首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scotophilus heathi is a seasonally monoestrous subtropical vespertilionid bat found at Varanasi, India. Although the antral follicles remain present in the ovaries of S. heathi from November till March, ovulation is delayed in this species until early March. In order to understand the mechanism of ovulation suppression during this period of delayed ovulation, the effects of human chorionic gonadotropin (hCG), pregnant mare's serum gonadotropin (PMSG), follicle stimulating hormone (FSH) and gonadotropin releasing hormone agonist (GnRH agonist) on ovarian morphology and steroid concentration were investigated. Hormonal treatments were given as a single i.p. dose 24 h after capture. The bats were sacrificed 48 h after the injection. Treatment with hCG, PMSG, FSH and GnRH agonist failed to induce ovulation in S. heathi, although these hormones produced a high degree of ovarian stimulation. The administration of hCG and PMSG induced ovarian enlargement, intense hyperemia, marked changes in the interstitial cells (ICs), development of several antral follicles and a varying degree of abnormalities in the oocytes of most of the antral follicles. In the bats treated with hCG, PMSG and GnRH agonist, androstenedione concentration increased significantly to extraordinarily high levels, whereas estradiol concentration decreased. Administration of FSH caused regression of ICs and pyknosis of granulosa cells in the majority of antral follicles. FSH did not enhance androstenedione concentration. The results of the present study suggest that the failure of hormonal treatments to induce ovulation during the period of delayed ovulation might be due to a seasonal desensitization of ovarian follicles in S. heathi. The hormonal treatment instead stimulated the ICs to produce a high level of androstenedione resulting in atretic changes of the antral follicles.  相似文献   

2.
Controlled ovarian stimulation has become an integral part of infertility treatment. Specific gonadotropin based protocols become the main strategies for controlled stimulation. To avoid the potentially detrimental effect of premature LH surge on oocytes and/or endometrium development, the GnRH analogs have been incorporated into controlled ovarian stimulation strategies. With the availability of recombinant gonadotropins (i.e. recombinant FSH devoided of LH activity) it is necessary to establish precise role of LH in the folliculogenesis and endometrium development. The benefit of exogenous LH may vary with the GnRH-agonists and antagonists regiment used. The optimal amount of LH or ratio FSH to LH used during therapeutically stimulated growth of follicles is still a problem that needs to be solved in the near future.  相似文献   

3.
Antral follicles, isolated from either nontreated or pregnant mare's serum gonadotropin (PMSG)-primed 27-day-old rats, were incubated in the absence or the presence of either luteinizing hormone (LH), follicle-stimulating hormone (FSH), or forskolin. The effect of these agents on oocyte maturation and cyclic adenosine 3',5'-monophosphate (cAMP) accumulation was studied and compared. Both gonadotropins, LH and FSH, as well as forskolin, effectively induced maturation of oocytes enclosed by large antral follicles isolated from PMSG-primed rats. On the other hand, we found that maturation of oocytes enclosed by small antral follicles, isolated from nonprimed and PMSG-primed rats, could be induced by either FSH or forskolin but not by LH. cAMP determinations revealed that, in spite of the inability of LH to induce oocyte maturation, elevated concentrations of the nucleotide were detectable in small antral follicles exposed to this gonadotropin. Since granulosa cells isolated from the large but not the small antral follicles were stimulated by LH to generate cAMP, the elevation of cAMP concentrations in the small antral follicle apparently represented the response of the theca cells to this gonadotropin. Since it is the ability of the granulosa cells to interact with the hormone that determines whether or not oocyte maturation will occur, we suggest that the granulosa, but not the theca cells, mediate LH action to induce oocyte maturation.  相似文献   

