首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (~8 Mb) from 186 primates representing 61 (~90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species.  相似文献   

2.
The use of genetic methods and data has a long history in anthropology. Following dramatic growth in anthropological genetic field studies in the 1960s and 1970s, the revolution in molecular genetic methods during the 1980s spurred another period of growth and expansion. The earlier emphasis on examination of the role of alternative evolutionary mechanisms in structuring allele frequency variation within and between populations is reflected today in a renewed focus on unraveling demographic history using highly informative molecular markers. The existence of large, publicly available molecular genetic databases, coupled with advances in analytical methods, makes it possible to tackle a wide variety of problems in human evolution not possible with classical markers and traditional analytical methods, These recent advances will help frame the nature of research in the discipline in the near term. [Keywords; human evolutionary genetics, phylogenetics, molecular markers, genetic variation, population structure]  相似文献   

3.
One of the most exciting challenges in human biology is the understanding of how our genome was constructed during evolution. Here we explore the evolutionary history of the low polymorphic human minisatellite MsH42 and its flanking sequences. We show that the evolutionary birth of MsH42 took place within an intron, early in primate lineage evolution, more than 40 MYA. Then, single base-pair changes and duplications/deletions of repeat blocks by mispairing were probably the main forces governing the generation of this minisatellite and its polymorphism throughout primate evolution. Moreover, we detected several phylogenetic footprints at both sides of MsH42. We believe that our findings will contribute to the understanding of low-variability minisatellite evolution.  相似文献   

4.
There are suggestions that the phylogeny of Streptococcus mutans, a member of the human indigenous biota that is transmitted mostly mother to child, might parallel the evolutionary history of its human host. The relatedness and phylogeny of plasmid-containing strains of S. mutans were examined based on chromosomal DNA fingerprints (CDF), a hypervariable region (HVR) of a 5.6-kb plasmid, the rRNA gene intergenic spacer region (IGSR), serotypes, and the genotypes of mutacin I and II. Plasmid-containing strains were studied because their genetic diversity was twice as great as that of plasmid-free strains. The CDF of S. mutans from unrelated human hosts were unique, except those from Caucasians, which were essentially identical. The evolutionary history of the IGSR, with or without the serotype and mutacin characters, clearly delineated an Asian clade. Also, a continuous association with mutacin II could be reconstructed through an evolutionary lineage with the IGSR, but not for serotype e. DNA sequences from the HVR of the plasmid produced a well-resolved phylogeny that differed from the chromosomal phylogeny, indicating that the horizontal transfer of the plasmid may have occurred multiple times. The plasmid phylogeny was more congruent with serotype e than with mutacin II evolution, suggesting a possible functional correlation. Thus, the history of this three-tiered relationship between human, bacterium, and plasmid supported both coevolution and independent evolution.  相似文献   

5.
The genetic material, deoxyribonucleic acid (DNA), contains information about the evolutionary history of life. Both the relationships amongst organisms and the times of their divergence can be inferred from DNA sequences. Anthropological geneticists use DNA sequences to infer the evolutionary history of humans and their primate relatives. We review the basic methodology used to infer these relationships. We then review the anthropological genetic evidence for modern human origins. We conclude that modern humans evolved recently in Africa and then left to colonize the rest of the world within the last 50,000 years, largely replacing the other human groups that they encountered. Modern humans likely exchanged genes with Neanderthals prior to or early during their expansion out of Africa.  相似文献   

6.
Thomas Huxley was one of the 19th century's most active defenders of Darwin's idea that life has evolved through natural processes. An anatomist and paleontologist, he extended his energies to science and education policy, the democratization of science, and the broad societal implications of evolution. Since his time the fossil record has greatly improved and the genetic 'revolution' has occurred, deepening our understanding of primate and human evolution in ways that would please Huxley: improved systematics relies heavily on genetic data, and molecular technologies are opening our understanding of the genetic basis of complex traits of traditional anthropological interest-but in ways that are thoroughly dependent on the fact of evolution. A more unified biological synthesis is forming that unites genes, developmental process, structure, and inheritance. But the tempo and mode of evolution remain unresolved. Huxley was one of many who have had trouble accepting Darwin's gradual natural selection as the central evolutionary mechanism, and views spanning the antipodes of gradualism and saltation find advocates even in our genetic era.  相似文献   

