首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resonance Raman spectra of ferrous and ferric cytochrome c peroxidase and Compound ES and their pH dependences were investigated in resonance with Soret band. The Fe(IV) = O stretching Raman line of Compound ES was assigned to a broad band around 767 cm-1, which was shifted to 727 cm-1 upon 18O substitution. The 18O-isotopic frequency shift was recognized for Compound ES derived in H218O, but not in H216O. This clearly indicated occurrence of an oxygen exchange between the Fe(IV) = O heme and bulk water. The Fe(IV) = O stretching Raman band was definitely more intense and of higher frequency in D2O than in H2O as in Compound II of horseradish peroxidase, but in contrast with this its frequency was unaltered between pH 4 and 11. The Fe(II)-histidine stretching Raman line was assigned on the basis of the frequency shift observed for 54Fe isotopic substitution. From the intensity analysis of this band, the pKa of the heme-linked ionization of ferrocytochrome c peroxidase was determined to be 7.3. The Raman spectrum of ferricytochrome c peroxidase strongly suggested that the heme is placed under an equilibrium between the 5- and 6-coordinate high-spin structures. At neutral pH it is biased to the 5-coordinate structure, but at the acidic side of the transition of pKa = 5.5 the 6-coordinate heme becomes dominant. F- was bound to the heme iron at pH 6, but Cl- was bound only at acidic pH. Acidification by HNO3, H2SO4, CH3COOH, HBr, or HI resulted in somewhat different populations of the 5- and 6-coordinate forms when they were compared at pH 4.3. Accordingly, it is inferred that a water molecule which is suggested to occupy the sixth coordination position of the heme iron is not coordinated to the heme iron at pH 6 but that protonation of the pKa = 5.5 residue induces an appreciable structural change, allowing the coordination of the water molecule to the heme iron.  相似文献   

2.
Resonance Raman spectra are reported for native horseradish peroxidase (HRP) and cytochrome c peroxidase (CCP) at 290, 77 and 9 K, using 406.7 nm excitation, in resonance with the Soret electronic transition. The spectra reveal temperature-dependent equilibria involving changes in coordination or spin state. At 290 K and pH 6.5, CCP contains a mixture of 5- and 6-coordinate high-spin FeIII heme while at 9 K the equilibrium is shifted entirely to the 6-coordinate species. The spectra indicate weak binding of H2O to the heme Pe, consistent with the long distance, 2.4 Å, seen in the crystal structure. At 290 K HRP also contains a mixture of high-spin FeIII hemes with the 5-coordinate form predominant. At low temperature, a small 6-coordinate high-spin component remains but the 5-coordinate high-spin spectrum is replaced by another which is characteristic either of 6-coordinate low-spin or 5-coordinate intermediate spin heme. The latter species is definitely indicated by previous EPR studies at low temperature. This behavior implies that, in contrast to CCP, the distal coordination site of HRP is only partially occupied by H2O at any temperature and that lowering the temperature significantly weakens the Fe-proximal imidazole bond. Consistent with this inference, the 77 K spectrum of reduced HRP shows an appreciable fraction of molecules having an Fe-imidazole stretching frequency of 222 cm−1, a value indicating weakened H-bonding of the proximal imidazole.

Resonance Roman spectroscopy Horseradish peroxidase Cytochrome c peroxidase Coordination equilibrium  相似文献   


3.
Resonance Raman spectra are reported for native horseradish peroxidase (HRP) and cytochrome c peroxidase (CCP) at 290, 77 and 9 K, using 406.7 nm excitation, in resonance with the Soret electronic transition. The spectra reveal temperature-dependent equilibria involving changes in coordination or spin state. At 290 K and pH 6.5, CCP contains a mixture of 5- and 6-coordinate high-spin FeIII heme while at 9 K the equilibrium is shifted entirely to the 6-coordinate species. The spectra indicate weak binding of H2O to the heme Pe, consistent with the long distance, 2.4 Å, seen in the crystal structure. At 290 K HRP also contains a mixture of high-spin FeIII hemes with the 5-coordinate form predominant. At low temperature, a small 6-coordinate high-spin component remains but the 5-coordinate high-spin spectrum is replaced by another which is characteristic either of 6-coordinate low-spin or 5-coordinate intermediate spin heme. The latter species is definitely indicated by previous EPR studies at low temperature. This behavior implies that, in contrast to CCP, the distal coordination site of HRP is only partially occupied by H2O at any temperature and that lowering the temperature significantly weakens the Fe-proximal imidazole bond. Consistent with this inference, the 77 K spectrum of reduced HRP shows an appreciable fraction of molecules having an Fe-imidazole stretching frequency of 222 cm−1, a value indicating weakened H-bonding of the proximal imidazole.Resonance Roman spectroscopyHorseradish peroxidaseCytochrome c peroxidaseCoordination equilibrium  相似文献   

