首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
睾丸去神经对大鼠半去势诱导的睾酮代偿性分泌的影响   总被引:1,自引:0,他引:1  
在成年大鼠,半去势可以在促性腺激素没有明显改变的情况下导致睾丸静脉血液中睾酮浓度代偿性增加,其机理尚不明了。本研究以成年大鼠为实验动物,检验睾酮的代偿性增加是否受到睾丸去神经的影响。睾丸去神经(inferior spematic nerves,ISN或ISN plus superior spermatic nerves,ISN-SSN)手术2周后开始半去势实验,半去势之前和半去势之后6和24h,  相似文献   

2.
Unilaterally orchidectomized (hemicastrated) bull calves were studied to monitor possible changes in serum concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) during the phase of testicular compensatory growth, to examine the characteristics of LH and FSH binding to the testis of the post-pubertal animal, and to determine whether any of these responses were altered by exogenous estradiol. Twenty-four calves were assigned randomly at one week of age to a 2 X 2 factorial experiment involving intact control (I) and hemicastrated animals (H), as well as estradiol-implanted intact (I+E2) and hemicastrated animals (H+E2). Relative to I, testis growth was accelerated in H and suppressed in I+E2 and H+E2. Mean testis weights at 27 weeks of age were 42 +/- 4, 72 +/- 6, 12 +/- 1 and 14 +/- 1 g for the four respective treatment groups. Serum FSH, but not serum LH, was positively associated with the accelerated testis growth of H. LH and FSH binding per testis were both enhanced approximately twofold in the testis from hemicastrated animals relative to those from intact calves. In contrast, estradiol markedly suppressed the number of LH-binding sites per testis in both I and H calves, but only suppressed the number of FSH-binding sites per testis in H calves. LH-affinity constants were not affected by treatment, whereas those for FSH were significantly decreased by estradiol. In conclusion, neonatal hemicastration results in elevated serum FSH, testicular compensatory hypertrophy, and an increased number of gonadotropin receptors in the bovine testis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The possible physiological role of testicular opioid peptides in the control of testicular functions has been studied. In neonatal rats intratesticular administration of opiate receptor antagonists (naloxone, nalmefene) stimulates Sertoli cell proliferation and secretion. Both in adult and neonatal rats local injection of the testis with opiate receptor antagonists or with beta-endorphin antiserum results in a decrease in steroidogenesis in long-term studies. Treatment of neonatal testis with an enkephalin analogue induces a short-term suppression of testosterone secretion. Further studies were carried out to investigate whether the above described local effects of opiate agonist or antagonist on testicular function are under the regulatory control of testicular nerves. Partial denervation of the testis was performed by testicular injection of 6-hydroxydopamine (a neurotoxin degenerating sympathetic neural structures) or by vasectomy (cutting the inferior spermatic nerve). If testicular administration of opioid agonist or antagonist was combined with partial denervation of the testis, the effects of pharmacological agents influencing testicular opioid level were not evident. The data indicate that opioid peptides synthesized in the testis are components of the intratesticular regulatory system and that local opioid actions are modulated by testicular nerves.  相似文献   

4.
The effect of the removal of one testis from cross-bred lambs at 1, 4, 8 or 12 weeks of age on plasma FSH, LH and testosterone was studied until 16 weeks of age. Hemicastration at all ages elicited a significant increase in plasma FSH compared to controls without a corresponding change in plasma LH or testosterone. The raised FSH after hemicastration at 1 or 4 weeks of age was suppressed to control levels between weeks 7 and 8; such a suppression was not observed in the 4 weeks following hemicastration at 8 or 12 weeks of age. The weight of the remaining testis had increased compared with the control by 12 weeks of age after hemicastration at 1 week (+ 69%), 4 weeks (+ 13%) and 8 weeks (+ 40%); hemicastration at 12 weeks of age also resulted in growth of the remaining testis at 16 weeks (+ 82%). The total androgen production of interstitial cells in response to ovine LH stimulation in vitro did not differ significantly between lambs of 1 and 12 weeks of age, or in animals of 4, 8 and 12 weeks of age after hemicastration at 1 week of age. Subdermal implantation of oestradiol-17 beta into 1-week hemicastrated lambs at the time of operation or at 6 weeks of age increased plasma oestradiol concentrations by approximately 2-4-fold, prevented the FSH and testicular growth responses to hemicastration and suppressed plasma LH and testosterone to levels lower than those in control lambs. The total androgen response of interstitial cells from the remaining testis of oestradiol-implanted lambs at 12 weeks of age was significantly reduced. We suggest that the pituitary-testis axis varies in sensitivity during the prepubertal period although the interstitial cellular response of the testis to LH stimulation remains constant.  相似文献   

5.
Leydig cells are the primary source of testosterone in adult males. Recently, a growing body of evidence has shown that testicular innervation functions as a major regulator in Leydig cell steroidogenesis. The question then arises whether this novel regulatory pathway also plays an important role in other biological behaviors of this cell type. In the present study, we selectively resected the superior spermatic nerves (SSNs) or the inferior spermatic nerves (ISNs) to investigate the effects of testicular denervation on survival of Leydig cells. After testicular denervation, Leydig cells displayed morphological characteristics of apoptosis, such as chromatin condensation, cell shrinkage and apoptotic body formation. Flow cytometry combined with TUNEL labeling demonstrated dramatic and persistent apoptosis of Leydig cells in the denervated testes 14 and 21 days after operation. Meanwhile, serum T concentrations in the SSN- or ISN-denervated rats dramatically decreased on day 14 and declined further on day 21. Plasma LH levels underwent a remarkable rise, while serum FSH levels remained unchanged. Immunofluorescent staining and flow cytometry further demonstrated that testicular denervation activated caspase-3 and caspase-8, but not caspase-9 in Leydig cells. Our data indicate that testicular innervation functions as an important survival factor for Leydig cells in vivo.  相似文献   

