首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ascenzi P  Gradoni L 《IUBMB life》2002,53(2):121-123
Nitric oxide (NO) possesses antiparasitic effects on both Protozoa and Metazoa in vertebrate definitive and intermediate hosts. Inducible NO limits parasite development also in Rhodnius prolixus and Anopheles stephensi, the natural vectors of human trypanosomiasis and malaria respectively, and in the snail Biomphalaria glabrata, a natural invertebrate intermediate host of human schistosomiasis. Therefore, NO limits Trypanosoma, Plasmodium, and Schistosoma development at all stages of the parasite life cycle.  相似文献   

2.
Gene flow and the genetic structure of host and parasite populations are critical to the coevolutionary process, including the conditions under which antagonistic coevolution favors sexual reproduction. Here we compare the genetic structures of different populations of a freshwater New Zealand snail (Potamopyrgus antipodarum) with its trematode parasite (Microphallus sp.) using allozyme frequency data. Allozyme variation among snail populations was found to be highly structured among lakes; but for the parasite there was little allozyme structure among lake populations, suggesting much higher levels of parasite gene flow. The overall pattern of variation was confirmed with principal component analysis, which also showed that the organization of genetic differentiation for the snail (but not the parasite) was strongly related to the geographic arrangement of lakes. Some snail populations from different sides of the Alps near mountain passes were more similar to each other than to other snail populations on the same side of the Alps. Furthermore, genetic distances among parasite populations were correlated with the genetic distances among host populations, and genetic distances among both host and parasite populations were correlated with “stepping-stone” distances among lakes. Hence, the host snail and its trematode parasite seem to be dispersing to adjacent lakes in a stepping-stone fashion, although parasite dispersal among lakes is clearly greater. High parasite gene flow should help to continuously reintroduce genetic diversity within local populations where strong selection might otherwise isolate “host races.” Parasite gene flow can thereby facilitate the coevolutionary (Red Queen) dynamics that confer an advantage to sexual reproduction by restoring lost genetic variation.  相似文献   

3.
4.
T Ryan Gregory 《Génome》2003,46(5):841-844
The haploid genome sizes of two important molluscs were assessed by Feulgen image analysis densitometry. The genome size of the zebra mussel (Dreissena polymorpha), a prolific invader of North American lakes, was estimated to be 1C = 1.70 +/- 0.03 pg, and that of the freshwater snail Biomphalaria glabrata, the predominant intermediate vector of the human parasite Schistosoma mansoni, was estimated at 0.95 +/- 0.01 pg. These estimates will be important in future efforts in molluscan genomics, which at present lags far behind work being carried out with vertebrate and arthropod models. B. glabrata in particular, which has one of the smallest known gastropod genomes, is recommended as a highly suitable target for future genome sequencing.  相似文献   

5.
In each of two reciprocal cross-infection experiments, a digenetic trematode (Microphallus sp.) was found to be significantly more infective to snails (Potamopyrgus antipodarum) from its local host populations. This gives strong evidence for local adaptation by the parasite and indicates that there is a genetic basis to the host–parasite interaction. It is suggested that the parasite should be able to track common snail genotypes within populations and, therefore, that it could be at least partially responsible for the persistence of sexual subpopulations of the snail in those populations that have both obligately sexual and obligately parthenogenetic females.  相似文献   

6.
Schistosomiasis remains one of the most prevalent parasitic infections and has significant economic and public health consequences in many developing countries. Economic development and improvement in standard of living in these countries are dependent on the elimination of this odious disease. For the control of Schistosomiasis, understanding the host/parasite association is important, since the host parasite relationship is often complex and since questions remain concerning the susceptibility of snails to infection by respective trematodes and their specificity and suitability as hosts for continued parasite development. Thus, the long term aim of this research is to learn more about the genetic basis of the snail/parasite relationship with the hope of finding novel ways to disrupt the transmission of this disease. In the current research, genetic variability among susceptible and resistant strains within and between Biomphalaria glabrata and B. tenagophila was investigated using RAPD-PCR. The results indicate great genetic variations within the two snail species using three different primers (intrapopulational variations), while specimens from the same snail species showed few individual differences between the susceptible and resistant strains (interpopulational variation).  相似文献   