4.
Protease activity present in aerobically grown cells of Pseudomonas perfectomarina, protease apparently copurified with cytochrome c-552, and trypsin achieved a limited proteolysis of the diheme cytochrome c-552. That partial lysis conferred cytochrome c peroxidase activity upon cytochrome c-552. The removal of a 4000-Da peptide explains the structural changes in the cytochrome c-552 molecule that resulted in the appearance of both cytochrome c peroxidase activity (with optimum activity at pH 8.6) and a high-spin heme iron. The oxidized form of the modified cytochrome c-552 bound cyanide to the high-spin ferric heme with a rate constant of (2.1 +/- 0.1) X 10(3) M-1 s-1. The dissociation constant was 11.2 microM. Whereas the intact cytochrome c-552 molecule can be half-reduced by ascorbate, the cytochrome c peroxidase was not reducible by ascorbate, NADH, ferrocyanide, or reduced azurin. Dithionite reduced the intact protein completely but only half-reduced the modified form. The apparent second-order rate constant for dithionite reduction was (7.1 +/- 0.1) X 10(2) M-1 s-1 for the intact protein and (2.2 +/- 0.1) X 10(3) M-1 s-1 for the modified form. In contrast with other diheme cytochrome c peroxidases, reduction of the low-spin heme was not necessary to permit ligand binding by the high-spin heme iron.  相似文献   

5.
A small soluble cytochrome c-554 purified from Methylosinus trichosporium OB3b has been purified and analyzed by amino acid sequencing, mass spectrometry, visible, CD and EPR spectroscopies. It is found to be a mono heme protein with a characteristic cytochrome c fold, thus fitting into the class of cytochrome c(2), which is the bacterial homologue of mitochondrial cytochrome c. The heme iron has a Histidine/Methionine axial ligation and exhibits a highly anisotropic/axial low spin (HALS) EPR signal, with a g(max) at 3.40, and ligand field parameters V/ξ = 0.99, Δ/ξ = 4.57. This gives the rhombicity V/Δ = 0.22. The structural basis for this HALS EPR signal in Histidine/Methionine ligated hemes is not resolved. The ligand field parameters observed for cytochrome c-554 fits the observed pattern for other cytochromes with similar ligation and EPR behaviour.  相似文献   

6.
The pH dependence of resonance Raman spectra were studied for ferrous and ferric cytochromes c, c2, c3, c-551, and c-555. The frequencies of the 1565 cm-1 (ferric) and 1539 cm-1 lines (ferrous) were sensitive to the replacement of the sixth ligand. The titration curve for the 1565 cm-1 line of cytochrome c was parallel with that for the 695 nm band. The pH dependence of the 1539 cm-1 line of ferrous cytochrome c3 suggested the stepwise replacement of the sixth ligand of its four hemes, although such pH dependence was not recognized for the Raman spectra of other ferrous cytochromes investigated. The relative intensities of three Raman lines at 1639, 1587, and 1561 cm-1 of ferric protoporphyrin bis-imidazole complex were changed clearly by the presence of detergents. The relative intensities of the corresponding three Raman lines of cytochromes b5 and c were close to those of the ferric porphyrin complex in the presence and absence of detergents, respectively, suggesting an appreciable difference in their heme environments. Reduced hemin in detergent solution, unexpectedly, gave the Raman spectrum of ferric low spin type.  相似文献   

