首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Satellite cells are well known as a postnatal skeletal muscle stem cell reservoir that under injury conditions participate in repair. However, mechanisms controlling satellite cell quiescence and activation are the topic of ongoing inquiry by many laboratories. In this study, we investigated whether loss of the cell cycle regulatory factor, pRb, is associated with the re-entry of quiescent satellite cells into replication and subsequent stem cell expansion. By ablation of Rb1 using a Pax7CreER,Rb1 conditional mouse line, satellite cell number was increased 5-fold over 6 months. Furthermore, myoblasts originating from satellite cells lacking Rb1 were also increased 3-fold over 6 months, while terminal differentiation was greatly diminished. Similarly, Pax7CreER,Rb1 mice exhibited muscle fiber hypotrophy in vivo under steady state conditions as well as a delay of muscle regeneration following cardiotoxin-mediated injury. These results suggest that cell cycle re-entry of quiescent satellite cells is accelerated by lack of Rb1, resulting in the expansion of both satellite cells and their progeny in adolescent muscle. Conversely, that sustained Rb1 loss in the satellite cell lineage causes a deficit of muscle fiber formation. However, we also show that pharmacological inhibition of protein phosphatase 1 activity, which will result in pRb inactivation accelerates satellite cell activation and/or expansion in a transient manner. Together, our results raise the possibility that reversible pRb inactivation in satellite cells and inhibition of protein phosphorylation may provide a new therapeutic tool for muscle atrophy by short term expansion of the muscle stem cells and myoblast pool.  相似文献   

2.
Satellite cells are quiescent muscle stem cells that promote postnatal muscle growth and repair. Here we show that myostatin, a TGF-beta member, signals satellite cell quiescence and also negatively regulates satellite cell self-renewal. BrdU labeling in vivo revealed that, among the Myostatin-deficient satellite cells, higher numbers of satellite cells are activated as compared with wild type. In contrast, addition of Myostatin to myofiber explant cultures inhibits satellite cell activation. Cell cycle analysis confirms that Myostatin up-regulated p21, a Cdk inhibitor, and decreased the levels and activity of Cdk2 protein in satellite cells. Hence, Myostatin negatively regulates the G1 to S progression and thus maintains the quiescent status of satellite cells. Immunohistochemical analysis with CD34 antibodies indicates that there is an increased number of satellite cells per unit length of freshly isolated Mstn-/- muscle fibers. Determination of proliferation rate suggests that this elevation in satellite cell number could be due to increased self-renewal and delayed expression of the differentiation gene (myogenin) in Mstn-/- adult myoblasts. Taken together, these results suggest that Myostatin is a potent negative regulator of satellite cell activation and thus signals the quiescence of satellite cells.  相似文献   

3.
Satellite cells are quiescent muscle stem cells that promote postnatal muscle growth and repair. When satellite cells are activated by myotrauma, they proliferate, migrate, differentiate, and ultimately fuse to existing myofibers. The remainder of these cells do not differentiate, but instead return to quiescence and remain in a quiescent state until activation begins the process again. This ability to maintain their own population is important for skeletal muscle to maintain the capability to repair during postnatal life. However, the mechanisms by which satellite cells return to quiescence and maintain the quiescent state are still unclear. Here, we demonstrated that decorin mRNA expression was high in cell cultures containing a higher ratio of quiescent satellite cells when satellite cells were stimulated with various concentrations of hepatocyte growth factor. This result suggests that quiescent satellite cells express decorin at a high level compared to activated satellite cells. Furthermore, we examined the expression of decorin in reserve cells, which were undifferentiated myoblasts remaining after induction of differentiation by serum-deprivation. Decorin mRNA levels in reserve cells were higher than those in differentiated myotubes and growing myoblasts. These results suggest that decorin participates in the quiescence of myogenic cells.  相似文献   

