首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) regulates several cellular functions, but its physiological role in pancreatic islet cells remains to be investigated. In this study, we confirmed the presence of PPAR-gamma in rat isolated islets and examined its role on insulin and glucagon secretion by using PPAR-gamma-overexpressed islets. PPAR-gamma overexpression significantly suppressed insulin secretion induced by stimulatory concentration of glucose (p<0.05). In addition, insulin secretion evoked by high potassium depolarization also was significantly decreased from PPAR-gamma-overexpressed islets (p<0.05). On the other hand, no significant change in glucagon release was observed after high potassium depolarization between PPAR-gamma-overexpressed and control islets. Insulin and glucagon content in islets was not statistically different between the two groups. In addition, the expression of uncoupling protein-2 (UCP-2) was found to be induced in PPAR-gamma-overexpressed islets. This result clearly indicates that the deteriorative effect of PPAR-gamma overexpression on the secretory machinery is selective for pancreatic beta-cells. And it is possible that its site of action can be located in the energy-consuming exocytotic process of insulin secretory granules, and that the reduction of ATP production through increased UCP-2 reduces insulin exocytosis.  相似文献   

2.
3.
Strategies to prevent and treat obesity aim to decrease energy intake and/or increase energy expenditure. Regarding the increase of energy expenditure, two key intracellular targets may be considered (1) mitochondrial oxidative phosphorylation, the major site of ATP production, and (2) AMP-activated protein kinase (AMPK), the master regulator of cellular energy homeostasis. Experiments performed mainly in transgenic mice revealed a possibility to ameliorate obesity and associated disorders by mitochondrial uncoupling in metabolically relevant tissues, especially in white adipose tissue (WAT), skeletal muscle (SM), and liver. Thus, ectopic expression of brown fat-specific mitochondrial uncoupling protein 1 (UCP1) elicited major metabolic effects both at the cellular/tissue level and at the whole-body level. In addition to expected increases in energy expenditure, surprisingly complex phenotypic effects were detected. The consequences of mitochondrial uncoupling in WAT and SM are not identical, showing robust and stable obesity resistance accompanied by improvement of lipid metabolism in the case of ectopic UCP1 in WAT, while preservation of insulin sensitivity in the context of high-fat feeding represents the major outcome of muscle UCP1 expression. These complex responses could be largely explained by tissue-specific activation of AMPK, triggered by a depression of cellular energy charge. Experimental data support the idea that (1) while being always activated in response to mitochondrial uncoupling and compromised intracellular energy status in general, AMPK could augment energy expenditure and mediate local as well as whole-body effects; and (2) activation of AMPK alone does not lead to induction of energy expenditure and weight reduction.  相似文献   

4.
斑鳢肝脏解偶联蛋白2cDNA核心片断的克隆及分析   总被引:1,自引:0,他引:1  
解偶联蛋白2(uncouplingprotein 2,UCP2)可使氧化磷酸化解偶联。本研究首次成功从斑鳢(Channa maculata)肝脏通过简并引物克隆获得UCP2基因cDNA核心序列,该片段长502bp,编码167个氨基酸残基。使用vector NTI suite 6.0软件进行氨基酸同源性序列比较分析表明,斑鳢UCP2与真鲷、鲤鱼、草鱼、斑马鱼UCP2同源性高达91%、73%、72%、71%,与人、大鼠、小鼠UCP2同源性较高为70%、71%、70%。UCP2编码区在鱼类、哺乳类中均具有较高保守性,提示着脊椎动物UCP2可能在线粒体有氧呼吸代谢过程中承担某种最基本的生命功能。  相似文献   

5.
The effect was investigated of endurance training on the expression of uncoupling protein (UCP) mRNA in brown adipose tissue (BAT) of rats. The exercised rats were trained on a rodent treadmill for 5 days per week and a total of 9 weeks. After the training programme, a marked decrease in BAT mass was found in terms of weight or weight per unit body weight; there was a corresponding decrease in DNA content and a downward trend in RNA and glycogen levels. The UCP mRNA was present at a markedly decreased level in BAT of trained animals. In consideration of the reduced levels of mRNAs for hormone-sensitive lipase and acylCoA synthetase, the brown adipose tissue investigated appeared to be in a relatively atrophied and thermogenically quiescent state.  相似文献   