4.
Adult rats were pretreated with a 3-day regimen of human menopausal gonadotrophin (hMG), PMSG, human FSH or hCG and experiments were carried out on the day of pro-oestrus. Treatment with hMG and hFSH induced a significant increase in the number of preovulatory follicles on the day of pro-oestrus and this was correlated with increased circulating concentrations of oestradiol. There was a parallel increase in the self-priming effect of GnRH, as observed from the biphasic LH response to a continuous GnRH challenge. PMSG treatment did not stimulate increased numbers of maturing follicles and was less effective in raising circulating oestrogen concentrations compared with hMG and hFSH. However, pituitary responsiveness was much higher after PMSG treatment and the biphasic response to continuous perfusion with GnRH was absent; LH release was high from the initiation of the stimulus. hCG alone failed to stimulate follicular maturation but enhanced pituitary LH responses. Hemi-pituitary glands perfused in the presence of isolated preovulatory follicles also showed augmented biphasic LH responses to GnRH compared with control hemi-pituitary glands. The apparent dissociation which can occur between follicular maturation, circulating oestrogen concentrations and pituitary responsiveness to GnRH supports the idea of non-steroidal ovarian factors modulating LH release.  相似文献   

5.
Cumulus oocyte complexes (COCs) and cumulus oocyte complexes connected to a piece of the membrane granulosa (COCGs) were isolated from bovine antral follicles with a diameter of 2 to 8 mm. After culture of COCGs without gonadotrophic hormones for 22 hr approximately 50% of the oocytes were still in the germinal vesicle (GV) stage Histology of the COCGs showed that the pieces of the membrana granulosa were free of thecal cells and parts of the basal membrane. This indicates that the membrana granulosa solely inhibits the progression of meiosis. To investigate the effect of gonadotropins on the resumption of meiosis of oocytes from small and medium sized antral follicles, COCs and COCGs were cultured with or without rec-hFSH or hCG. Addition of 0.05 IU rec-hFSH to the culture medium of COCGs resulted in germinal vesicle breakdown in 97.8% of the oocytes compared to 46% in the control group, and an increase of the diameter of the COCs (479 μm vs. 240 μm in the control group). Addition of 0.05 IU hCG to the culture medium had no effect on nuclear maturation (47.2% GV vs. 48.5% GV in the control group nor on cumulus expansion (246 μm vs. 240 μm in the control group). RT-PCR on cDNA of the follicular wall, cumulus cells, granulosa cells, COCs, and oocytes revealed that mRNA for FSH receptor was present in all cell types except oocytes. mRNA of the LH receptor was detected exclusively in thecal cells. Nucleotide sequence analysis and alignment of the cloned PCR products showed the presence of two isoforms of the FSH receptor mRNA and two isoforms of the LH receptor mRNA. It is concluded that, in vitro, resumption of meiosis of oocytes, originating from small and medium sized antral follicles and meiotically arrested by the membrana granulosa, is triggered by FSH and not by LH. This is supported by the fact that receptors for FSH, but not for LH, are transcribed in the cumulus and granulosa cells of these follicles. © 1996 Wiley-Liss, Inc.  相似文献   

6.
7.
比较了PMSG hCG和FSH hCG两种方案以及PMSG的不同剂量和注射方式对家猫的超排效果的影响。用 1 0 0IU的PMSG超排家猫所得到的排卵点数及平均每只猫获得的卵数显著低于 2 0 0IU处理组或 30 0IU处理组 (P <0 0 5 ) ,但 2 0 0IU处理组与 30 0IU处理组之间的超排效果也无显著差异 (P >0 0 5 ) ;用皮下注射 2 0 0IU的PMSG或用肌肉注射 2 0 0IU的PMSG对超排效果无差异 (P >0 0 5 ) ;用 2 0 0IUPMSG 2 0 0IUhCG和 1 5mgFSH 2 0 0IUhCG两种方案对家猫超排 ,发现不论是每只猫的排卵点数、卵子获得数 ,还是卵子的第一极体排放率都没有显著差异 (P >0 0 5 )。实验说明 ,PMSG的注射方式不影响对家猫的超排效果 ,用 2 0 0IU的PMSG超排家猫是较适合的剂量 ,FSH和PMSG都可用于家猫的超排 ,但PMSG使用更为方便。  相似文献   