7.
A detailed study of the soluble cytochrome composition of Rhodopseudomonas sphaeroides (ATCC 17023) indicates that there are five c-type cytochromes and one b-type cytochrome present. The molecular weights, heme contents, amino acid compositions, isoelectric points, and oxidation-reduction potentials were determined and the proteins were compared with those from other bacterial sources. Cytochromes c2 and c' have previously been well characterized. Cytochrome c-551.5 is a diheme protein which has a very low redox potential, similar to certain purple bacterial and algal cytochromes. Cytochrome c-554 is an oligomer, which is spectrally similar to the low-spin isozyme of cytochrome c' found in other purple bacteria (e.g., Rhodopseudomonas palustris cytochrome c-556). An unusual high-spin c-type heme protein has also been isolated. It is spectrally distinguishable from cytochrome c' and binds a variety of heme ligands including oxygen. A large molecular-weight cytochrome b-558 is also present which appears related to a similar protein from Rhodospirillum rubrum, and the bacterioferritin from Escherichia coli. None of the soluble proteins appear to be related to the abundant membrane-bound c-type cytochrome in Rps. sphaeroides which has a larger subunit molecular weight similar to mitochondrial cytochrome c1 and chloroplast cytochrome f.  相似文献   

8.
The novel class III ascorbate peroxidase isoenzyme II from tea leaves (TcAPXII), with an unusually high specific ascorbate peroxidase activity associated with stress response, has been characterized by resonance Raman (RR), electronic absorption, and Fourier transform infrared (FT-IR) spectroscopies. Ferric and ferrous forms and the complexes with fluoride, cyanide, and CO have been studied at various pH values. The overall blue shift of the electronic absorption spectrum, the high RR frequencies of the core size marker bands, similar to those of 6-coordinate low-spin heme, and the complex RR spectrum in the low-frequency region of ferric TcAPXII indicate that this protein contains an unusual 5-coordinate quantum mechanically mixed-spin heme. The spectra of both the fluoride and the CO adducts suggest that these exogenous ligands are strongly hydrogen-bonded with a residue that appears to be unique to this peroxidase. Electronic absorption spectra also emphasize structural differences between the benzhydroxamic acid binding sites of TcAPXII and horseradish peroxidases (HRPC). It is concluded that TcAPXII is a paradigm peroxidase since it is the first example of a hybrid enzyme that combines spectroscopic signatures, structural elements, and substrate specificities previously reported only for distinct class I and class III peroxidases.  相似文献   

9.
Andrew CR  George SJ  Lawson DM  Eady RR 《Biochemistry》2002,41(7):2353-2360
The 5-coordinate ferrous heme of Alcaligenes xylosoxidans cytochrome c' reacts with NO to form a 6-coordinate nitrosyl intermediate (lambdaSoret at 415 nm) which subsequently converts to a 5-coordinate nitrosyl end product (lambdaSoret at 395 nm) in a rate-determining step. Stopped-flow measurements at pH 8.9, 25 degrees C, yield a rate constant for the formation of the 6-coordinate nitrosyl adduct, k(on) = (4.4 +/- 0.5) x 10(4) M(-1) x s(-1), which is 3-4 orders of magnitude lower than the values for other pentacoordinate ferrous hemes and is consistent with NO binding within the sterically crowded distal heme pocket. Resonance Raman measurements of the freeze-trapped 6-coordinate nitrosyl intermediate reveal an unusually high Fe-NO stretching frequency of 579 cm(-1), suggesting a distorted Fe-N-O coordination geometry. The rate of 6- to 5-coordinate heme nitrosyl conversion is also dependent upon NO concentration, with a rate constant, k(6-5) = (8.1 +/- 0.7) x 10(3) M(-1) x s(-1), implying that an additional molecule of NO is required to form the 5c-NO adduct. Since crystallographic studies have shown that the 5-coordinate nitrosyl complex of cytochrome c' binds NO to the proximal (rather than distal) face of the heme, the NO dependence of the 6- to 5-coordinate NO conversion supports a mechanism in which the weakened His ligand, as well as the distally bound NO, is displaced by a second NO molecule which attacks and is retained in the proximal coordination position. The fact that a dependent 6- to 5-coordinate nitrosyl conversion has been previously reported for soluble guanylate cyclase suggests that the mechanism of Fe-His bond cleavage may be similar to that of cytochrome c' and strengthens the recent proposal that both proteins exhibit proximal NO binding in their 5-coordinate nitrosyl adducts.  相似文献   

