首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A morphologically based cladistic analysis of 40 genera included within the Trichostrongyloidea (Amidostomatidae, Dromaeostrongylidae and Trichostrongylidae) is proposed. Two genera were used as outgroups, one from the Strongylina and the other from the Ancylostomatina. Seven genera do not appear in the matrix because some significant morphological characters remain unknown for these genera. Nonetheless, except for Moguranema which is excluded as incertae sedis, a likely systematic position could be assigned to them based on the morphological characters that are known. The classification which best fits the consensus tree is composed of three families. In adding the genera not included in the tree, we obtain: (i) Trichostrongylidae with three sub-families, Amidostomatinae (four genera), Filarinematinae (three genera) and Trichostrongylinae (five genera); (ii) Haemonchidae with two sub-families: Ostertagiinae (eight genera) and Haemonchinae (five genera); (iii) Cooperiidae with three sub-families: Libyostrongylinae (five genera), Obeliscoidinae n. subfam. (five genera) and Cooperiinae (ten genera). Dromaeostrongylus and Ortleppstrongylus, whose females have a caudal spine, are excluded from the Trichostrongyloidea and are placed in the Molineoidea. The hypotheses relating to the evolutionary history of the Trichostrongyloidea are: the origin of the superfamily could have occurred during the upper Cretaceous period. The two most ancient sub-families (Amidostomatinae and Filarinematinae) would be of Gwondwanan origin and evolved during the Paleocene period within Neotropical aquatic birds and within the Australian marsupials. The Trichostrongylinae would have arisen during the Eocene period within birds and then adapted to diverse archaic mammals in the Neotropical region on one hand and in the Nearctic region, on the other hand and lastly adapted to the Lagomorpha and subsequently to the Ruminantia. In both families originating from the Trichostrongylidae, the adaptation to the Lagomorpha may have taken place during the Oligocene but in a different way. In the Haemonchidae, the Ostertagiinae may have passed directly from the Neartic region to Europe. In the Cooperiidae, the adaptation to Lagomorpha may have occurred either within the Libyostrongylinae which may have remained in the Ethiopian region since the Paleocene, or, more likely, by the passage of the Obeliscoidinae from the Nearctic region to the Asian, through the Bering strait. In all cases, the adaptation of the Trichostrongyloidea of Lagomorpha to Ruminants apparently took place during the Miocene, mainly in the Palearctic and the Ethiopian regions.  相似文献   

2.
Nucleotide sequences from four chloroplast genes, the matK, chlL, intergenic spacer (IGS) region between trnL and trnF, and an intron of trnL, were determined from all species of Taxodiaceae and five species of Cupressaceae sensu stricto (s.s.). Phylogenetic trees were constructed using the maximum parsimony and the neighbor-joining methods with Cunninghamia as an outgroup. These analyses provided greater resolution of relationships among genera and higher bootstrap supports for clades compared to previous analyses. Results indicate that Taiwania diverged first, and then Athrotaxis diverged from the remaining genera. Metasequoia, Sequoia, and Sequoiadendron form a clade. Taxodium and Glyptostrobus form a clade, which is the sister to Cryptomeria. Cupressaceae s.s. are derived from within Taxodiaceae, being the most closely related to the Cryptomeria/Taxodium/Glyptostrobus clade. These relationships are consistent with previous morphological groupings and the analyses of molecular data. In addition, we found acceleration of evolutionary rates in Cupressaceae s.s. Possible causes for the acceleration are discussed.  相似文献   