7.
To estimate isotopic changes caused by trematode parasites within a host, we investigated changes in the carbon and nitrogen isotope ratios of the freshwater snail Lymnaea stagnalis infected by trematode larvae. We measured carbon and nitrogen stable isotopes within the foot, gonad, and hepatopancreas of both infected and uninfected snails. There was no significant difference in the delta13C and delta15N values of foot and gonad between infected and uninfected snails; thus, trematode parasite infections may not cause changes in snail diets. However, in the hepatopancreas, delta15N values were significantly higher in infected than in uninfected snails. The 15N enrichment in the hepatopancreas of infected snails is caused by the higher 15N ratio in parasite tissues. Using an isotope-mixing model, we roughly estimated that the parasites in the hepatopancreas represented from 0.8 to 3.4% of the total snail biomass, including the shell.  相似文献   

8.
9.
Epidemiological dynamics depend on the traits of hosts and parasites, but hosts and parasites are heterogeneous entities that exist in dynamic environments. Resource availability is a particularly dynamic and potent environmental driver of within‐host infection dynamics (temporal patterns of growth, reproduction, parasite production and survival). We developed, parameterised and validated a model for resource‐explicit infection dynamics by incorporating a parasitism module into dynamic energy budget theory. The model mechanistically explained the dynamic multivariate responses of the human parasite Schistosoma mansoni and its intermediate host snail to variation in resources and host density. At the population level, feedbacks mediated by resource competition could create a unimodal relationship between snail density and human risk of exposure to schistosomes. Consequently, weak snail control could backfire if reductions in snail density release remaining hosts from resource competition. If resource competition is strong and relevant to schistosome production in nature, it could inform control strategies.  相似文献   

10.
Host condition as a constraint for parasite reproduction   总被引:2,自引:0,他引:2  
Environmental stress has been suggested to increase host susceptibility to infections and reduce host ability to resist parasite growth and reproduction, thus benefiting parasites. This prediction stems from expected costs of immune defence; hosts in poor condition should have less resources to be allocated to immune function. However, the alternative hypothesis for response to environmental stress is that hosts in poor condition provide less resources for parasites and/or suffer higher mortality, leading to reduced parasite growth, reproduction and survival. We contrasted these alternative hypotheses in a trematode–snail ( Diplostomum spathaceum – Lymnaea stagnalis ) system by asking: (1) how host condition affects parasite reproduction (amount and quality of produced transmission stages) and (2) how host condition affects the survival of infected host individuals. We experimentally manipulated host condition by starving the snails, and found that parasites produced fewer and poorer quality transmission stages in stressed hosts. Furthermore, starvation increased snail mortality. These findings indicate that in well-established trematode infections, reduced ability of immune allocation has no effect on host exploitation by parasites. Instead, deteriorating resources for the snail host can directly limit the amount of resources available for the parasite. This, together with increased host mortality, may have negative effects on parasite populations in the wild.  相似文献   