10.
The high-frequency resonance Raman spectra of FeIII yeast native cytochrome c peroxidase (CCP) and five of its mutants [CCP(MI), Phe-51, Leu-48, Lys-48, Asn-235, and Phe-191] were recorded in phosphate buffer, pH 7.0, and in glycerol/phosphate mixtures at 295 and 10 K. Glycerol induces heme coordination changes in some of the CCP mutants at room temperature. It apparently weakens the binding of the Fe atom to ligands in the distal heme cavity and drives the heme toward the 5-coordinate, high-spin state. At 10 K, native CCP and all the mutants (except Phe-51 which remains 6-coordinate, high-spin) show various distributions of spin and coordination states which differ from those observed at 295 K. Upon cooling in phosphate buffer, pH 7, and to a much lesser extent in 66% glycerol/phosphate, an internal strong-field ligand is coordinated to the Fe. A likely candidate is H2O-595, which could become a strong-field ligand on H-bonding and/or proton transfer to H2O-648, and/or the distal His-52. However, distal His-52 itself cannot be ruled out as the coordinating ligand considering that the Phe-51 mutant, which binds H2O-595 at room temperature, does not show a large 6-coordinate, low-spin component at 10 K like the other mutants. These results clearly indicate that the Fe coordination in CCP and its mutants is sensitive to both temperature and solvent composition.  相似文献   

11.
The resonance Raman spectrum of turnip cytochrome f is similar to that of other c-type cytochromes with the exception of a single band at 1532 cm-1 which is shifted to lower frequency relative to its position (1542-1545 cm-1) in other c-type cytochromes. Comparison of the frequency of this band with that in alkylated cytochrome c at high pH suggests that the sixth heme iron ligand in cytochrome f is a deprotonated lysine amino group rather than a methionine sulfur. Comparison of the amino-acid sequences of cytochromes f and c1 suggests lysine-145 as a likely candidate for the sixth heme iron ligand in cytochrome f.  相似文献   

12.
The pH and temperature dependences of the 270-MHz proton nuclear magnetic resonance and resonance Raman spectra of Thermus thermophilus cytochrome c-552 were studied. Observation of the NMR methyl signal of the iron-bound methionine indicates that a methionine residue is the sixth ligand of heme iron in both ferric and ferrous states, although the environment of this methionine is not similar to that in mitochondrial cytochrome c. The NMR methyl signal of the coordinated methionine in the ferrous state was observed even at 87 degrees C, indicating the retention of the methionine ligand at the sixth coordination position. None of resonance Raman lines in ferrous cytochrome c-552 at higher temperatures showed a prominant temperature-dependent frequency shift, which implies that the heme iron was still bound with strong ligands and retained the low-spin state. In either redox state overall thermal denaturation did not occur even at 87 degrees C, although the ferric form existed in thermal spin mixture of the low-spin and high-spin species at higher temperatures. The hyperfine-shifted NMR resonances of the ferric form indicated rapid exchange of the sixth ligand at alkaline pH in the process of a single-step alkaline isomerization.  相似文献   

13.
R Timkovich  M S Cork 《Biochemistry》1984,23(5):851-860
Cytochrome c-554 from the bacterium Alcaligenes faecalis (ATCC 8750) is a respiratory electron-transport protein homologous to other members of the cytochrome c family. Its structure has been studied by 1H NMR spectroscopy in both the ferric and ferrous states. The ferric spectrum is characterized by downfield hyperfine-shifted heme methyl resonances at 46.25, 43.60, 38.40, and 36.73 ppm (25 degrees C, pH 7.1). Chemical shifts of these resonances change with temperature opposite to expectations derived from Curie's law. The pH behavior of the hyperfine-shifted resonances titrates with a pK of 6.3 that has been interpreted as due to ionization of a heme propionate. In the ferrous state, heme methyl, meso, and thioether bridge resonances have been observed and assigned. All aromatic proteins have been assigned according to the side chain of origin, and the structural environment about the sole tryptophan residue has been examined. The electron-transfer rate between ferric and ferrous forms has been estimated to be on the order of 3 X 10(8) M-1 s-1, which is the largest such self-exchange rate yet observed for a cytochrome.  相似文献   