3.
The bootstrapping method of determining confidence in the topology of phylogenetic trees has been applied to electrophoretic protein data for two groups of amphibians: salamanders of two North American genera (Aneides and Plethodon) of the tribe Plethodontini and Holarctic hylid frogs. Some current methods of phylogenetic reconstruction for electrophoretic protein data have been evaluated by comparing the trees obtained from molecular data sets with available morphological data. Molecular data on the phylogenetic relationships of Aneides and Plethodon, data obtained from electrophoretic and immunological studies, indicate that Aneides probably was derived from western Plethodon subsequent to the separation of eastern and western Plethodon. Thus Plethodon very likely is a paraphyletic genus. The extremely low rate of morphological evolution in Plethodon compared with that in Aneides causes difficulty in indicating their evolutionary relationships taxonomically because there are no synapomorphic morphological characters that define either eastern or western Plethodon, whereas there are several for the genus Aneides. Thus molecular data alone probably indicate the evolutionary relationships of the species in these genera. Highton and Larson's (1979) arrangement of species of Plethodon into eight species groups is supported. The topologies of the unweighted pair-group method using arithmetic means (UPGMA) and distance Wagner trees were compared with independent morphological and molecular data on the relationships of the 28 plethodonine species. It was found that UPGMA trees indicate relationships that are more in agreement with other information than are those provided by distance Wagner trees. The use of the bootstrap technique indicates that the topologies of UPGMA trees are better supported statistically than are the topologies of distance Wagner trees. Moreover, different addition criteria produce a variety of distance Wagner trees with different topologies, each with several groupings that are not supported statistically. It is concluded that considerable caution should be used in interpreting the topology of distance Wagner trees. Very similar results were obtained with a second data set on 30 taxa of Holarctic hylid frogs. Trees obtained by the neighbor-joining method are more in agreement with UPGMA phenograms and other data, so this method of phylogenetic reconstruction may be useful to systematists not willing to assume constant rates of evolution.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The Hylobatidae (gibbons) are among the most endangered primates and their evolutionary history and systematics remain largely unresolved. We have investigated the species-level phylogenetic relationships among hylobatids using 1257 bases representing all species and an expanded data set of up to 2243 bases for select species from the mitochondrial ND3-ND4 region. Sequences were obtained from 34 individuals originating from all 12 recognized extant gibbon species. These data strongly support each of the four previously recognized clades or genera of gibbons, Nomascus, Bunopithecus, Symphalangus, and Hylobates, as monophyletic groups. Among these clades, there is some support for either Bunopithecus or Nomascus as the most basal, while in all analyses Hylobates appears to be the most recently derived. Within Nomascus, Nomascus sp. cf. nasutus is the most basal, followed by N. concolor, and then a clade of N. leucogenys and N. gabriellae. Within Hylobates, H. pileatus is the most basal, while H. moloch and H. klossii clearly, and H. agilis and H. muelleri likely form two more derived monophyletic clades. The segregation of H. klossii from other Hylobates species is not supported by this study. The present data are (1) consistent with the division of Hylobatidae into four distinct clades, (2) provide the first genetic evidence for all the species relationships within Nomascus, and (3) call for a revision of the current relationships among the species within Hylobates. We propose a phylogenetic tree as a working hypothesis against which intergeneric and interspecific relationships can be tested with additional genetic, morphological, and behavioral data.  相似文献   

5.
We produced a molecular phylogeny of species within the order Strongylida (bursate nematodes) using the D1 and D2 domains of 28S rDNA, with 23 new sequences for each domain. A first analysis using Caenorhabditis elegans as an outgroup produced a tree with low resolution in which three taxa (Dictyocaulus filaria, Dictyocaulus noerneri, and Metastrongylus pudendotectus) showed highly divergent sequences. In a second analysis, these three species and C. elegans were removed and an Ancylostomatina, Bunostomum trigonocephalum, was chosen (on the basis of previous morphological analyses) as the outgroup for an analysis of the phylogenetic relationships between and within the Strongylina (strongyles) and Trichostrongylina (trichostrongyles). A very robust tree was obtained. The Trichostrongylina were monophyletic, but the Strongylina were paraphyletic, though this requires confirmation. Within the Trichostrongylina, the three superfamilies defined from morphological characters are confirmed, with the Trichostrongyloidea sister group to a clade including the Molineoidea and Heligmosomoidea. Within the Trichostrongyloidea, the Cooperiidae, Trichostrongylidae, and Haemonchidae were polytomous, the Haemonchinae were monophyletic, but the Ostertagiinae were paraphyletic. The sister-group relationships between Molineoidea and Heligmosomoidea were unsuspected from previous morphological analysis. No unequivocal morphological synapomorphy could be found for the grouping Molineoidea + Heligmosomoidea, but none was found which contradicted it.  相似文献   