8.
The objective of this study was to find out whether porcine cumulus and mural granulosa cells can secrete cumulus expansion-enabling factor (CEEF). Culture drops of M-199 medium were conditioned with denuded porcine oocytes (1 oocyte/μl), cumulus cells from oocytectomized complexes (1 OOX/μl), pieces of mural granulosa isolated from preantral to preovulatory follicles (1000 cells/μl), or oviductal cells (1000 cells/μl) for 24 hr. The production of CEEF was assessed by the addition of mouse OOX and follicle-stimulating hormone (FSH) (1 μg/ml) to microdrops of the conditioned medium. After 16–18 hr, expansion of the mouse OOX was scored on a scale of 0 to 4 by morphologic criteria. Mouse OOX did not expand in nonconditioned FSH-supplemented medium. Immature porcine oocytes produced +3 to +4 expansion of the mouse OOX. Granulosa cells isolated from preantral and early antral follicles and cumulus cells isolated from all stages of follicle development constitutively secreted CEEF under in vitro conditions. Mural granulosa cells of small, medium, and preovulatory (PMSG) follicles also secreted CEEF in vitro; however, FSH or leutenizing hormone (LH) stimulation was essential for this secretion. Hormonally induced secretion of CEEF was accompanied by expansion of the mural granulosa itself. Granulosa cells isolated from follicles of gilts 20 hr after PMSG and human chorionic gonadotropin (hCG) administration did not produce CEEF and did not expand in response to FSH and LH in vitro. CEEF activity also was found in the follicular fluid of small antral follicles, was reduced in medium follicles, and was not detectable in PMSG-stimulated follicles. However, CEEF activity was reestablished in the follicular fluid of preovulatory follicles by hCG injection, conceivably due to increased production of CEEF by cumulus cells. We conclude that (1) porcine cumulus and mural granulosa cells are capable of CEEF production in vitro and (2) autocrine secretion of CEEF by cumulus cells is involved in regulation of porcine cumulus expansion both in vitro and in vivo. Mol. Reprod. Dev. 49:141–149, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
We determined changes in plasma hormone concentrations in gilts after treatment with a progesterone agonist, Altrenogest (AT), and determined the effect of exogenous gonadotropins on ovulation and plasma hormone concentrations during AT treatment. Twenty-nine cyclic gilts were fed 20 mg of AT/(day X gilt) once daily for 15 days starting on Days 10 to 14 of their estrous cycle. The 16th day after starting AT was designated Day 1. In Experiment 1, the preovulatory luteinizing hormone (LH) surge occurred 5.6 days after cessation of AT feeding. Plasma follicle-stimulating hormone (FSH) increased simultaneously with the LH surge and then increased further to a maximum 2 to 3 days later. In Experiment 2, each of 23 gilts was assigned to one of the following treatment groups: 1) no additional AT or injections, n = 4; 2) no additional AT, 1200 IU of pregnant mare's serum gonadotropin (PMSG) on Day 1, n = 4); 3) AT continued through Day 10 and PMSG on Day 1, n = 5, 4) AT continued through Day 10, PMSG on Day 1, and 500 IU of human chorionic gonadotropin (hCG) on Day 5, n = 5; or 5) AT continued through Day 10 and no injections, n = 5. Gilts were bled once daily on Days 1-3 and 9-11, bled twice daily on Days 4-8, and killed on Day 11 to recover ovaries. Termination of AT feeding or injection of PMSG increased plasma estrogen and decreased plasma FSH between Day 1 and Day 4; plasma estrogen profiles did not differ significantly among groups after injection of PMSG (Groups 2-4). Feeding AT blocked estrus, the LH surge, and ovulation after injection of PMSG (Group 3); hCG on Day 5 following PMSG on Day 1 caused ovulation (Group 4). Although AT did not block the action of PMSG and hCG at the ovary, AT did block the mechanisms by which estrogen triggers the preovulatory LH surge and estrus.  相似文献   

10.
Both hCG and PMSG treatments given either individually or sequentially between September and early February failed to induce ovulation in S. heathi, though they produced high degree of ovarian stimulation. The treatments induced ovarian enlargement, intense hyperaemia, marked changes in interstitial cells (ICs) and development of several antral follicles and varying degrees of abnormality in oocyte of most of the antral follicles. The percentage of abnormal oocytes in the ovary following hCG or PMSG treatment was dose-dependent.  相似文献   