14.
Effect of a hydrophobic peptide on folding of oxidized cytochrome c (cyt c) is studied with trityrosine. Folding of cyt c was initiated by pH jump from 2.3 (acid-unfolded) to 4.2 (folded). The Soret band of the 2-ms transient absorption spectrum during folding decreased its intensity and red-shifted from 397 to 400 nm by interaction with trityrosine, whereas tyrosinol caused no significant effect. The change in the transient absorption spectrum by interaction with trityrosine was similar to that obtained with 100 mM imidazole, which showed that the population of the intermediate His/His coordinated species increased during folding of cyt c by interaction with trityrosine. The absorption change was biphasic, the fast phase (82+/-9s(-1)) corresponding to the transition from the His/H(2)O to the His/Met coordinated species, whereas the slow phase (24+/-3s(-1)) from His/His to His/Met. By addition of trityrosine, the relative ratio of the slow phase increased, due to increase of the His/His species at the initial stage of folding. According to the resonance Raman spectra of cyt c, the high-spin 6-coordinate and low-spin 6-coordinate species were dominated at pH 2.3 and 4.2, respectively, and these species were not affected by addition of trityrosine. These results demonstrated that the His/His species increased by interaction with trityrosine at the initial stage of cyt c folding, whereas the heme coordination structure was not affected by trityrosine when the protein was completely unfolded or folded. Hydrophobic peptides thus may be useful to study the effects of hydrophobic interactions on protein folding.  相似文献   

15.
The complete nucleotide sequence of the cytochrome c-554 gene from the green photosynthetic bacterium Chloroflexus aurantiacus has been determined. The derived amino acid sequence showed that the cytochrome precursor protein consists of 414 residues and contains 4-Cys-X-X-Cys-His- heme binding motifs. The only regions of the cytochrome c-554 sequence that were found to be significantly similar to the sequences of cytochromes from other organisms were the heme binding sites. The highest similarity was found with the heme binding segments in the four-heme reaction center cytochrome subunit from the purple photosynthetic bacterium Rhodopseudomonas viridis. The importance of this similarity for the evolutionary relationship between Chloroflexus and the purple bacteria is discussed.  相似文献   

16.
Oxidation of cytochrome c peroxidase with hydrogen peroxide to form the initial oxidized intermediate, cytochrome c peroxidase compound I, drastically alters the proton hyperfine nmr spectrum. In contrast to studies of horseradish peroxidase, where the spectrum of horseradish peroxidase compound I is similar to that of the native protein, cytochrome c peroxidase compound I exhibits only broad resonances near 17 and 30 ppm from 2,2-dimethyl-2-silapentane-5-sulfonate. No unique resonances attributable to cytochrome c peroxidase compound II could be identified. These results define the molecular conditions for which resolved hyperfine resonances of the iron(IV) states of heme proteins may be observed when the data presented here are compared with the data from horseradish peroxidase. Oxidation of cytochrome c peroxidase while it is complexed to ferricytochrome c reveals that the heme resonances of cytochrome c are not influenced by the oxidation state of cytochrome c peroxidase.  相似文献   

17.
Manganese peroxidase (MnP) from Phanerochaete chrysosporium undergoes a pH-dependent conformational change evidenced by changes in the electronic absorption spectrum. This high- to low-spin alkaline transition occurs at approximately 2 pH units lower in an F190I mutant MnP when compared to the wild-type enzyme. Herein, we provide evidence that these spectral changes are attributable to the formation of a bis(histidyl) heme iron complex in both proteins at high pH. The resonance Raman (RR) spectra of both ferric proteins at high pH are similar, indicating similar heme environments in both proteins, and resemble that of ferric cytochrome b(558), a protein that contains a bis-His iron complex. Upon reduction with dithionite at high pH, the visible spectra of both the wild-type and F190I MnP exhibit absorption maxima at 429, 529, and 558 nm, resembling the absorption spectrum of ferrous cytochrome b(558). RR spectra of the reduced wild-type and F190I mutant proteins at high pH are also similar to the RR spectrum of ferrous cytochrome b(558), further suggesting that the alkaline low-spin species is a bis(histidyl) heme derivative. No shift in the low-frequency RR bands was observed in 75% (18)O-labeled water, indicating that the low-spin species is most likely not a hydroxo-heme derivative. Electronic and RR spectra also indicate that addition of Ca(2+) to either the ferric or ferrous enzymes at high pH completely restores the high-spin pentacoordinate species. Other divalent metals, such as Mn(2+), Mg(2+), Zn(2+), or Cd(2+), do not restore the enzyme under the conditions studied.  相似文献   