6.
Nematodes of the suborder Cephalobina include an ecologically and morphologically diverse array of species that range from soil-dwelling microbivores to parasites of vertebrates and invertebrates. Despite a long history of study, certain of these microbivores (Cephaloboidea) present some of the most intractable problems in nematode systematics; the lack of an evolutionary framework for these taxa has prevented the identification of natural groups and inhibited understanding of soil biodiversity and nematode ecology. Phylogenetic analyses of ribosomal (LSU) sequence data from 53 taxa revealed strong support for monophyly of taxa representing the Cephaloboidea, but do not support the monophyly of most genera within this superfamily. Historically these genera have primarily been recognized based on variation in labial morphology, but molecular phylogenies show the same general labial (probolae) morphotype often results from recurrent similarity, a result consistent with the phenotypic plasticity of probolae previously observed for some species in ecological time. Phylogenetic analyses of LSU rDNA also recovered strong support for some other groups of cephalobs, including taxa representing most (but not all) Panagrolaimoidea. In addition to revealing homoplasy of probolae, molecular trees also imply other unexpected patterns of character evolution or polarity, including recurrent similarity of offset spermatheca presence, and representation of complex probolae as the ancestral condition within Cephaloboidea. For Cephalobidae, molecular trees do not support traditional genera as natural groups, but it remains untested if deconstructing probolae morphotypes or other structural features into finer component characters may reveal homologies that help delimit evolutionary lineages.  相似文献   

7.
Ampithoid amphipods dominate invertebrate assemblages associated with shallow‐water macroalgae and seagrasses worldwide and represent the most species‐rich family of herbivorous amphipod known. To generate the first molecular phylogeny of this family, we sequenced 35 species from 10 genera at two mitochondrial genes [the cytochrome c oxidase subunit I (COI) and the large subunit of 16 s (LSU)] and two nuclear loci [sodium–potassium ATPase (NAK) and elongation factor 1‐alpha (EF1)], for a total of 1453 base pairs. All 10 genera are embedded within an apparently monophyletic Ampithoidae (Amphitholina, Ampithoe, Biancolina, Cymadusa, Exampithoe, Paragrubia, Peramphithoe, Pleonexes, Plumithoe, Pseudoamphithoides and Sunamphitoe). Biancolina was previously placed within its own superfamily in another suborder. Within the family, single‐locus trees were generally poor at resolving relationships among genera. Combined‐locus trees were better at resolving deeper nodes, but complete resolution will require greater taxon sampling of ampithoids and closely related outgroup species, and more molecular characters. Despite these difficulties, our data generally support the monophyly of Ampithoidae, novel evolutionary relationships among genera, several currently accepted genera that will require revisions via alpha taxonomy and the presence of cryptic species.  相似文献   

8.
Kopp A  True JR 《Systematic biology》2002,51(5):786-805
The melanogaster species group of Drosophila (subgenus Sophophora) has long been a favored model for evolutionary studies because of its morphological and ecological diversity and wide geographic distribution. However, phylogenetic relationships among species and subgroups within this lineage are not well understood. We reconstructed the phylogeny of 17 species representing 7 "oriental" species subgroups, which are especially closely related to D. melanogaster. We used DNA sequences of four nuclear and two mitochondrial loci in an attempt to obtain the best possible estimate of species phylogeny and to assess the extent and sources of remaining uncertainties. Comparison of trees derived from single-gene data sets allowed us to identify several strongly supported clades, which were also consistently seen in combined analyses. The relationships among these clades are less certain. The combined data set contains data partitions that are incongruent with each other. Trees reconstructed from the combined data set and from internally homogenous data sets consisting of three or four genes each differ at several deep nodes. The total data set tree is fully resolved and strongly supported at most nodes. Statistical tests indicated that this tree is compatible with all individual and combined data sets. Therefore, we accepted this tree as the most likely model of historical relationships. We compared the new molecular phylogeny to earlier estimates based on morphology and chromosome structure and discuss its taxonomic and evolutionary implications.  相似文献   