4.
Regeneration of skeletal muscle relies on a population of quiescent stem cells (satellite cells) and is impaired in very old (geriatric) individuals undergoing sarcopenia. Stem cell function is essential for organismal homeostasis, providing a renewable source of cells to repair damaged tissues. In adult organisms, age-dependent loss-of-function of tissue-specific stem cells is causally related with a decline in regenerative potential. Although environmental manipulations have shown good promise in the reversal of these conditions, recently we demonstrated that muscle stem cell aging is, in fact, a progressive process that results in persistent and irreversible changes in stem cell intrinsic properties. Global gene expression analyses uncovered an induction of p16INK4a in satellite cells of physiologically aged geriatric and progeric mice that inhibits satellite cell-dependent muscle regeneration. Aged satellite cells lose the repression of the INK4a locus, which switches stem cell reversible quiescence into a pre-senescent state; upon regenerative or proliferative pressure, these cells undergo accelerated senescence (geroconversion), through Rb-mediated repression of E2F target genes. p16INK4a silencing rejuvenated satellite cells, restoring regeneration in geriatric and progeric muscles. Thus, p16INK4a/Rb-driven stem cell senescence is causally implicated in the intrinsic defective regeneration of sarcopenic muscle. Here we discuss on how cellular senescence may be a common mechanism of stem cell aging at the organism level and show that induction of p16INK4a in young muscle stem cells through deletion of the Polycomb complex protein Bmi1 recapitulates the geriatric phenotype.  相似文献   

5.
Muscle satellite cells   总被引:4,自引:0,他引:4  
Skeletal muscle satellite cells are quiescent mononucleated myogenic cells, located between the sarcolemma and basement membrane of terminally-differentiated muscle fibres. These are normally quiescent in adult muscle, but act as a reserve population of cells, able to proliferate in response to injury and give rise to regenerated muscle and to more satellite cells. The recent discovery of a number of markers expressed by satellite cells has provided evidence that satellite cells, which had long been presumed to be a homogeneous population of muscle stem cells, may not be equivalent. It is possible that a sub-population of satellite cells may be derived from a more primitive stem cell. Satellite cell-derived muscle precursor cells may be used to repair and regenerate damaged or myopathic skeletal muscle, or to act as vectors for gene therapy. CELL FACTS: (1) Number of cells in body: 2 x 10(7) to 3 x 10(7) myonuclei/g, 20-25 kg muscle in average man; 2 x 10(5) to 10 x 10(5) satellite cells/g, i.e. approximately 1 x 10(10) to 2 x 10(10) satellite cells per person. (2) Main functions: repair and maintenance of skeletal muscle. (3) Turnover rate: close to zero in non-traumatic conditions-high in disease or severe trauma.  相似文献   

6.
7.
8.
Satellite cells are the primary stem cells in adult skeletal muscle, and are responsible for postnatal muscle growth, hypertrophy and regeneration. In mature muscle, most satellite cells are in a quiescent state, but they activate and begin proliferating in response to extrinsic signals. Following activation, a subset of satellite cell progeny returns to the quiescent state during the process of self-renewal. Here, we review recent studies of satellite cell biology and focus on the key transitions from the quiescent state to the state of proliferative activation and myogenic lineage progression and back to the quiescent state. The molecular mechanisms of these transitions are considered in the context of the biology of the satellite cell niche, changes with age, and interactions with established pathways of myogenic commitment and differentiation.  相似文献   

9.
Skeletal muscle retains a resident stem cell population called satellite cells, which are mitotically quiescent in mature muscle, but can be activated to produce myoblast progeny for muscle homeostasis, hypertrophy and repair. We have previously shown that satellite cell activation is partially controlled by the bioactive phospholipid, sphingosine-1-phosphate, and that S1P biosynthesis is required for muscle regeneration. Here we investigate the role of sphingosine-1-phosphate receptor 3 (S1PR3) in regulating murine satellite cell function. S1PR3 levels were high in quiescent myogenic cells before falling during entry into cell cycle. Retrovirally-mediated constitutive expression of S1PR3 led to suppressed cell cycle progression in satellite cells, but did not overtly affect the myogenic program. Conversely, satellite cells isolated from S1PR3-null mice exhibited enhanced proliferation ex-vivo. In vivo, acute cardiotoxin-induced muscle regeneration was enhanced in S1PR3-null mice, with bigger muscle fibres compared to control mice. Importantly, genetically deleting S1PR3 in the mdx mouse model of Duchenne muscular dystrophy produced a less severe muscle dystrophic phenotype, than when signalling though S1PR3 was operational. In conclusion, signalling though S1PR3 suppresses cell cycle progression to regulate function in muscle satellite cells.  相似文献   