7.
The adaptive significance of midlife menopause in human females has long engaged the attention of evolutionary anthropologists. In spite of extensive debate, the problem has only recently been examined in the context of primate life histories. Here I extend those investigations by comparing life history traits in 16 primate species to test predictions generated from life history theory. In humans, late ages of maturity and higher than expected birth rates are systematically associated with extended postmenopausal longevity. Links among these adjustments on the primate pattern can explain how selection could slow somatic senescence without favoring extension of the fertile span. This conclusion is consistent with the observation that our fertile spans are similar to those of other pongids. The shape of the argument herein demonstrates the utility of life history theory for solving problems of adaptive evolution in female life history traits, with consequences for broader arguments regarding human evolution.  相似文献   

8.
For the last 15 years molecular cytogenetic techniques have been extensively used to study primate evolution. Molecular probes were helpful to distinguish mammalian chromosomes and chromosome segments on the basis of their DNA content rather than solely on morphological features such as banding patterns. Various landmark rearrangements have been identified for most of the nodes in primate phylogeny while chromosome banding still provides helpful reference maps. Fluorescence in situ hybridization (FISH) techniques were used with probes of different complexity including chromosome painting probes, probes derived from chromosome sub-regions and in the size of a single gene. Since more recently, in silico techniques have been applied to trace down evolutionarily derived chromosome rearrangements by searching the human and mouse genome sequence databases. More detailed breakpoint analyses of chromosome rearrangements that occurred during higher primate evolution also gave some insights into the molecular changes in chromosome rearrangements that occurred in evolution. Hardly any "fusion genes" as known from chromosome rearrangements in cancer cells or dramatic "position effects" of genes transferred to new sites in primate genomes have been reported yet. Most breakpoint regions have been identified within gene poor areas rich in repetitive elements and/or low copy repeats (segmental duplications). The progress in various molecular and molecular-cytogenetic approaches including the recently launched chimpanzee genome project suggests that these new tools will have a significant impact on the further understanding of human genome evolution.  相似文献   

9.
When viewed from the perspective of time, human genetic disorders give new insights into their etiology and evolution. Here, we have correlated a specific set of Alu repetitive DNA elements, known to be the basis of certain genetic defects, with their phylogenetic roots in primate evolution. From a differential distribution of Alu repeats among primate species, we identify the phylogenetic roots of three human genetic diseases involving the LPL, ApoB, and HPRT genes. The different phylogenetic age of these genetic disorders could explain the different susceptibility of various primate species to genetic diseases. Our results show that LPL deficiency is the oldest and should affect humans, apes, and monkeys. ApoB deficiency should affect humans and great apes, while a disorder in the HPRT gene (leading to the Lesch-Nyhan syndrome) is unique to human, chimpanzee, and gorilla. Similar results can be obtained for cancer. We submit that de novo transpositions of Alu elements, and saltatory appearances of Alu-mediated genetic disorders, represent singularities, places where behavior changes suddenly. Alus' propensity to spread, not only increased the regulatory and developmental complexity of the primate genome, it also increased its instability and susceptibility to genetic defects and cancer. The dynamic spread not only provided markers of primate phylogeny, it must have actively shaped the course of that phylogeny.  相似文献   

10.
Sequences from nuclear mitochondrial pseudogenes (numts) that originated by transfer of genetic information from mitochondria to the nucleus offer a unique opportunity to compare different regimes of molecular evolution. Analyzing a 1621-nt-long numt of the rRNA specifying mitochondrial DNA residing on human chromosome 3 and its corresponding mitochondrial gene in 18 anthropoid primates, we were able to retrace about 40 MY of primate rDNA evolutionary history. The results illustrate strengths and weaknesses of mtDNA data sets in reconstructing and dating the phylogenetic history of primates. We were able to show the following. In contrast to numt-DNA, (1) the nucleotide composition of mtDNA changed dramatically in the different primate lineages. This is assumed to lead to significant misinterpretations of the mitochondrial evolutionary history. (2) Due to the nucleotide compositional plasticity of primate mtDNA, the phylogenetic reconstruction combining mitochondrial and nuclear sequences is unlikely to yield reliable information for either tree topologies or branch lengths. This is because a major part of the underlying sequence evolution model — the nucleotide composition — is undergoing dramatic change in different mitochondrial lineages. We propose that this problem is also expressed in the occasional unexpected long branches leading to the “common ancestor” of orthologous numt sequences of different primate taxa. (3) The heterogeneous and lineage-specific evolution of mitochondrial sequences in primates renders molecular dating based on primate mtDNA problematic, whereas the numt sequences provide a much more reliable base for dating.[Reviewing Editor: Dr. Rafael Zardoya]  相似文献   