9.
The genus Rosa has a complex evolutionary history caused by several factors, often in conjunction: extensive hybridization, recent radiation, incomplete lineage sorting, and multiple events of polyploidy. We examined the applicability of AFLP markers for reconstructing (species) relationships in Rosa, using UPGMA clustering, Wagner parsimony, and Bayesian inference. All trees were well resolved, but many of the deeper branches were weakly supported. The cluster analysis showed that the rose cultivars can be separated into a European and an Oriental cluster, each being related to different wild species. The phylogenetic analyses showed that (1) two of the four subgenera (Hulthemia and Platyrhodon) do not deserve subgeneric status; (2) section Carolinae should be merged with sect. Cinnamomeae; (3) subsection Rubigineae is a monophyletic group within sect. Caninae, making sect. Caninae paraphyletic; and (4) there is little support for the distinction of the five other subsections within sect. Caninae. Comparison of the trees with morphological classifications and with previous molecular studies showed that all methods yielded reliable trees. Bayesian inference proved to be a useful alternative to parsimony analysis of AFLP data. Because of their genome-wide sampling, AFLPs are the markers of choice to reconstruct (species) relationships in evolutionary complex groups.  相似文献   

10.
Comparative restriction site mapping of the chloroplast genome was performed to examine phylogenetic relationships among 27 species representing 16 genera of the Berberidaceae and two outgroups. Chloroplast genomes of the species included in this study showed no major structural rearrangements (i.e., they are collinear to tobacco cpDNA) except for the extension of the inverted repeat in species of Berberis and Mahonia. Excluding several regions that exhibited severe length variation, a total of 501 phylogenetically informative sites was mapped for ten restriction enzymes. The strict consensus tree of 14 equally parsimonious trees indicated that some berberidaceous genera (Berberis, Mahonia, Diphylleia) are not monophyletic. To explore phylogenetic utility of different parsimony methods phylogenetic trees were generated using Wagner, Dollo, and weighted parsimony for a reduced data set that included 18 species. One of the most significant results was the recognition of the four chromosomal groups, which were strongly supported regardless of the parsimony method used. The most notable difference among the trees produced by the three parsimony methods was the relationships among the four chromosomal groups. The cpDNA trees also strongly supported a close relationship of several generic pairs (e.g., Berberis-Mahonia, Epimedium-Vancouveria, etc.). Maximum likelihood values were computed for the four different tree topologies of the chromosomal groups, two Wagner, one Dollo, and one weighted topology. The results indicate that the weighted tree has the highest likelihood value. The lowest likelihood value was obtained for the Dollo tree, which had the highest bootstrap and decay values. Separate analyses using only the Inverted Repeat (IR) region resulted in a tree that is identical to the weighted tree. Poor resolution and/or support for the relationships among the four chromosomal lineages of the Berberidaceae indicate that they may have radiated from an ancestral stock in a relatively short evolutionary time.  相似文献   

11.
菝葜科基于形态学证据的系统发育分析   总被引:1,自引:0,他引:1  
对全世界范围分布的菝葜科Smilacaceae的79个代表种(包括了全部的属和组), 以分布于南美洲的Philesia Comm. ex Juss.和Lapageria Ruiz &; Pav.属为外类群, 选取包括花粉和染色体性状在内的47个广义的形态学性状进行了分支分类系统发育分析, 同时以表征分类的方法构建了距离树(NJ)辅助分析, 首次对世界分布的菝葜科各属间及属内的系统发育关系作了探讨。(1)Ripogonum与菝葜属Smilax +肖菝葜属Heterosmilax互为姐妹群, 但是距离较远, 支持将类菝葜属(新拟中文名)Ripogonum独立为科的观点; (2)肖菝葜属在菝葜科内处于较为进化的分支上, 并与菝葜属土茯苓组sect. Coilanthus的部分种组成一个具较高支持率(88%)的单系分支, 分析表明肖菝葜属并非是一个好属, 应归入菝葜属; (3)菝葜属6个组的划分大都没有得到支持, 只有东亚北美间断分布的草本菝葜组sect. Nemexia的单系得到很好的支持(93%); (4)分布于南美洲巴西的种类聚为一个单系类群, 表明它们可能有共同的起源, 但由于取样局限, 南美洲种类的系统地位有待进一步研究。  相似文献   