18.
The subunits of cytochrome c-553 (Chlorobium thiosulfatophilum) were studied. The cytochrome is split into a cytochrome moiety and a flavoprotein moiety by treatment with 2% trichloroacetic acid. The molecular weights of the cytochrome and flavoprotein moieties are 11,000 and 47,000, respectively. The cytochrome moiety seems to have only one cysteine residue in the molecule, although its heme appears to be quite similar to the usual heme c. The flavoprotein moiety shows absorption peaks at 350 and 452nm and is insoluble at neutral pH. When the two moieties are mixed at alkaline pH, and the pH of the mixture is then brought to neutral, the flavoprotein moiety remains soluble. However, the preparation thus obtained is different from the original cytochrome c-553.  相似文献   

19.
Resonance Raman scattering studies are reported on freshly prepared and aged ferric, ligand-free ferrous, and CO-bound ferrous cytochrome c peroxidase. The ferric form of the fresh enzyme has a heme which is penta-coordinate high spin, independent of buffer over the pH range 4.3-7, as determined by well established Raman marker lines. The aged enzyme displays a mixture of spin and coordination states, but it can be stabilized in the penta-coordinate high spin form in the presence of phosphate. These results can be accounted for by considering the size of the channel (6 A wide, 11 A long) between the distal side of the heme and the outer surface of the protein. A phosphate ion may be accommodated in this channel resulting in the stabilization of the distal heme pocket. The ferrous cytochrome c peroxidase in both the ligand-free and CO-bound states has an acidic and an alkaline form. The acidic form has the characteristic spectral features of peroxidases: a high frequency iron-histidine stretching mode (248 cm-1), a high frequency Fe-CO stretching mode (537 cm-1), and a low frequency C-O stretching mode (1922 cm-1). At alkaline pH these frequencies become similar to those of hemoglobin and myoglobin, with the corresponding modes located at 227, 510, and 1948 cm-1, respectively. We attribute the acid/alkaline transition in the ferrous forms of cytochrome c peroxidase to a rearrangement mainly of the proximal side of the heme, culminating in a change of steric interactions between the proximal histidine and the heme or of the hydrogen bonding network involving the proximal histidine. The new data presented here reconcile many inconsistencies reported in the past.  相似文献   

20.
Amino acid replacements of an aromatic residue, Trp-51, which is in contact with the heme of yeast cytochrome c peroxidase have a number of significant effects on the kinetics and coordination state of the enzyme. Six mutants at this site (W51F, W51M, W51T, W51C, W51A, and W51G) were examined. Optical and EPR spectra show that each of these mutations introduces a shift from the 5-coordinate to 6-coordinate form, and slightly increases the asymmetry of the heme ligand field. Conversion from a 6-coordinate high-spin form at pH 5 to a 6-coordinate low-spin form at pH 7 is observed for several of the variants (W51F, W51T, and W51A), while W51G and W51C appear as predominantly low-spin species between pH 5 and 7. Addition of 50% glycerol prevents the facile conversion to the low-spin conformation for W51F, W51T, and W51A, and only W51F can be stabilized in a 5-coordinate configuration by glycerol. For the oxidation of cytochrome c by H2O2, three of the variants (W51F, W51M, and W51T) exhibit values of kcat(app) that are greater than for the wild-type enzyme, while the other mutations give decreased rates of enzyme turnover. Unlike the wild-type enzyme, which functions more efficiently with cytochrome c from yeast than with the horse heart protein, the mutant W51F does not show a preference for substrate from its native organism. The three mutants which exhibit increased values of kcat(app) show a pH optimum at 6.8 compared with that of 5.25 for the wild-type enzyme when measured with horse heart cytochrome c. This shift in pH optimum is not observed with yeast cytochrome c. Construction of single and multiple mutations at Trp-51, Ile-53, and Gly-152 shows that these kinetic properties are not due to natural amino acid variations observed at these sites. Pre-steady-state kinetics show that the bimolecular rate constant for the fast phase of the reaction of the enzyme with H2O2 is only slightly decreased from 3.03 (0.09) X 10(7) to 2.2 (0.1) X 10(7) M-1 s-1 for W51F and to 1.5 (0.1) X 10(7) M-1 s-1 for W51A. The slow phase of the reaction (4.9 s-1) which contributes approximately 30% to the amplitude of the change for the wild-type enzyme is not observed for W51F or W51A.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号