11.
分子进化研究中系统发生树的重建   总被引:42,自引:0,他引:42  
在现代分子进化研究中,根据现有生物基因或物种多样性来重建生物的进化史是一个非常重要的问题。一个可靠的系统发生的推断,将揭示出有关生物进化过程的顺序,有助于我们了解生物进化的历史和进化机制。本文简要介绍了系统发生树推断的几个重要问题:建树方法、数据转换、树的可靠性及目前使用较多的几种分析软件。  相似文献   

12.
Each amino acid in a protein is considered to be an individual, mutable characteristic of the species from which the protein is extracted. For a branching tree representing the evolutionary history of the known sequences in different species, our computer programs use majority logic and parsimony of mutations to determine the most likely ancestral amino acid for each position of the protein at each node of the tree. The number of mutations necessary between the ancestral and present species is summed for each branch and the entire tree. The programs then move branches to make many different configurations, from which we select the one with the minimum number of mutations as the most likely evolutionary history. We used this method to elucidate primate phylogeny from sequences of fibrinopeptides, carbonic anhydrase, and the hemoglobin beta, delta and alpha chains. All available sequences indicate that the early Pongidae had diverged into two lines before the divergence of an ancestor for the human line alone. We have constructed some probable ancestral sequences at major points during primate evolution and have developed tentative trees showing the order of divergences and evolutionary distances among primate groups. Further questions on primate evolution could be answered in the future by the detemination of the appropriate sequences.  相似文献   

13.
Comparative genome sequencing projects are providing insight into aspects of genome biology that raise new questions and challenge existing paradigms. Placement in the phylogenetic tree can often be a major determinant of which organism to choose for study. Lemurs hold a key position at the base of the primate evolutionary tree and will be highly informative for the genomics community by offering comparisons of primate-specific characteristics and processes. Combining research in chromosome evolution, genome evolution and behavior with lemur comparative genomic sequencing will offer insights into many levels of primate evolution. We discuss the current state of lemur cytogenetic and phylogenetic analyses, and suggest how focusing more genomic efforts on lemurs will be beneficial to understanding human and primate evolution, as well as disease, and will contribute to conservation efforts.  相似文献   

14.
To test hypotheses on the differences in retroviral genetic diversity, we compared the evolutionary dynamics of the human immunodeficiency virus type 1 (HIV-1) group M and the primate T-cell lymphotropic virus (PTLV) using a full-genome analysis. Evolutionary rates and nonsynonymous/synonymous substitution rate ratios were estimated across the genome using a maximum likelihood sliding window approach, and molecular clock properties were investigated. We confirm a remarkable difference in genetic stability and selective pressure at the interhost level. While there is evidence for adaptive evolution in HIV-1, the evolution of PTLV is almost exclusively characterized by negative selection or nearly neutral processes. For both retroviruses, evolutionary rate estimates across the genome reflect the differential selective constraints. However, based on the relationship between evolutionary rate and selective pressure and based on the comparison of synonymous substitution rates, the differences in rate between HIV-1 and PTLV cannot be explained by selective forces only. Several evolutionary and statistical assumptions, examined using a Bayesian coalescent method, were shown to have little influence on our inference.  相似文献   

15.
Phylogenetic comparative methods play a critical role in our understanding of the adaptive origin of primate behaviors. To incorporate evolutionary history directly into comparative behavioral research, behavioral ecologists rely on strong, well-resolved phylogenetic trees. Phylogenies provide the framework on which behaviors can be compared and homologies can be distinguished from similarities due to convergent or parallel evolution. Phylogenetic reconstructions are also of critical importance when inferring the ancestral state of behavioral patterns and when suggesting the evolutionary changes that behavior has undergone. Improvements in genome sequencing technologies have increased the amount of data available to researchers. Recently, several primate phylogenetic studies have used multiple loci to produce robust phylogenetic trees that include hundreds of primate species. These trees are now commonly used in comparative analyses and there is a perception that we have a complete picture of the primate tree. But how confident can we be in those phylogenies? And how reliable are comparative analyses based on such trees? Herein, we argue that even recent molecular phylogenies should be treated cautiously because they rely on many assumptions and have many shortcomings. Most phylogenetic studies do not model gene tree diversity and can produce misleading results, such as strong support for an incorrect species tree, especially in the case of rapid and recent radiations. We discuss implications that incorrect phylogenies can have for reconstructing the evolution of primate behaviors and we urge primatologists to be aware of the current limitations of phylogenetic reconstructions when applying phylogenetic comparative methods.  相似文献   