6.
A novel peptide antibody to UCP 3 is characterized which is sensitive and discriminatory for UCP 3 over UCP 2, UCP 1 and other mitochondrial transporters. The peptide antibody detects UCP 3 expression in E. coli, COS cells and yeast expression systems. The peptide antibody detects a single ∼33 kDa protein band in mitochondria from isolated rat skeletal muscle, mouse and rat brown adipose tissue, and in whole muscle groups (soleus and extensor digitorum longus) from mice. No 33 kDa band is detectable in isolated mitochondria from liver, heart, brain, kidney and lungs of rats, or gastrocnemius mitochondria from UCP 3 knock-out mice. From our data, we conclude that the peptide antibody is detecting UCP 3 in skeletal muscle, skeletal muscle mitochondria and brown adipose tissue mitochondria. It is also noteworthy that the peptide antibody can detect human, mouse and rat forms of UCP 3. Using the UCP 3 peptide antibody, we confirm and quantify the increased (2.8-fold) UCP 3 expression observed in skeletal muscle mitochondria isolated from 48-h-starved rats. We show that UCP 3 expression is increased (1.6-fold) in skeletal muscle of rats acclimated over 8 weeks to 8 °C and that UCP 3 expression is decreased (1.4-fold) in rats acclimated to 30 °C. Furthermore, UCP 3 expression is increased (2.3-fold) in skeletal muscle from hyperthyroid rats compared to euthyroid controls. In addition, we show that UCP 3 expression is only coincident with the mitochondrial fraction of skeletal muscle homogenates and not peroxisomal, nuclear or cytosolic and microsomal fractions.  相似文献   

7.
Excessive beta-adrenergic stimulation causes cardiac toxicity, which also contributes to cardiac oxidative stress. Although uncoupling protein 2 (UCP2), a member of the mitochondrial inner membrane carrier family, can regulate energy efficiency and oxidative stress in mitochondria, little data exist regarding interactions between UCP2 expression and beta-adrenergic stimulation induced cardiac oxidative damage. We investigated whether chronic beta-adrenergic stimulation induces myocardial energy metabolism abnormality via oxidative stress, including any role of UCP2. We also examined whether 3-methyl-1-phenyl-2-pyrazolin-5-one (MIC-186; edaravone), a potent free radical scavenger, has cardioprotective effects against beta-adrenergic stimulation. Male Sprague-Dawley rats received isoproterenol (1.2 mg/kg/day) subcutaneously or/and edaravone (30 mg/kg/day) orally. Isoproterenol increased the heart/body weight ratio, accompanied by an increase in the level of myocardial thiobarbituric acid reactive substances (TBARS) and a decreased phosphocreatine (PCr) to adenosine triphosphate (ATP) ratio. Isoproterenol also markedly increased expressions of UCP2 mRNA (1.74 fold vs. non-isoproterenol) and protein (1.93 fold vs. non-isoproterenol). Edaravone had no apparent effect in hypertrophic responses, but significantly prevented both increases in TBARS and decreases in the PCr/ATP ratio. Edaravone also prevented increases in UCP2 mRNA (0.76 fold vs. isoproterenol) and protein (0.62 fold vs. isoproterenol) expressions against isoproterenol administration. Our results suggest that chronic beta-adrenergic stimulation induces myocardial energy inefficiency via excessive oxidative stress. The antioxidant effect of edaravone has potential to improve energy metabolism abnormalities against beta-adrenergic stimulation. Adequate regulation of UCP2 expression through artificial reduction of oxidative stress may play an important role in protection of the myocardial energy metabolism.  相似文献   

