首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Pectobacterium chrysanthemi PY35 secretes the endoglucanase Cel5Z, an enzyme of the glycoside hydrolase family 5. Cel5Z is a 426 amino acid, signal peptide (SP)-containing protein composed of two domains: a large N-terminal catalytic domain (CD; 291 amino acids) and a small C-terminal cellulose binding domain (CBD; 62 amino acids). These two domains are separated by a 30 amino acid linker region (LR). A truncated cel5Z gene was constructed with the addition of a nonsense mutation that removes the C-terminal region of the protein. A truncated Cel5Z protein, consisting of 280 amino acid residues, functioned as a mature enzyme despite the absence of the SP, 11 amino acid CD, LR, and CBD region. In fact, this truncated Cel5Z protein showed an enzymatic activity 80% higher than that of full-length Cel5Z. However, cellulase activity was undetectable in mature Cel5Z proteins truncated to less than 280 amino acids.  相似文献   

2.
The phytopathogenic bacterium Pectobacteium chrysanthemi PY35 secretes Cel5Z endoglucanase belonging to the glycoside hydrolase family 5 of EC 3.2.1.4. The mutation of cel5Z::Omega gene was constructed by cloning the 2.0-kb SmaI fragment containing the streptomycin/spectinomycin-resistance gene of pHP45(Omega) into the BalI site of pPY100. The insertion of Omega fragment generated a new stop codon, removing the Ser/Thr-rich linker region and the cellulose binding domain (CBD) in the C-terminal region of cel5Z gene. By subsequent subcloning from this 4.9-kb fragment (pPY1001), a 1.0-kb (pPY1002) fragment was obtained and designated as cel5Z::Omega. The cel5Z::Omega gene had an open reading frame (ORF) of 1011 bp, encoding 336 amino acids, starting with an ATG codon and ending with a new TGA stop codon. The molecular mass of the Cel5Z::Omega protein in E. coli transformant appeared to be 32 kDa by SDS-PAGE analysis in the presence of carboxymethyl-cellulose (CMC). The Cel5Z::Omega protein hydrolyzed CMC with 1.7-fold higher activity than the intact Cel5Z cellulase.  相似文献   

3.
4.
5.
6.
7.
An EcoRI chromosomal DNA fragment of Ruminococcus albus F-40 that conferred endoglucanase activity on Escherichia coli was cloned. An open reading frame (ORF1) and another incomplete reading frame (ORF2) were found in the EcoRI fragment. The ORF2 was completed using inverse PCR genome walking technique. ORF1 and ORF2, which confront each other, encoded cellulases belonging to families 5 and 9 of the glycoside hydrolases and were designated cel5D and cel9A respectively. The cel5D gene encodes 753 amino acids with a deduced molecular weight of 83,409. Cel5D consists of a signal peptide of 24 amino acids, a family-5 catalytic module, a dockerin module, and two family-4 carbohydrate-binding modules (CBMs). The cel9A gene encodes 936 amino acids with a deduced molecular weight of 104,174, consisting of a signal peptide, a family-9 catalytic module, a family-3 CBM, and a dockerin module. The catalytic module polypeptide (rCel5DCat) derived from Cel5D was constructed, expressed, and purified from a recombinant E. coli. The truncated enzyme hydrolyzed cellohexaose, cellopentaose, and cellotetraose to yield mainly cellotriose and cellobiose with glucose as a minor product, but the enzyme was less active toward cellotriose and not active toward cellobiose, suggesting that this enzyme is a typical endoglucanase. rCel5DCat had a Km of 3.9 mg/ml and a Vmax of 37.2 micromol/min/mg for carboxymethycellulose.  相似文献   

8.
9.
10.
11.
Parsiegla G  Belaïch A  Belaïch JP  Haser R 《Biochemistry》2002,41(37):11134-11142
Cellulases cleave the beta-1.4 glycosidic bond of cellulose. They have been characterized as endo or exo and processive or nonprocessive cellulases according to their action mode on the substrate. Different types of these cellulases may coexist in the same glycoside hydrolase family, which have been classified according to their sequence homology and catalytic mechanism. The bacterium C. celluloyticum produces a set of different cellulases who belong mostly to glycoside hydrolase families 5 and 9. As an adaptation of the organism to different macroscopic substrates organizations and to maximize its cooperative digestion, it is expected that cellulases of these families are active on the various macroscopic organizations of cellulose chains. The nonprocessive cellulase Cel9M is the shortest variant of family 9 cellulases (subgroup 9(C)) which contains only the catalytic module to interact with the substrate. The crystal structures of free native Cel9M and its complex with cellobiose have been solved to 1.8 and 2.0 A resolution, respectively. Other structurally known family 9 cellulases are the nonprocessive endo-cellulase Cel9D from C. thermocellum and the processive endo-cellulase Cel9A from T. fusca, from subgroups 9(B1) and 9(A), respectively, whose catalytic modules are fused to a second domain. These enzymes differ in their activity on substrates with specific macroscopic appearances. The comparison of the catalytic module of Cel9M with the two other known GH family 9 structures may give clues to explain its substrate profile and action mode.  相似文献   