16.
Hughes JF  Coffin JM 《Genetics》2005,171(3):1183-1194
HERV elements make up a significant fraction of the human genome and, as interspersed repetitive elements, have the capacity to provide substrates for ectopic recombination and gene conversion events. To understand the extent to which these events occur and gain further insight into the complex evolutionary history of these elements in our genome, we undertook a phylogenetic study of the long terminal repeat sequences of 15 HERV-K(HML-2) elements in various primate species. This family of human endogenous retroviruses first entered the primate genome between 35 and 45 million years ago. Throughout primate evolution, these elements have undergone bursts of amplification. From this analysis, which is the largest-scale study of HERV sequence dynamics during primate evolution to date, we were able to detect intraelement gene conversion and recombination at five HERV-K loci. We also found evidence for replacement of an ancient element by another HERV-K provirus, apparently reflecting an occurrence of retroviral integration by homologous recombination. The high frequency of these events casts doubt on the accuracy of integration time estimates based only on divergence between retroelement LTRs.  相似文献   

17.
What are the effects that genetics has had on Anthropological research and how can we think anthropologically about Genetics? Just as genetic data have encouraged new hypotheses about human phenotypic variation, evolutionary history, population interaction, and environmental effects, so too has Anthropology offered to genetic studies a new interpretive locus in its history and perspective. This introduction examines how the fields of Anthropology and Genetics have arrived at a crucial moment at which their interaction requires careful examination and critical reflection. The papers discussed here exemplify how we may engage in such a trans-disciplinary conversation. They speak to the future of thoughtful interaction between genetic and anthropological literature and seek a new integration that embodies the holism of the human biological sciences.  相似文献   

18.
How mobile genetic elements molded eukaryotic genomes is a key evolutionary question that gained wider popularity when mobile DNA sequences were shown to comprise about half of the human genome. Although Saccharomyces cerevisiae does not suffer such "genome obesity", five families of LTR-retrotransposons, Ty1, Ty2, Ty3, Ty4, and Ty5 elements, comprise about 3% of its genome. The availability of complete genome sequences from several Saccharomyces species, including members of the closely related sensu stricto group, present new opportunities for analyzing molecular mechanisms for chromosome evolution, speciation, and reproductive isolation. In this review I present key experiments from both the pre- and current genomic sequencing eras suggesting how Ty elements mediate genome evolution.  相似文献   

19.
In these postgenomic times where aspects of functional genetics and character evolution form a focal point of human-mouse comparative research, primate phylogenetic research gained a widespread interest in evolutionary biology. Nevertheless, it also remains a controversial subject. Despite the surge in available primate sequences and corresponding phylogenetic interpretations, primate origins as well as several branching events in primate divergence are far from settled. The analysis of SINEs - short interspersed elements - as molecular cladistic markers represents a particularly interesting complement to sequence data. The following summarizes and discusses potential applications of this new approach in molecular phylogeny and outlines main results obtained with SINEs in the context of primate evolutionary research. Another molecular cladistic marker linking the tarsier with the anthropoid primates is also presented. This eliminates any possibility of confounding phylogenetic interpretations through lineage sorting phenomena and makes use of a new point of view in settling the phylogenetic relationships of the primate infraorders.  相似文献   

20.
Diversification on an ecologically constrained adaptive landscape   总被引:3,自引:2,他引:1  
We used phylogenetic analysis of body-size ecomorphs in a crustacean species complex to gain insight into how spatial complexity of ecological processes generates and maintains biological diversity. Studies of geographically widespread species of Hyalella amphipods show that phenotypic evolution is tightly constrained in a manner consistent with adaptive responses to alternative predation regimes. A molecular phylogeny indicates that evolution of Hyalella ecomorphs is characterized by parallel evolution and by phenotypic stasis despite substantial levels of underlying molecular change. The phylogeny suggests that species diversification sometimes occurs by niche shifts, and sometimes occurs without a change in niche. Moreover, diversification in the Hyalella ecomorphs has involved the repeated evolution of similar phenotypic forms that exist in similar ecological settings, a hallmark of adaptive evolution. The evolutionary stasis observed in clades separated by substantial genetic divergence, but existing in similar habitats, is also suggestive of stabilizing natural selection acting to constrain phenotypic evolution within narrow bounds. We interpret the observed decoupling of genetic and phenotypic diversification in terms of adaptive radiation on an ecologically constrained adaptive landscape, and suggest that ecological constraints, perhaps acting together with genetic and functional constraints, may explain the parallel evolution and evolutionary stasis inferred by the phylogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号