8.
本文旨在观察急性脑缺血对神经元沉默信息调节因子2相关酶类3(silent mating type information regulator 2 homolog 3,Sirt3)蛋白表达水平的影响,并阐明Sirt3在急性脑缺血中的病理意义.建立小鼠大脑中动脉栓塞(middle cerebral artery occlu...  相似文献   

9.
Although mammary epithelial cells are known to synthesize and accumulate triacylglycerol (TAG) in order to produce milk lipid in the cytosol, lipid and energy metabolism is still not fully understood. In this study, we assessed the effects of long-chain fatty acid (LCFA) on the accumulation of cytosolic TAG and uncoupling protein (UCP) 2 in cloned bovine mammary epithelial cells (bMEC). LCFAs significantly raised the expression of UCP2 mRNA and the accumulation of TAG. We observed the rapid elevation in UCP2 shown at 6 h after LCFA treatment. Insulin (5-50 ng/ml) or dexamethasone (500 nM) significantly suppressed the expression of UCP2 mRNA. These results suggest that UCP2 play an important role of lipid and energy metabolism in mammary epithelial cells.  相似文献   

10.
目的:观察C57小鼠急性肝损伤(acute liver injury,ALI)中解偶联蛋白2(Uncouple Protein2,UCP2)的表达,探讨ALI与UCP2表达变化的意义。方法:领取36只小鼠,随机分为对照组、ALI 1 d组、ALI 4 d组、ALI 7 d组。分别检测血清谷氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)的变化;肝组织病理变化用HE染色观察;利用Western Blot方法分别检测全肝组织蛋白和肝细胞线粒体提纯蛋白中的UCP2蛋白水平的变化;Real Time quality PCR检测UCP2在mRNA水平的表达变化。结果:ALI组1 d、4 d组与对照组相比,ALT(160.69±22.11 vs 34.43±5.19;96.37±15.39 vs 34.43±5.19)、AST(306.54±68.09 vs 97.74±14.49;173.94±26.74 vs 97.74±14.49)表达差异具有统计学意义(P0.05);肝组织病理学检查ALI组1 d和4 d组中肝细胞出现大面积坏死,7d组肝细胞坏死缓解;蛋白水平检测UCP2在ALI 1 d和4 d时全肝组织分别增加2.84倍和2.25倍,在肝线粒体中1 d、4 d和7 d时分别增加2.19倍、1.68倍和1.56倍,差异具有统计学意义(P0.05);mRNA水平检测UCP2在ALI 1 d和4 d与对照组相比明显升高,相对增加3.79倍和1.46倍(P0.05)。结论:急性肝损伤状态下UCP2在蛋白和mRNA水平高表达,UCP2可能对于治疗急性肝损伤具有重要意义。  相似文献   

11.
Summary The nuclear genome encoded yeast protein CBS2 is required for translational activation of mitochondrial cytochrome b RNA. Genetic studies have shown that the target sequence of the CBS2 protein is the 5 untranslated leader sequence of cytochrome b RNA. Here we report on the intracellular localization of CBS2. CBS2 protein, expressed in Escherichia coli and prepared from inclusion bodies, was used as an antigen to raise a polyclonal rabbit antiserum. Affinity-purified CBS2 antibodies detect a 45 kDa protein in mitochondrial lysates of wild-type cells, which is absent in a strain in which the CBS2 gene has been deleted. The protein is overexpressed in mitochondrial extracts of a transformant carrying the CBS2 gene on a high copy number plasmid, but undetectable in the post-mitochondrial supernatant. Intramitochondrial localization of CBS2 was verified by in vitro import of CBS2 protein that had been synthesized in a reticulocyte lysate programmed with CBS2 mRNA transcribed in vitro. Mitochondrial import of CBS2 is not accompanied by any detectable proteolytic processing.  相似文献   