12.
Aquifex aeolicus is the hyperthermophilic bacterium known, with growth-temperature maxima near 95 degrees C. The cel8Y gene, encoding a thermostable endoglucanase (Cel8Y) from Aquifex aeolicus VF5, was cloned into a vector for expression and expressed in Escherichia coli XL1-Blue. A clone of 1.7 kb fragment containing endoglucanase activity, designated pKYCY100, was sequenced and found to contain an ORF of 978 bp encoding a protein of 325 amino acid residues, with a calculated molecular mass of 38,831 Da. This endoglucanase was designated cel8Y gene. The endoglucanase has an 18-amino-acid signal peptide but not cellulose-binding domain. The endoglucanase of A. aeolicus VF5 had significant amino acid sequence similarities with endoglucanases from glycosyl hydrolase family 8. The predicted amino acid sequence of the Cel8Y protein was similar to that of CMCase of Cellulomonas uda, BcsC of Escherichia coli, CelY of Erwinia chrysanthemi, and CMCase of Acetobacter xylinum. The molecular mass of Cel8Y was calculated to be 36,750 Da, which is consistent with the value obtained from result of CMC-SDS-PAGE of the purified enzyme. Cel8Y was thermostable, exhibiting maximal activity at 80 degrees C and pH optima of 7.0 and with half-lives of 2 h at 100 degrees C, 4 h at 90 degrees C.  相似文献   

13.
Soil metagenomes represent an unlimited resource for the discovery of novel biocatalysts from soil microorganisms. Three large-inserts metagenomic DNA libraries were constructed from different grassland soil samples and screened for genes conferring cellulase or xylanase activity. Function-driven screening identified a novel cellulase-encoding gene (cel01) and two xylanase-encoding genes (xyn01 and xyn02). From sequence and protein domain analyses, Cel01 (831 amino acids) belongs to glycoside hydrolase family 9 whereas Xyn01 (170 amino acids) and Xyn02 (255 amino acids) are members of glycoside hydrolase family 11. Cel01 harbors a family 9 carbohydrate-binding module, previously found only in xylanases. Both Xyn01 and Xyn02 were most active at 60°C with high activities from 4 to 10 and optimal at pH 7 (Xyn01) and pH 6 (Xyn02). The cellulase gene, cel01, was expressed in E. coli BL21 and the recombinant enzyme (91.9 kDa) was purified. Cel01 exhibited high activity with soluble cellulose substrates containing β-1,4-linkages. Activity with microcrystalline cellulose was not detected. These data, together with the analysis of the degradation profiles of carboxymethyl cellulose and barley glucan indicated that Cel01 is an endo 1,4-β-glucanase. Cel01 showed optimal activity at 50°C and pH 7 being highly active from pH range 5 to 9 and possesses remarkable halotolerance.  相似文献   

14.
15.
The objectives of this study were to characterize Fibrobacter succinogenes glycoside hydrolases from different glycoside hydrolase families and to study their synergistic interactions. The gene encoding a major endoglucanase (endoglucanase 1) of F. succinogenes S85 was identified as cel9B from the genome sequence by reference to internal amino acid sequences of the purified native enzyme. Cel9B and two other glucanases from different families, Cel5H and Cel8B, were cloned and overexpressed, and the proteins were purified and characterized. These proteins in conjunction with two predominant cellulases, Cel10A, a chloride-stimulated cellobiosidase, and Cel51A, formerly known as endoglucanase 2 (or CelF), were assayed in various combinations to assess their synergistic interactions using ball-milled cellulose. The degree of synergism ranged from 0.6 to 3.7. The two predominant endoglucanases produced by F. succinogenes, Cel9B and Cel51A, were shown to have a synergistic effect of up to 1.67. Cel10A showed little synergy in combination with Cel9B and Cel51A. Mixtures containing all the enzymes gave a higher degree of synergism than those containing two or three enzymes, which reflected the complementarity in their modes of action as well as substrate specificities.  相似文献   