11.
12.
Cryptocotyle lingua (Creplin) is a digenean trematode parasite of the littoral prosobranch gastropod Littorina littorea (L.). The literature suggests the snails become infected by grazing guano of the final host, the herring gull, Larus argentatus Pontoppidan. The parasite emerges from the snail as free-swimming cercariae. Interactions between the snail and the parasite at cellular and life-history levels are well established, but little is known of the influences the interaction has on the behaviour and the ecology of the snail. We tested the response of the snail to encounters with cercariae, examined the longevity of the guano on-shore and tested the responses of the snail to encounters with guano. Over half the L. littorea tested were able to detect both cercariae and a filtered homogenate of cercariae in conspecific mucus trails, approximately one-third of animals refusing to cross the treatments. Chemoreception by the mouth or foot is considered the most likely means of detection. Guano samples (mean weight 3.22 g) naturally deposited at approximately mid-tide level were completely washed away by one tidal inundation. We consider this period too brief to allow for ingestion of eggs in guano by the snail. Further, snails would not cross guano placed in conspecific trails. Most snails would not cross guano diluted by 103×(10 mg ml−1) and some snails could still detect guano diluted by 106×(10 μg ml−1), though all were prepared to cross it. Detection of guano is again believed to be by chemoreception by the mouth or foot. These results are discussed in terms of the mating and aggregating behaviour of L. littorea. Ingestion of the parasite by L. littorea is likely to take place once the guano has washed away as the eggs are negatively buoyant in seawater and may adhere to rock (biofilm) or algal fronds which may be grazed by the snail.  相似文献   

13.
14.
Experimental infections provide an important foundation for understanding host responses to parasites. While infections with Ribeiroia ondatrae cause mortality and malformations in a wide range of amphibian second intermediate host species, little is known about how the parasite affects its snail first intermediate hosts or even what species can support infection. In this study, we experimentally exposed Helisoma trivolvis, a commonly reported host of R. ondatrae, and Biomphalaria glabrata, a confamilial snail known to host Ribeiroia marini, to increasing concentrations of embryonated eggs of R. ondatrae obtained from surrogate definitive hosts. Over the course of 8 wk, we examined the effect of parasite exposure on infection status, time-to-cercariae release, host size, and mortality of both snail species. Helisoma trivolvis was a highly competent host for R. ondatrae infection, with over 93% infection in all exposed snails, regardless of egg exposure level. However, no infections were detected among exposed B. glabrata, despite previous accounts of this snail hosting a congener parasite. Among exposed H. trivolvis, high parasite exposure reduced growth, decreased time-to-cercariae release, and caused marginally significant increases in mortality. Interestingly, while B. glabrata snails did not become infected with R. ondatrae, individuals exposed to 650 R. ondatrae eggs grew less rapidly than unexposed snails, suggesting a sub-lethal energetic cost associated with parasite exposure. Our results highlight the importance of using experimental infections to understand the effects of parasite exposure on host- and non-host species, each of which can be affected by exposure.  相似文献   

15.
Summary The role of parasites in the evolution of host reproductive modes has gained renewed interest in evolutionary ecology. It was previously argued that obligate parthenogenesis (all-female reproduction) arose in a freshwater snail, Campeloma decisum, as a consequence of severe sperm limitation caused by an unencysted trematode, Leucochloridiomorpha constantiae. In the present study, certain conditions are examined for parasitic castration to account for the maintenance of parthenogenesis: the spatial patterns of the prevalence and intensity of infection on a broad geographical scale and its relationship to host genotype; the recovery from infection after isolation from sources of infection; age-related patterns of infections; and the effects of L. constantiae on snail fecundity.In contrast to the common pattern of the aggregated distribution of parasites within host populations, many snail populations with high prevalence and intensity of infection have non-aggregated parasite distributions. Clonal genotype of the host explained little of the variation in intensity and prevalence of infection by the parasite. Female snails maintained similar prevalence and intensity of infection after isolation, and individuals accumulated parasites throughout their lifespan, both of which suggest there is no effective immune response to infection by L. constantiae. Snail fecundity is not significantly influenced by the intensity of infection. These results suggest that L. constantiae may have represented a strong selective force against males during the initial introduction of this parasite into sexual snail populations because of the persistent nature of infection.  相似文献   