10.
Satellite cells are quiescent cells located under the basal lamina of skeletal muscle fibers that contribute to muscle growth, maintenance, repair, and regeneration. Mouse satellite cells have been shown to be muscle stem cells that are able to regenerate muscle fibers and self-renew. As human skeletal muscle is also able to regenerate following injury, we assume that the human satellite cell is, like its murine equivalent, a muscle stem cell. In this review, we compare human and mouse satellite cells and highlight their similarities and differences. We discuss gaps in our knowledge of human satellite cells, compared with that of mouse satellite cells, and suggest ways in which we may advance studies on human satellite cells, particularly by finding new markers and attempting to re-create the human satellite cell niche in vitro. (J Histochem Cytochem 58:941–955, 2010)  相似文献   

11.
The mitogen-activated protein kinases (MAPKs) play an important role in a variety of biological processes. Activation of MAPKs is mediated by phosphorylation on specific regulatory tyrosine and threonine sites. We have recently found that activation of p38alpha MAPK can be carried out not only by its upstream MAPK kinases (MKKs) but also by p38alpha autophosphorylation. p38alpha autoactivation requires an interaction of p38alpha with TAB1 (transforming growth factor-beta-activated protein kinase 1-binding protein 1). The autoactivation mechanism of p38alpha has been found to be important in cellular responses to a number of physiologically relevant stimuli. Here, we report the characterization of a splicing variant of TAB1, TAB1beta. TAB1 and TAB1beta share the first 10 exons. The 11th and 12th exons of TAB1 were spliced out in TAB1beta, and an extra exon, termed exon beta, downstream of exons 11 and 12 in the genome was used as the last exon in TAB1beta. The mRNA of TAB1beta was expressed in all cell lines examined. The TAB1beta mRNA encodes a protein with an identical sequence to TAB1 except the C-terminal 69 amino acids were replaced with an unrelated 27-amino acid sequence. Similar to TAB1, TAB1beta interacts with p38alpha but not other MAPKs and stimulates p38alpha autoactivation. Different from TAB1, TAB1beta does not bind or activate TAK1. Inhibition of TAB1beta expression with RNA interference in MDA231 breast cancer cells resulted in the reduction of basal activity of p38alpha and invasiveness of MDA231 cells, suggesting that TauAlphaBeta1beta is involved in regulating p38alpha activity in physiological conditions.  相似文献   

12.
13.
Cell cycle commitment of rat muscle satellite cells   总被引:6,自引:0,他引:6       下载免费PDF全文
Satellite cells of adult muscle are quiescent myogenic stem cells that can be induced to enter the cell cycle by an extract of crushed muscle (Bischoff, R. 1986. Dev. Biol. 115:140-147). Here, evidence is presented that the extract acts transiently to commit cells to enter the cell cycle. Satellite cells associated with both live and killed rat myofibers in culture were briefly exposed to muscle extract and the increase in cell number was determined at 48 h in vitro, before the onset of fusion. An 8-12-h exposure to extract with killed, but not live, myofibers was sufficient to produce maximum proliferation of satellite cells. Continuous exposure for over 40 h was needed to sustain proliferation of satellite cells on live myofibers. The role of serum factors was also studied. Neither serum nor muscle extract alone was able to induce proliferation of satellite cells. In the presence of muscle extract, however, satellite cell proliferation was directly proportional to the concentration of serum in the medium. These results suggest that mitogens released from crushed muscle produce long-lasting effects that commit quiescent satellite cells to divide, whereas serum factors are needed to maintain progression through the cell cycle. Contact with a viable myofiber modulates the response of satellite cells to growth factors.  相似文献   