12.
Brachyuran crabs of the family Bythograeidae are endemic to deep-sea hydrothermal vents and represent one of the most successful groups of macroinvertebrates that have colonized this extreme environment. Occurring worldwide, the family includes six genera (Allograea, Austinograea, Bythograea, Cyanagraea, Gandalfus, and Segonzacia) and fourteen formally described species. To investigate their evolutionary relationships, we conducted Maximum Likelihood and Bayesian molecular phylogenetic analyses, based on DNA sequences from fragments of three mitochondrial genes (16S rDNA, Cytochrome oxidase I, and Cytochrome b) and three nuclear genes (28S rDNA, the sodium-potassium ATPase a-subunit 'NaK', and Histone H3A). We employed traditional concatenated (i.e., supermatrix) phylogenetic methods, as well as three recently developed Bayesian multilocus methods aimed at inferring species trees from potentially discordant gene trees. We found strong support for two main clades within Bythograeidae: one comprising the members of the genus Bythograea; and the other comprising the remaining genera. Relationships within each of these two clades were partially resolved. We compare our results with an earlier hypothesis on the phylogenetic relationships among bythograeid genera based on morphology. We also discuss the biogeography of the family in the light of our results. Our species tree analyses reveal differences in how each of the three methods weighs conflicting phylogenetic signal from different gene partitions and how limits on the number of outgroup taxa may affect the results.  相似文献   

13.
The Bryopsidales contains some of the most species rich and ecologically dominant algae in tropical ecosystems. However, the evolutionary relationships among the 29 genera and several hundred species of this order remain poorly resolved. Because of a lack of known reproductive characters for many taxa, evolutionary hypotheses grouped genera by similarities in morphological characters. To apply standard cladistical analyses to further our understanding of this group, this study presents the first comprehensive compilation of reported morphological, reproductive, and subcellular characteristics for genera in the Bryopsidales. Computer-assisted cladistical analyses ultimately identified phylogenetically informative and uninformative characters. Although the topology of the trees generated in this study is expected to change as additional data are added to this matrix, many traditional groupings and recent groupings based on molecular data were supported.  相似文献   

14.
Abstract. Because the taxonomy of marine sponges is based primarily on morphological characters that can display a high degree of phenotypic plasticity, current classifications may not always reflect evolutionary relationships. To assess phylogenetic relationships among sponges in the order Verongida, we examined 11 verongid species, representing six genera and four families. We compared the utility of morphological and molecular data in verongid sponge systematics by comparing a phylogeny constructed from a morphological character matrix with a phylogeny based on nuclear ribosomal DNA sequences. The morphological phylogeny was not well resolved below the ordinal level, likely hindered by the paucity of characters available for analysis, and the potential plasticity of these characters. The molecular phylogeny was well resolved and robust from the ordinal to the species level. We also examined the morphology of spongin fibers to assess their reliability in verongid sponge taxonomy. Fiber diameter and pith content were highly variable within and among species. Despite this variability, spongin fiber comparisons were useful at lower taxonomic levels (i.e., among congeneric species); however, these characters are potentially homoplasic at higher taxonomic levels (i.e., between families). Our molecular data provide good support for the current classification of verongid sponges, but suggest a re-examination and potential reclassification of the genera Aiolochroia and Pseudoceratina . The placements of these genera highlight two current issues in morphology-based sponge taxonomy: intermediate character states and undetermined character polarity.  相似文献   