11.
12.
Prenatal testosterone treatment leads to LH excess as well as ovarian follicular and ovulatory defects in the adult. These disruptions may stem from LH excess, abnormal FSH input, compromised ovarian sensitivity to gonadotropins, or intrinsic ovarian defects. To determine if exogenous gonadotropins rescue ovarian and ovulatory function of testosterone-treated sheep, the release of endogenous LH and biopotent FSH in control and prenatal testosterone-treated sheep was blocked with a GnRH antagonist during the first two breeding seasons and with LH/FSH coadministered in a manner approximating natural follicular phase. An acidic mix of FSH was administered the first 36 h at 2-h intervals and a less acidic mix for the next 12 h at 1-h intervals (different FSH preparations were used each year), and ovulation was induced with hCG. Circulating FSH and estradiol responses to gonadotropins measured in 2-h samples differed between treatment groups in Year 1 but not in Year 2. Ovarian follicular distribution and number of corpora lutea (in ewes that ovulated) tracked by ultrasonography and luteal progesterone responses were similar between control and prenatal testosterone-treated females but differed between years. Furthermore, hCG administration induced large cystic and luteinized follicles in both groups of females in Year 2, although the growth rate differed between control and prenatal testosterone-treated females. Our findings provide evidence that 1) ovulatory response in prenatal testosterone-treated females can be rescued with exogenous gonadotropins, 2) resultant follicular response is dependent on the nature of gonadotropic input, and 3) an abnormal follicular milieu may underlie differences in developmental trajectory of cystic follicles in prenatal testosterone-treated females.  相似文献   

13.
Fluorogestone acetate (vaginal sponge for 4 days) and PMSG (i.m. injection at the time of sponge insertion) treatment was administered to seven 3-month-old calves to induce superovulation. Samples of peripheral plasma were taken every 4 h during treatment (4 days) and then every 2 h for 7 days. FSH, LH, oestradiol and progesterone were measured by radioimmunoassays. In all calves oestradiol concentrations increased 24 h after PMSG injection and reached the highest levels (41-502 pg/ml) during the preovulatory surge of both gonadotropins. The surge of LH and FSH occurred from 12 to 22 h after cessation of treatment. The maximum levels of LH and FSH were 11-72 ng/ml and 23-40 ng/ml respectively and occurred within 4 h of each other. Between 40 and 68 h after the LH peak the concentrations of progesterone began to increase from basal values, reaching 24.0-101.7 ng/ml when the animals were killed. A quantitative relationship was found between plasma oestradiol concentration and the numbers of ovulating follicles. Progesterone levels seemed to be related to the numbers of corpora lutea and also to the numbers of unovulated follicles. Gonadotrophin output was not quantitatively related to ovarian activity or to steroid secretion.  相似文献   

14.
A reliable ovarian stimulation protocol for marmosets is needed to enhance their use as a model for studying human and non-human primate oocyte biology. In this species, a standard dose of hCG did not effectively induce oocyte maturation in vivo. The objectives of this study were to characterize ovarian response to an FSH priming regimen in marmosets, given without or with a high dose of hCG, and to determine the meiotic and developmental competence of the oocytes isolated. Ovaries were removed from synchronized marmosets treated with FSH alone (50 IU/d for 6 d) or the same FSH treatment combined with a single injection of hCG (500 IU). Cumulus-oocyte complexes (COCs) were isolated from large (>1.5mm) and small (0.7-1.5mm) antral follicles. In vivo-matured oocytes were subsequently activated parthenogenetically or fertilized in vitro. Immature oocytes were subjected to in vitro maturation and then activated parthenogenetically. Treatment with FSH and hCG combined increased the number of expanded COCs from large antral follicles compared with FSH alone (23.5 +/- 9.3 versus 6.4 +/- 2.7, mean +/- S.E.M.). Approximately 90% of oocytes surrounded by expanded cumulus cells at the time of isolation were meiotically mature. A blastocyst formation rate of 47% was achieved following fertilization of in vivo-matured oocytes, whereas parthenogenetic activation failed to induce development to the blastocyst stage. The capacity of oocytes to complete meiosis in vitro and cleave was positively correlated with follicle diameter. A dramatic effect of follicle size on spindle formation was observed in oocytes that failed to complete meiosis in vitro. Using the combined FSH and hCG regimen described in this study, large numbers of in vivo matured marmoset oocytes could be reliably collected in a single cycle, making the marmoset a valuable model for studying oocyte maturation in human and non-human primates.  相似文献   