16.
A new cellulase gene, cel2, from the filamentous fungus Cochliobolus carbonum was cloned by using egl-1 of Trichoderma reesei as a heterologous probe. DNA blot analysis of cel2 showed that this gene is present as a single copy. The gene contains one 49-bp- intron. cel2 encodes a predicted protein (Cel2p) of 423 amino acids with a molecular mass of 45.8 kDa. The predicted pI is 4.96. It shows similarity to other endoglucanases from various fungi. From the comparison with other cellulase genes, cel2 belongs to family 7 of glucohydrolases. cel2 is located on a 2.5-Mb chromosome in C. carbonum and its expression is repressed by sucrose. A cel2 mutant of C. carbonum was created by transformation-mediated gene disruption. The pathogenicity of the mutant was indistinguishable from the wild type, indicating that cel2 by itself is not important for pathogenicity.  相似文献   

17.
A new cellulase gene, cel2, from the filamentous fungus Cochliobolus carbonum was cloned by using egl-1 of Trichoderma reesei as a heterologous probe. DNA blot analysis of cel2 showed that this gene is present as a single copy. The gene contains one 49-bp- intron. cel2 encodes a predicted protein (Cel2p) of 423 amino acids with a molecular mass of 45.8 kDa. The predicted pI is 4.96. It shows similarity to other endoglucanases from various fungi. From the comparison with other cellulase genes, cel2 belongs to family 7 of glucohydrolases. cel2 is located on a 2.5-Mb chromosome in C. carbonum and its expression is repressed by sucrose. A cel2 mutant of C. carbonum was created by transformation-mediated gene disruption. The pathogenicity of the mutant was indistinguishable from the wild type, indicating that cel2 by itself is not important for pathogenicity.  相似文献   

18.
The objectives of this study were to characterize Fibrobacter succinogenes glycoside hydrolases from different glycoside hydrolase families and to study their synergistic interactions. The gene encoding a major endoglucanase (endoglucanase 1) of F. succinogenes S85 was identified as cel9B from the genome sequence by reference to internal amino acid sequences of the purified native enzyme. Cel9B and two other glucanases from different families, Cel5H and Cel8B, were cloned and overexpressed, and the proteins were purified and characterized. These proteins in conjunction with two predominant cellulases, Cel10A, a chloride-stimulated cellobiosidase, and Cel51A, formerly known as endoglucanase 2 (or CelF), were assayed in various combinations to assess their synergistic interactions using ball-milled cellulose. The degree of synergism ranged from 0.6 to 3.7. The two predominant endoglucanases produced by F. succinogenes, Cel9B and Cel51A, were shown to have a synergistic effect of up to 1.67. Cel10A showed little synergy in combination with Cel9B and Cel51A. Mixtures containing all the enzymes gave a higher degree of synergism than those containing two or three enzymes, which reflected the complementarity in their modes of action as well as substrate specificities.  相似文献   

19.
The modular endocellulase Cel9 of the bicistronic operon cel9-cel48 of Myxobacter sp. AL-1 shares not only amino acid sequence similarity but also biochemical properties similar to those of Thermobifida fusca endo/exocellulase E4. Amino acid alignments of a T. fusca E4 cellulase subfamily of family 9 cellulases revealed that Asp(446) of Myxobacter sp. AL-1 Cel9, a putatively noncatalytic residue, is highly conserved in one of the catalytic domains of this subfamily. Directed mutagenesis of residue aspartate (Asp(446)) to alanine generated a Cel9 mutant that lost more than 99% of its activity, suggesting that Asp(446) plays an essential structural role in Cel9 during cellulose degradation. Owing to its high degree of conservation and essential role, we propose that Asp(446) of Myxobacter sp. AL-1 Cel9 is a good landmark that distinguishes members of the E4 subfamily of family 9 cellulases.  相似文献   

20.
The Gram-negative soil micro-organism Myxobacter sp. AL-1 possesses at least five extracellular cellulases, the production of which is regulated by the growth cycle. We cloned the complete gene for one of these cellulases, termed cel9, which encoded a 67-kDa modular family 9 endoglycohydrolase, which was produced during the stationary phase of growth and was strongly enhanced by avicel. The predicted product of cel9 matches the structural architecture of family 9 cellulases such as Thermonospora fusca endo/exocellulase E4. Cel9 protein was synthesized in Escherichia coli from a multicopy plasmid and in Bacillus subtilis from the isopropyl thiogalactoside-inducible Pspac promoter and was purified from the culture medium. Thermal stability, optimum pH and temperature dependence of Cel9 were similar when expressed from either source, and were indistinguishable from related cellulases produced by thermophilic bacteria. Downstream from cel9 was found a partial ORF, designated cel48, the deduced product of which was highly similar to bacterial exocellobiohydrolases and processive endoglucanases belonging to family 48 of the glycosyl hydrolases. The cel9 and cel48 genes appear to be arranged as part of an operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号