12.
Uncoupling proteins (UCPs) are mitochondrial carriers distributed throughout the eukaryotic kingdoms. While genes coding for UCPs have been identified in plants and animals, evidences for the presence of UCPs in fungi and protozoa are only functional. Here, it is reported that in the yeast Yarrowia lipolytica there is a fatty acid-promoted and GDP-sensitive uncoupling activity indicating the presence of a UCP. The uncoupling activity is higher in the stationary phase than in the mid-log growth phase. The in silico search on the Y. lipolytica genome led to the selection of two genes with the highest homology to the UCP family, XM_503525 and XM_500457. By phylogenetic analysis, XP_503525 was predicted to be an oxaloacetate carrier while XP_500457 would be a dicarboxylate carrier. Each of these two genes was cloned and heterologously expressed in Saccharomyces cerevisiae and the resulting phenotype was analyzed. The transport activity of the two gene products confirmed the phylogenetic predictions. In addition, only mitochondria isolated from yeasts expressing XP_503525 showed bioenergetic properties characteristic of a UCP: the proton conductance was increased by linoleic acid and inhibited by GDP. It is concluded that the XM_503525 gene from Y. lipolytica encodes for an oxaloacetate carrier although, remarkably, it also displays an uncoupling activity stimulated by fatty acids and inhibited by nucleotides.  相似文献   

13.
ObjectiveStudy on the influence of the cerebral Ischemia-reperfusion Injury (IRI) on mitochondrial adenosine triphosphate (ATP) content and ATPase activity in hippocampus of rats, as well as the protective effect of propofol on IRI in rats.MethodsA total of 40 male SD rats were randomly divided into 5 groups: sham operation group (Group A), ischemia reperfusion control group (Group B) and ischemic reperfusion with propofol pretreatment group (C group). Group C was further divided into three sub groups according to the different doses of propofol: Group C1 (50 mg/kg), Group C2 (100 mg/kg) and Group C3 (150 mg/kg). The rats from Groups B and C were applied for the IRI model preparation by blockage of the blood flow in arteria carotis communis. For the Groups A, arteria carotis communis were separated without blockage of the blood flow. Before preparation of IRI model for rats in Group C, different doses of propofol were intraperitoneally injected into the rats. For rats in Groups A and B, only saline solution with same volume was intraperitoneally injected at the same time. The ultra-structures of mitochondria in hippocampus of rats were observed under transmission electron microscope, and the mitochondrial degeneration rate was counted. The contents of ATP were determined by HPLC and the ATPase activity was characterized by ATPase activity assay kit.Results(1) Mitochondria in the hippocampus from Groups B and C showed different degrees of ultrastructural damage and more significant mitochondrial degeneration than those from Group A. The degree of damage and the rate of degeneration were in the order of B > C1 > C2 > C3 and the difference was statistically significant (P < 0.01). (2) The contents of ATP and the ATPase activity in hippocampus from Groups B and C were significantly lower than those of Group A, while these indices from Group C were significantly higher than those in the B group, and the sequence was C3 > C2 > C1, indicating that the ATP content and ATPase activity were significantly correlated with the dose of propofol, and the difference was statistically significant (P < 0.05).ConclusionIn summary, the contents of ATP and ATPase activity in hippocampus of rats can be decreased by cerebral IRI. The structure and function of the impaired mitochondria in IRI rats could be significantly improved by propofol, and the improvement effect is related to the dose of propofol.  相似文献   

14.
目的:观察过氧化物酶体增殖活化受体γ(PPAR-γ)激动剂罗格列酮(RSG)对肺纤维化大鼠肺动脉壁结缔组织生长因子(CTGF)上调、Ⅰ型和Ⅲ型胶原沉积的影响。方法:48只雄性SD大鼠,随机分为以下4组:博莱霉素(BLM)+生理盐水(NS)组(n=21)、BLM+RSG组(n=9)、NS+NS组(n=9)和NS+RSG组(n=9)。气管内一次性滴注BLM(5mg/kgbw),RSG灌胃(3mg/(kg.d),14d)。整体实验,气管滴注后第14天观察;离体实验,气管滴注BLM后第14天,分离大鼠的肺动脉,并用RSG培养液和单纯培养液孵育(37℃,5%CO2,24h)。结果:在整体水平,与对照大鼠相比,BLM模型大鼠肺动脉壁的CTGF免疫阳性表达增强,CTGF蛋白含量、Ⅰ型和Ⅲ型胶原含量、Ⅰ/Ⅲ胶原比值均增高(均P0.05);RSG能阻止上述指标的异常变化(均P0.05);在离体水平,RSG能阻止BLM模型大鼠肺动脉壁CTGF的上调(P0.05),但对Ⅰ型和Ⅲ型胶原沉积无明显影响(P0.05)。结论:RSG能直接作用于肺动脉壁,阻止肺纤维化大鼠肺动脉壁CTGF的上调,这可能是其减轻动脉壁结构重塑的机制之一。  相似文献   