15.
The uterine weight growth stimulation by equine Chorionic Gonadotropin (eCG/PMSG) was found to occur at much lower eCG concentrations than ovarian growth. Human Chorionic Gonadotropin (hCG) which has only LH activity, was found to be as active as eCG in the uterotrophic assay whereas equine Luteinizing Hormone (eLH) which has dual LH+FSH activities like eCG, exhibited a much lower potency. In contrast to hCG, porcine and ovine LH as well as pFSH and oFSH exhibited no uterotrophic activity indicating that only gonadotropins with both LH activity and long half-lives are active alone in this assay. The FSH preparations were nevertheless found to trigger a dose-dependent response, but only in the presence of a subactive dose of hCG. The uterotrophic activity of hCG was found to be suppressed in ovariectomized immature rats and to be diminished after injection of GnRH antagonist suggesting an indirect pathway implicating the hypothalamo-pituitary complex.The data in this report together with the analysis of literature suggest that choriogonadotropins exert their stimulatory role on uterine growth by an indirect mechanism involving an increase in ovarian FSH receptors and FSH release by the pituitary. At the lowest concentrations of hCG, the increase in ovarian FSH receptors without endogenous FSH release is thought to be responsible for the sensitivity of the uterotrophic assay to exogenous FSHs. In conclusion, the immature rat uterotrophic assay is a sensitive and convenient assay for eCG and hCG as well as for FSHs in the presence of a sub-active dose of hCG.  相似文献   

16.
17.
Mature antral follicles were removed from the ovaries of pregnant mare serum gonadotropin (PMSG)-primed hamsters at proestrus prior to the LH surge. Following various incubation times with either LH (ovine) or FSH (rat), cAMP levels were determined in whole follicles, cumulus-oocyte complexes (COCs), and zona-intact or zona-free oocytes. LH produced a dose- and time-dependent change in follicle cAMP but had a minimal effect on the COCs and caused no change in cAMP in zona-free oocytes. By contrast, rFSH stimulated a small rise in follicular cAMP but significantly increased levels in COCs and zona-free oocytes. In a second series of experiments follicles were exposed for short periods to various additives after which they were washed and returned to hormone-free medium for a 6-hr total incubation period. LH (1 microgram/ml) initiated maturation in follicle-enclosed oocytes after a 5- to 15-min exposure period while groups incubated with 100 ng/ml required 60 min. FSH did not stimulate maturation after a 60-min exposure and when combined with 1 microgram or 100 ng/ml of LH negated the maturational effects seen with LH alone. It was postulated that the reason that lower concentrations of LH did not stimulate maturation following short-term incubations was due to an insufficient rise in cAMP. However, neither dbcAMP nor forskolin augmented the capacity of LH to initiate maturation following short-term exposure. By contrast dbcGMP and the guanylate cyclase activator, sodium nitroprusside (NP) did augment the maturation-inducing effects of LH. NP + LH raised cGMP concentrations in the follicle and oocyte and decreased follicular cAMP at 30 and 120 min. The results of this study indicate that the component cells within a follicle respond selectively with cAMP changes, depending on the gonadotropin, in a variable time- and dose-dependent manner. While LH is the more potent activator of cAMP in whole follicles, cAMP levels in the cumulus oophorus and oocyte show the greatest increase following exposure to FSH. LH was the more potent initiator of maturation, possibly through its effects on the mural granulosa cells. FSH appears to exert a more inhibitory role which may be due in part to elevated cAMP levels and/or a putitative inhibitor in the COC and oocyte.  相似文献   

