 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号