15.
真鲷肝脏解偶联蛋白2(UCP2)基因及其功能的探讨   总被引:6,自引:0,他引:6  
从真鲷(Pagrus major)肝脏通过简并引物PCR克隆解偶联蛋白2(UCP2)cDNA部分序列。该片段长674bp,编码224个氨基酸残基。推测的此部分氨基酸序列包含线粒体载体蛋白的特征结构,并与其它脊椎动物UCP2氨基酸序列同源性在72.8%以上。对变温动物色类UCP2组织表达调控研究表明:与哺乳类UCP2基因不同,真鲷UCP2基因在肝脏大量表达,而在腹腔肠系膜脂肪组织则仅有痕迹量表达,两者表达水平相差20倍以上。饲料中添加10%绿鳕油或48h饥饿对真鲷肝脏UCP2基因的表达水平均无显著影响,表明UCP2基因在脂肪含量高的鱼类肝脏表达十分稳定,为维持其基本功能所必需。真鲷肝脏和腹腔肠系膜脂肪组织UCP2基因表达水平的强烈反差,与鱼类这两种贮脂器官完全不同的氧化活性相一致[动物学报49(1):110—117,2003]。  相似文献   

16.
Reconstitution of novel mitochondrial uncoupling proteins, human UCP2 and UCP3, expressed in yeast, was performed to characterize fatty acid (FA)-induced H+ efflux in the resulted proteoliposomes. We now demonstrate for the first time that representatives of physiologically abundant long chain FAs, saturated or unsaturated, activate H+ translocation in UCP2- and UCP3-proteoliposomes. Efficiency of lauric, palmitic or linoleic acid was roughly the same, but oleic acid induced faster H+ uniport. We have confirmed that ATP and GTP inhibit such FA-induced H+ uniport mediated by UCP2 and UCP3. Coenzyme Q10 did not further significantly activate the observed H+ efflux. In conclusion, careful instant reconstitution yields intact functional recombinant proteins, UCP2 and UCP3, the activity of which is comparable with UCP1.  相似文献   

17.
UCP4 is a member of the mitochondrial uncoupling protein subfamily and one of the three UCPs (UCP2, UCP4, UCP5), associated with the nervous system. Its putative functions include thermogenesis, attenuation of reactive oxidative species (ROS), regulation of mitochondrial calcium concentration and involvement in cell differentiation and apoptosis. Here we investigate UCP4's subcellular, cellular and tissue distribution, using an antibody designed specially for this study, and discuss the findings in terms of the protein's possible functions. Western blot and immunohistochemistry data confirmed that UCP4 is expressed predominantly in the central nervous system (CNS), as previously shown at mRNA level. No protein was found in heart, spleen, stomach, intestine, lung, thymus, muscles, adrenal gland, testis and liver. The reports revealing UCP4 mRNA in kidney and white adipose tissue were not confirmed at protein level. The amount of UCP4 varies in the mitochondria of different brain regions, with the highest protein content found in cortex. We show that UCP4 is present in fetal murine brain tissue as early as embryonic days 12-14 (E12-E14), which coincides with the beginning of neuronal differentiation. The UCP4 content in mitochondria decreases as the age of mice increases. UCP4 preferential expression in neurons and its developmental expression pattern under physiological conditions may indicate a specific protein function, e.g. in neuronal cell differentiation.  相似文献   