15.
16.
Extant gars represent the remaining members of a formerly diverse assemblage of ancient ray-finned fishes and have been the subject of multiple phylogenetic analyses using morphological data. Here, we present the first hypothesis of phylogenetic relationships among living gar species based on molecular data, through the examination of gene tree heterogeneity and coalescent species tree analyses of a portion of one mitochondrial (COI) and seven nuclear (ENC1, myh6, plagl2, S7 ribosomal protein intron 1, sreb2, tbr1, and zic1) genes. Individual gene trees displayed varying degrees of resolution with regards to species-level relationships, and the gene trees inferred from COI and the S7 intron were the only two that were completely resolved. Coalescent species tree analyses of nuclear genes resulted in a well-resolved and strongly supported phylogenetic tree of living gar species, for which Bayesian posterior node support was further improved by the inclusion of the mitochondrial gene. Species-level relationships among gars inferred from our molecular data set were highly congruent with previously published morphological phylogenies, with the exception of the placement of two species, Lepisosteus osseus and L. platostomus. Re-examination of the character coding used by previous authors provided partial resolution of this topological discordance, resulting in broad concordance in the phylogenies inferred from individual genes, the coalescent species tree analysis, and morphology. The completely resolved phylogeny inferred from the molecular data set with strong Bayesian posterior support at all nodes provided insights into the potential for introgressive hybridization and patterns of allopatric speciation in the evolutionary history of living gars, as well as a solid foundation for future examinations of functional diversification and evolutionary stasis in a "living fossil" lineage.  相似文献   

17.
The phylogenetic relationships among 21 species of stromateoid fishes, representing five families and 13 genera, were reconstructed using 3263bp of mitochondrial DNA sequences, including the posterior half of the 16S rRNA and entire COI and Cytb genes. The resultant molecular phylogenies were compared with previous phylogenetic hypotheses inferred from morphological characters. Molecular phylogenetic trees were constructed using the maximum parsimony, maximum likelihood, and Bayesian methods. All three methods resulted in well-resolved trees with most nodes being supported by moderate to high support values. In contrast to previous morphological analyses, which resulted in non-monophyly of Centrolophidae, all three methods utilized for the present molecular analyses supported the monophyly of Centrolophidae, as well as the reciprocal monophyly of the other stromateoid families, previous morphological hypotheses being rejected by the Templeton and Shimodaira-Hasegawa tests. In addition, the three methods indicated a sister-group relationship between Ariommatidae and Nomeidae. The position of Tetragonuridae was, however, incongruent between the MP method and the ML and Bayesian methods, being placed in the most basal position of Stromateoidei in the former, but occupying a sister relationship to Stromateidae in the latter. Comparison of the molecular phylogenies to previous morphological hypotheses suggested that evolutionary changes in morphological characters have not occurred equally among the stromateoid lineages, the evolution of the centrolophids not having been accompanied by appreciable morphological changes, whereas other stromateoids have undergone considerable morphological changes during their evolutionary history. The molecular phylogenies also shed some light on the evolutionary pattern of the pharyngeal sac, two of the four types of sac corresponding to two main lineages of Stromateoidei. Some taxonomic implications were also discussed.  相似文献   

18.
A phylogenetic analysis of Australian drywood termites (Isoptera, Kalotermitidae) based on partial sequence from the cytochrome oxidase II (COII) and cytochrome b genes is presented. In addition to providing new information on the evolutionary relationships among 25 species from seven genera, we evaluate the relative likelihoods of alternative topological hypotheses, including those derived from morphology-based classifications. We also test the applicability of a molecular clock for estimating the age of the Kalotermitidae and infer the evolution of species-specific variation for habitat type and soldier caste phragmosis by mapping this information onto the independently derived phylogeny. Maximum-likelihood analysis of both nucleotide and protein sequences from a multigene data set jointly support a single topology, which is shown to be the best estimate of the true phylogeny among the alternatives tested. Our results support the monophyly of all genera but question the discrimination between Procryptotermes and Cryptotermes. A basal dichotomy among generic groups suggests two principle lines of divergence within the family. Intergeneric relationships show mixed congruence to previous proposals, resulting in one morphology-based classification being rejected. A molecular clock hypothesis is not supported due to significant among-lineage rate heterogeneity in the COII gene. Patterns revealed through trait mapping suggest that the most recently diverged taxa tend to occupy the driest habitats and that these same taxa reflect a defensive transition away from large mandibulate soldiers toward small phragmotic soldiers. The association between habitat and defensibility supports the hypothesis that these two characters have been tightly linked throughout the social diversification of termites.  相似文献   