14.
Skeletal muscle satellite cells, which are found between the muscle fiber and the basal lamina, remain quiescent and undifferentiated unless stimulated to remodel skeletal muscle or repair injured skeletal muscle tissue. Quiescent satellite cells express c-met and fibroblast growth factor receptors (FGFR) 1 and 4, suggesting these receptors are involved in maintaining the undifferentiated quiescent state or involved in satellite cell activation. Although the signaling pathways involved are poorly understood, the mitogen activated protein kinase (MAPK) cascade has been implicated in the regulation of skeletal muscle growth and differentiation by FGFs. In this study, we investigated if activation of the Raf-MKK1/2-ERK1/2 signaling cascade plays a role in FGF-dependent repression of differentiation and proliferation of MM14 cells, a skeletal muscle satellite cell line. Inactivation ofthe Raf-MKK1/2-ERK1/2 pathway in myoblasts through the overexpression of dominant negative mutants of Raf-1 blocks ERK1/2 activity and prevents myoblast proliferation. Additionally, inhibition of MKK1/2 by treatment with pharmacological inhibitors also blocks FGF-mediated stimulation of ERK1/2 and blocks the G1 to S phase transition of myoblasts. Unexpectedly, we found that inactivation of the Raf-ERK pathway does not activate a muscle reporter, nor does inactivation of this pathway promote myogenic differentiation. We conclude that FGF-stimulated ERK1/2 signaling is required during the G1 phase of the cell cycle for commitment of myoblasts to DNA synthesis but is not required for mitosis once cells have entered the S-phase. Moreover, ERK1/2 signaling is not required either to repress differentiation, to promote skeletal muscle gene expression, or to promote myoblast fusion.  相似文献   

15.
How regeneration cues are converted into the epigenetic information that controls gene expression in adult stem cells is currently unknown. We identified an inflammation-activated signaling in muscle stem (satellite) cells, by which the polycomb repressive complex 2 (PRC2) represses Pax7 expression during muscle regeneration. TNF-activated p38α kinase promotes the interaction between YY1 and PRC2, via threonine 372 phosphorylation of EZH2, the enzymatic subunit of the complex, leading to the formation of repressive chromatin on Pax7 promoter. TNF-α antibodies stimulate satellite cell proliferation in regenerating muscles of dystrophic or normal mice. Genetic knockdown or pharmacological inhibition of the enzymatic components of the p38/PRC2 signaling--p38α and EZH2--invariably promote Pax7 expression and expansion of satellite cells that retain their differentiation potential upon signaling resumption. Genetic knockdown of Pax7 impaired satellite cell proliferation in response to p38 inhibition, thereby establishing the biological link between p38/PRC2 signaling to Pax7 and satellite cell decision to proliferate or differentiate.  相似文献   

16.
Satellite cells, which are skeletal muscle stem cells, divide to provide new myonuclei to growing muscle fibers during postnatal development, and then are maintained in an undifferentiated quiescent state in adult skeletal muscle. This state is considered to be essential for the maintenance of satellite cells, but their molecular regulation is unknown. We show that Hesr1 (Hey1) and Hesr3 (Heyl) (which are known Notch target genes) are expressed simultaneously in skeletal muscle only in satellite cells. In Hesr1 and Hesr3 single-knockout mice, no obvious abnormalities of satellite cells or muscle regenerative potentials are observed. However, the generation of undifferentiated quiescent satellite cells is impaired during postnatal development in Hesr1/3 double-knockout mice. As a result, myogenic (MyoD and myogenin) and proliferative (Ki67) proteins are expressed in adult satellite cells. Consistent with the in vivo results, Hesr1/3-null myoblasts generate very few Pax7(+) MyoD(-) undifferentiated cells in vitro. Furthermore, the satellite cell number gradually decreases in Hesr1/3 double-knockout mice even after it has stabilized in control mice, and an age-dependent regeneration defect is observed. In vivo results suggest that premature differentiation, but not cell death, is the reason for the reduced number of satellite cells in Hesr1/3 double-knockout mice. These results indicate that Hesr1 and Hesr3 are essential for the generation of adult satellite cells and for the maintenance of skeletal muscle homeostasis.  相似文献   