18.
The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) has been implicated in inhibition of the expression of proinflammatory cytokines and inducible enzymes such as cyclooxygenase-2 (COX-2). Using real-time RT-PCR the present study investigates the impact of two PPAR-gamma agonists, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) and ciglitazone, on the expression of several proinflammatory genes in lipopolysaccharide (LPS)-stimulated human blood monocytes. Stimulation of cells with LPS resulted in a profound induction of the expression of COX-2, interleukin (IL)-1, IL-6, tumor necrosis factor (TNF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Treatment of cells with 15d-PGJ(2) (10 microM) was associated with a nearly complete inhibition of the expression of all genes that remained unaltered in the presence of the PPAR-gamma antagonist bisphenol A diglycidyl ether (BADGE; 100 microM). By contrast, treatment of cells with another potent PPAR-gamma agonist, ciglitazone (50 microM), and the PPAR-alpha agonist WY-14,643 (100 microM) did not suppress LPS-induced expression of the investigated genes. Stimulation of monocytes with LPS resulted in an 88% inhibition of PPAR-gamma mRNA expression that was fully restored by 15d-PGJ(2) but only to a partial extent by ciglitazone and WY-14,643. Again, BADGE did not alter the effect of 15d-PGJ(2). Collectively, our results show that alterations of gene expression by 15d-PGJ(2) in LPS-stimulated human blood monocytes are mediated by PPAR-gamma-independent mechanisms. Moreover, it is concluded that both inhibition of proinflammatory gene expression and restoration of LPS-induced decrease of PPAR-gamma expression may contribute to the biological action of 15d-PGJ(2).  相似文献   

19.
Brown adipose tissue (BAT) and brown in white (brite) adipose tissue, termed also beige adipose tissue, are major sites of mammalian nonshivering thermogenesis. Mitochondrial uncoupling protein 1 (UCP1), specific for these tissues, is the key factor for heat production. Recent molecular aspects of UCP1 structure provide support for the fatty acid cycling model of coupling, i.e. when UCP1 expels fatty acid anions in a uniport mode from the matrix, while uncoupling. Protonophoretic function is ensured by return of the protonated fatty acid to the matrix independent of UCP1. This mechanism is advantageous for mitochondrial uncoupling and compatible with heat production in a pro-thermogenic environment, such as BAT. It must still be verified whether posttranslational modification of UCP1, such as sulfenylation of Cys253, linked to redox activity, promotes UCP1 activity. BAT biogenesis and UCP1 expression, has also been linked to the pro-oxidant state of mitochondria, further endorsing a redox signalling link promoting an establishment of pro-thermogenic state. We discuss circumstances under which promotion of superoxide formation exceeds its attenuation by uncoupling in mitochondria and throughout point out areas of future research into UCP1 function.  相似文献   

20.
The vascular endothelial growth factor (VEGF) is produced in response to hypoxia or inflammatory cytokines. In normoxia VEGF synthesis is upregulated by 15-deoxy-Delta(12,14)-prostaglandin-J(2) (15d-PGJ(2)) via induction of heme oxygenase-1 (HO-1). Here we compared the influence of 15d-PGJ(2) on VEGF expression in human microvascular endothelial cells in normoxia (approximately 20% O(2)) and hypoxia ( approximately 2% O(2)). Regardless of the oxygen concentration, 15d-PGJ(2) inhibited activity of hypoxia inducible factor-1 (HIF-1), the major hypoxic regulator of VEGF. However, in normoxic conditions 15d-PGJ(2) (1-10microM) activated the VEGF promoter and increased synthesis of the VEGF protein. Concomitantly, it strongly induced expression of HO-1. In contrast, in hypoxia, 15d-PGJ(2) decreased VEGF promoter activity and reduced VEGF release by 50%. Inhibition of HO-1 activity additionally attenuated VEGF synthesis in hypoxia. We conclude that induction of HO-1 by 15d-PGJ(2) results in augmentation of VEGF synthesis in normoxia. In hypoxia, however, the stimulatory effect of HO-1 is outweighed by 15d-PGJ(2)-mediated inhibition of the HIF-1 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号