19.
Phylogenetic relationships were examined within the southern beech family Nothofagaceae using 22 species representing the four currently recognized subgenera and related outgroups. Nuclear ribosomal DNA sequences encoding the 5.8s rRNA and two flanking internal transcribed spacers (ITS) provided 95 phylogenetically informative nucleotide sites from a single alignment of ~588 bases per species. Parsimony analysis of this variation produced two equally parsimonious trees supporting four monophyletic groups, which correspond to groups designated by pollen type. These topologies were compared to trees from reanalyses of previously reported rbcL sequences and a modified morphological data set. Results from parsimony analysis of the three data sets were highly congruent, with topological differences restricted to the placement of a few terminal taxa. Combined analysis of molecular and morphological data produced six equally parsimonious trees. The consensus of these trees suggests two basal clades within Nothofagus. Within the larger of the two clades, tropical Nothofagus (subgenus Brassospora) of New Guinea and New Caledonia are strongly supported as sister to cool-temperate species of South America (subgenus Nothofagus). Most of the morphological apomorphies of the cupule, fruit, and pollen of Nothofagus are distributed within this larger clade. An area cladogram based on the consensus of combined data supports three trans-Antarctic relationships, two within pollen groups and one between pollen groups. Fossil data support continuous ancestral distributions for all four pollen groups prior to continental drift; therefore, vicariance adequately explains two of these disjunctions. Extinction of trans-Antarctic sister taxa within formerly widespread pollen groups explains the third disjunction; this results in a biogeographic pattern indicative of phylogenetic relationship not vicariance. For the biogeographically informative vicariant clades, area relationships based on total evidence support the recently advanced hypothesis that New Zealand and Australia share a unique common ancestry. Contrary to previous thought, the distribution of extant Nothofagus is informative on the area relationships of the Southern Hemisphere, once precise phylogenetic relationships are placed in the context of fossil data.  相似文献   

20.
Cognato, A. I., Hulcr, J., Dole, S. A. & Jordal, B. H. (2010). Phylogeny of haplo‐diploid, fungus‐growing ambrosia beetles (Curculionidae: Scolytinae: Xyleborini) inferred from molecular and morphological data. —Zoologica Scripta, 40, 174–186. The ambrosia beetle tribe Xyleborini currently contains 30 genera and approximately 1200 species which are distributed throughout worldwide forests with most diversity located in the tropics. They also represent the most invasive scolytines in North America. Despite economic concerns and biological curiosity with this group, a comprehensive understanding of generic boundaries and the evolutionary relationship among species is lacking. In this study, we include 155 xyleborine species representing 23 genera in parsimony and Bayesian analyses using 3925 nucleotides from mitochondrial (COI) and nuclear genomes (28S, ArgK, CAD, EF‐1α) and 39 morphological characters. The phylogenies resulting from the parsimony analyses, which treated gap positions either as missing or fifth character states, and the Bayesian analysis were generally similar. Clades with high support or posterior probabilities were found in all trees, while those with low support were not recovered by all analyses. Fourteen of the 23 genera were monophyletic although not all relationships among the genera were resolved. We show monophyly of several species groups associated with particular morphological and biological characters and suggest recognition of these groups as genera. Most interesting was the monophyly of South and Central American species representing several genera. This finding suggests recent and fast radiation of xyleborines in the New World accompanied by morphological and biological diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号