18.
Bone morphogenetic protein (BMP) 15 and growth differentiation factor (GDF) 9 are oocyte-secreted growth factors that are critical local regulators of ovarian function and may be involved in preovulatory cumulus expansion. As cumulus expansion occurs in response to the ovulatory surge, the present study was designed: 1) to investigate whether GDF9 and BMP15 are regulated by gonadotropins in the mouse ovary; and 2) to visualize changes in both GDF9 and BMP15 immunostaining in response to gonadotropins. Immature 21-day-old mice were sequentially treated with recombinant human FSH (r-hFSH), 5 IU daily, at Days 21, 22, and 23 of life, then injected with 5 IU hCG at Day 24 of life. In response to r-hFSH, steady-state Bmp15 mRNA expression levels increased in both total ovaries and cumulus-oocyte complexes, whereas Gdf 9 mRNA levels did not. In addition, BMP15 protein levels increased in total ovaries. The GDF9 immunostaining was exclusively seen in growing oocytes in both control and gonadotropin-treated mice, whereas that of BMP15, which was also primarily seen in growing oocytes, exhibited important changes in response to gonadotropins. Strong BMP15 immunostaining was observed in the follicular fluid of atretic antral follicles after FSH treatment and in expanded, but not in compact, cumulus cells after hCG. The present results show for the first time that BMP15 levels increase during gonadotropin-induced follicular development, in parallel with oocyte maturation, and that this local factor is likely involved in cumulus expansion as previously suggested by studies in Bmp15-null mice.  相似文献   

19.
The preovulatory LH surge induces a remarkable increase in ovarian prostaglandins (PGs) which help to mediate the ovulatory process. We investigated whether cytosolic phospholipase A2 (cPLA2) has a role in this PG production in PMSG/hCG-primed immature rats. The immunoreactive signal for cPLA2 was localized in both thecal and granulosa layers of mature follicles and became evident in response to gonadotropins. The PLA2 activity in the whole ovarian cytosol rose slightly after PMSG stimulation, persisted relatively constant until 24 h after hCG injection and thereafter increased gradually. Intra-ovarian bursal injection of arachidonyl trifluoromethyl ketone, a specific inhibitor for cPLA2 ( 1.0-3.0 mg/ovary), significantly reduced ovarian PGE2 content and the ovulation rate. These results suggest that cPLA2 exists in periovulatory follicles and functions in PG production related to the ovulation process.  相似文献   

20.
In mice deficient in progesterone receptor (PR), follicles of ovulatory size develop but fail to ovulate, providing evidence for an essential role for progesterone and PR in ovulation in mice. However, little is known about the expression and regulation of PR mRNA in preovulatory follicles of ruminant species. One objective of this study was to determine whether and when PR mRNA is expressed in bovine follicular cells during the periovulatory period. Luteolysis and the LH/FSH surge were induced with prostaglandin F(2alpha) and a GnRH analogue, respectively, and the preovulatory follicle was obtained at 0, 3.5, 6, 12, 18, or 24 h after GnRH treatment. RNase protection assays revealed a transient increase in levels of PR mRNA, which peaked at 6 h after GnRH and declined to the time 0 value by 12 h and a second increase at 24 h. The second objective was to investigate the mechanisms that regulate PR mRNA expression through in vitro studies on follicular cells of preovulatory follicles obtained before the LH/FSH surge. Theca and granulosa cells were isolated and cultured with or without a luteinizing dose of LH or FSH, progesterone, LH + progesterone, or LH + antiprogestin (RU486). Levels of PR mRNA increased in a time-dependent manner in granulosa cells cultured with LH or FSH and in theca cells cultured with LH, peaking at 10 h of culture. In contrast, progesterone (200 ng/ml) did not upregulate mRNA for its own receptor, and neither progesterone nor RU486 affected LH-stimulated PR mRNA accumulation. Furthermore, RU486 completely blocked LH-stimulated expression of oxytocin mRNA, indicating that PR induced by LH in vitro is functional. These results show that the gonadotropin surge induces a rapid and transient increase in expression of PR mRNA in both theca and granulosa cells of bovine periovulatory follicles followed by a second rise close to the time of ovulation and that the first increase in PR mRNA can be mimicked in vitro by gonadotropins but not by progesterone. These results suggest multiple and time-dependent roles for progesterone and PR in the regulation of periovulatory events in cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号