16.
We quantified the clonal diversity of the New Zealand marine trematode Maritrema novaezealandensis (n = 1250) within Zeacumantus subcarinatus snail (n = 25) and Macrophthalmus hirtipes crab (n = 25) intermediate hosts using four to six microsatellite loci, and investigated the potential biological and physical factors responsible for the observed genetic patterns. Individual snails harboured one to five trematode genotypes and 48% of snails were infected by multiple parasite genotypes. Overall, the number of parasite genotypes did not increase with snail size, but was highest in intermediate-sized snails. Significantly larger numbers of parasite genotypes were detected in crabs (relative to snails; P < 0.001), with 16-25 genotypes recovered from individual crabs. Although crabs are typically infected by small numbers of cercariae sourced from many snails, they are occasionally infected by large numbers of cercariae sourced from single snails. The latter cases explain the significant genetic differentiation of trematode populations detected among their crab hosts (F(ST) = 0.009, P < 0.001). Our results suggest that the timing of infection and/or intraspecific competition among parasite clones within snails determine(s) the diversity of parasite clones that snails harbour. The presence of a large number of infected snails and tidal mixing of cercariae prior to infection results in crabs potentially harbouring hundreds of parasite genotypes despite the crabs' territorial behaviour.  相似文献   

17.
The numbers of malarial oocysts developing in individual, like mosquitoes fed concurrently on a single vertebrate malarial host were found to be distributed according to the negative binomial distribution in 169 experiments utilizing 6 species of Plasmodium, 6 species of mosquitoes and 3 species of vertebrate hosts. Dispersion constants ranged upward to 8.0, and mean clump sizes ranged upward to 298.4. The dispersion constant was demonstrated to be contingent on the species, strain and identity of the mosquito, the parasite and the vertebrate host; on the genetic state of the mosquito; and on the state of the infection in the vertebrate host. It was concluded that the concentration of oocyst production in particular mosquitoes was produced by varying levels and combinations of numerous factors associated with the parasite, the mosquito and the vertebrate host and that the pattern of oocyst distribution favors parasite survival and the maintenance of malaria in the field.  相似文献   

18.
19.
Arne Skorping 《Oecologia》1984,64(1):34-40
Summary Density-dependent effects in Elaphostrongylus rangiferi, a parasitic nematode in the CNS and muscular system of reindeer, were studied in a laboratory population of the snail intermediate host, Arianta arbustorum. The rates in parasite growth, development and mortality were all affected by parasite density. The effects on growth and development were, however, much more marked, than the effect on mortality.All density-dependent rates were intensified by decreasing snail size, and by snail starvation. The snail host showed marked tissue reactions against infection, and the intensity of these reactions increased with increasing parasite density. The mechanism behind the observed density-dependent rates is discussed, and is tentatively concluded to be competition for nutritive substances in the host tissue.The importance of a density-dependent developmental rate in natural populations of this parasite is discussed, and it is hypothesized that this effect may counteract the strong temperature-dependent developmental rate of E. rangiferi In a more general context it is pointed out that density-dependent developmental rates, although common amongst animal populations, has been neglected in models of population dynamics. Developmental rates are usually represented by a constant time lag in such models, but should be treated as a density-dependent variable.  相似文献   

20.
The glycoconjugates from snail-conditioned water of Lymnaea truncatula and L. stagnalis which elicit typical host finding behavior in miracidia of Fasciola hepatica and Trichobilharzia ocellata were separated by anion-exchange chromatography and a two-step size-exclusion chromatography. We obtained fractions attractive for the parasites with MW of about 10(6) Da in both snail species. These fractions still contained species-specific information since miracidia responded only to molecules from their respective host snail. Analysis of the amino acid composition from the protein backbone revealed a similar composition in the effective fractions of both snails. Amounts of serine and threonine were higher than 30 mol %, which is typical for mucin-type glycoproteins. The carbohydrate moieties consisted mainly of galactose and fucose, but nine different other monosaccharides also were identified in smaller amounts. The heterogeneity of the molecules was also confirmed by the binding of six different lectins. Because of these characteristics, the effective molecules were termed "miracidia-attracting glycoproteins" (MAGs). MAGs may play an important role for parasite transmission, as they may increase the chance of an encounter between parasite and host and enable the miracidia to discriminate between their specific intermediate host and other unsuitable snail species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号