17.
Mitochondria are major cellular sources of hydrogen peroxide (H(2)O(2)), the production of which is modulated by oxygen availability and the mitochondrial energy state. An increase of steady-state cell H(2)O(2) concentration is able to control the transition from proliferating to quiescent phenotypes and to signal the end of proliferation; in tumor cells thereby, low H(2)O(2) due to defective mitochondrial metabolism can contribute to sustain proliferation. Mitogen-activated protein kinases (MAPKs) orchestrate signal transduction and recent data indicate that are present in mitochondria and regulated by the redox state. On these bases, we investigated the mechanistic connection of tumor mitochondrial dysfunction, H(2)O(2) yield, and activation of MAPKs in LP07 murine tumor cells with confocal microscopy, in vivo imaging and directed mutagenesis. Two redox conditions were examined: low 1 microM H(2)O(2) increased cell proliferation in ERK1/2-dependent manner whereas high 50 microM H(2)O(2) arrested cell cycle by p38 and JNK1/2 activation. Regarding the experimental conditions as a three-compartment model (mitochondria, cytosol, and nuclei), the different responses depended on MAPKs preferential traffic to mitochondria, where a selective activation of either ERK1/2 or p38-JNK1/2 by co-localized upstream kinases (MAPKKs) facilitated their further passage to nuclei. As assessed by mass spectra, MAPKs activation and efficient binding to cognate MAPKKs resulted from oxidation of conserved ERK1/2 or p38-JNK1/2 cysteine domains to sulfinic and sulfonic acids at a definite H(2)O(2) level. Like this, high H(2)O(2) or directed mutation of redox-sensitive ERK2 Cys(214) impeded binding to MEK1/2, caused ERK2 retention in mitochondria and restricted shuttle to nuclei. It is surmised that selective cysteine oxidations adjust the electrostatic forces that participate in a particular MAPK-MAPKK interaction. Considering that tumor mitochondria are dysfunctional, their inability to increase H(2)O(2) yield should disrupt synchronized MAPK oxidations and the regulation of cell cycle leading cells to remain in a proliferating phenotype.  相似文献   

18.
Skeletal muscle satellite cells from uninjured muscle of adult animals are generally found to be in a quiescent state, and when cultured, they remain quiescent in vitro for a period of time which is directly related to the age of the donor animal. A technique for studying the activation of satellite cells in primary cultures has been developed and employs proliferating cell nuclear antigen (PCNA) as a marker for entrance into the S phase of the cell cycle. PCNA is a protein involved in DNA replication and is maximally expressed in S phase of the cell cycle. We monitored PCNA expression in satellite cells isolated from young (3 week) and adult (9 month) rats, and our results indicate that satellite cells begin to accumulate PCNA prior to changes in cell number in both age groups. Using ELISA techniques, we demonstrated that addition of an extract of crushed muscle (CME) activated satellite cells and significantly reduced the length of the lag phase in cells from both age groups. Addition of bFGF shortened the lag phase of PCNA synthesis in satellite cells from 3-week-old rats but had no effect on the kinetics of PCNA expression in cells from 9-month-old rats. Based on our experiments, PCNA expression can be used as a marker to follow the entry of satellite cells into the cell cycle in primary mass cultures. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Quiescence is a critical determinant for sustained stem cell function throughout life. Disruption of cellular quiescence leads to loss of the stem cell pool and impaired tissue repair. In adult skeletal muscle, Pax7+ satellite cells (the muscle stem cells) are capable of self-renewal and differentiation in their endogenous environment during repair. In response to muscle injury, Pax7+ satellite cells enter the cell cycle; subpopulation returns to quiescence to fully replenish the satellite cell pool while others contribute to myofiber repair. We demonstrate that Sprouty1 (Spry1), an inhibitor of receptor tyrosine kinase signaling is required for the return to quiescence of the self-renewing Pax7+ satellite cell pool during repair. The temporal regulation of Spry1 expression during repair and its functional requirement in a subpopulation of cycling Pax7+ cells during repair ensure that tissue regeneration and re-establishment of the dormant stem cell pool are coordinated.  相似文献   

20.
Shi Y  Gaestel M 《Biological chemistry》2002,383(10):1519-1536
Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved enzymes which connect cell-surface receptors to regulatory targets within cells and convert receptor signals into various outputs. In mammalian cells, four distinct MAPKs have been identified: the extracellular signal-related kinases (ERK)-1/2, the c-jun N-terminal kinases or stress-activated protein kinases 1 (JNK1/2/3, or SAPK1s), the p38 MAPKs (p38 alpha/beta/gamma/delta, or SAPK2s), and the ERK5 or big MAP kinase 1 (BMK1). The p38 MAPK cascade is activated by stress or cytokines and leads to phosphorylation of its central elements, the p38 MAPKs. Downstream of p38 MAPKs there is a diversification and extensive branching of signalling pathways. For that reason, we will focus in this review on the different signalling events that are triggered by p38 activity, and analyse how these events contribute to specific gene expression and cellular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号