6.
The effect of sham castration, hemicastration or complete castration on gonadotropin and testosterone secretion was studied in adult male rats. Untreated control rats were autopsied 1, 10, 20, 30 and 40 days following assignment to treatment groups. Sham-castrated controls were autopsied 1, 2 and 3 days after surgery. Complete and hemicastrates were autopsied 1, 2, 3, 10, 20, 30 and 40 days after surgery. Serum levels of both FSH and LH were elevated by 24 h postcastration and the levels of both gonadotropins continued to rise throughout the course of the experiment. Serum levels of LH rose following hemicastration and remained above control values through day 30. Serum FSH levels were not significantly affected by hemicastration. Compensatory testicular hypertrophy was not observed in hemicastrated rats.  相似文献   

7.
The objective was to ascertain fibroblast growth factor-2 (FGF2), epidermal growth factor (EGF), and transforming growth factor-alpha (TGFalpha) mRNA expression and testis morphology during accelerated testicular growth after hemicastration in the neonatal boar. On Day 10 after birth (Day 0), boars were assigned to control (n = 28), no treatment; hemicastrated (n = 28), left testis removed. The right testis in both groups (n = 7) was removed on Days 5, 10, 15, and 20. Expression of mRNA for FGF2, EGF, and TGFalpha was determined by qRT-PCR using TaqMan. Testicular morphology was determined on Day 15. On Day 10, hemicastrated boars had a greater (P = 0.01) testis weight (6.2 +/- 0.8 g; mean +/- SEM) than controls (4.3 +/- 0.4 g) and on Day 15 testis weight in hemicastrated boars (8.8 +/- 0.8 g) was twice (P < 0.01) that of control boars (4.2 +/- 0.3 g). Seminiferous tubule volume was approximately doubled in hemicastrated boars (P < 0.01) and was associated with an increase (P < 0.01) in Sertoli cell number. Interstitial compartment volume was greater (P < 0.01) in hemicastrated boars. Leydig cell numbers were similar (P = 0.14) but volume was greater (P < 0.01) for hemicastrates. There were no differences (P > 0.05) between control and hemicastrated boars in TGFalpha or FGF2 expression on Day 5 or Day 10, and EGF was not detected. It was concluded that upregulation of TGFalpha or FGF2 expression is not a pre-requisite for enhanced testicular growth and increased Sertoli cell proliferation that occurs subsequent to hemicastration in the neonatal boar.  相似文献   

8.
Rat pups were hemicastrated and uptake of [3H] thymidine by Sertoli cells in the remaining testis was compared to that in testes of sham-operated pups at intervals of from 8 h to 21 days after surgery. Labeled thymidine was administered subcutaneously 2 h before sacrifice. Testes were processed for light microscope autoradiography and the percent of Sertoli cell nuclei that had incorporated [3H] thymidine was determined by scoring nuclei in tissue sections as labeled or unlabeled. The percentage of cells labeled was increased in hemicastrates over intact controls by 8 h after surgery and testicular hypertrophy became apparent in hemicastrates by the following day. Labeling of Sertoli cells in hemicastrates remained elevated for 4 days and then returned to normal. When plasma levels of gonadotropins were measured in both groups 4 days after surgery, follicle-stimulating hormone (FSH) was found to be more than twice normal in hemicastrates while luteinizing hormone (LH) was unchanged. The effect of testosterone on the response of Sertoli cells to hemicastration was also examined. In hemicastrates, 2 days of androgen therapy depressed, and an additional 2 days abolished, the proliferative response of the Sertoli cells. Our findings suggest that increased proliferation of Sertoli cells within the remaining testis is involved in the enlargement of the testis that follows hemicastration. They also imply that prevention of compensatory hypertrophy by testosterone involves interference with this response of Sertoli cells in some way. Finally, our data implicate FSH in control of Sertoli cell proliferation in vivo in immature rats.  相似文献   

9.
When rats were unilaterally castrated at 20, 30, and 40 days of age, only those rats hemicastrated at 40 days showed compensatory hypertrophy of the interstitial tissue and Leydig cells when killed 30 days after hemicastration. At the time of death, volume densities of interstitial tissue, Leydig cells, and vascular components were greater in 70-day-old hemicastrated rats than in intact rats of the same age. The total number of Leydig cells per testis in hemicastrated and intact rats was always the same at any age. Estimated Leydig cell volume in 70-day-old rats was twice that in intact rats. By contrast, the testes of 50- and 60-day-old rats at the time of death displayed essentially the same morphological features, regardless of whether animals were hemicastrated. The concentration of plasma testosterone was higher in 50-day-old controls than in hemicastrated rats. Seventy-day-old hemicastrated rats showed higher levels of plasma testosterone than controls. The level of plasma dihydrotestosterone in 60- and 70-day-old hemicastrated rats exceeded that in the controls. A significant increase in follicle-stimulating hormone was noted in 50- and 70-day-old hemicastrated rats compared to normal rats, while levels of luteinizing hormone were basically the same. The increase in Leydig cell volume, interstitial tissue volume, vascular component volume, and plasma testosterone level caused by hemicastration at 40 days of age differed from that at 20 and 30 days of age.  相似文献   

10.
The seasonal changes in testicular weight in the blue fox were associated with considerable variations in plasma concentrations of LH, prolactin, androstenedione and testosterone and in FSH-binding capacity of the testis. An increase in LH secretion and a 5-fold increase in FSH-binding capacity were observed during December and January, as testis weight increased rapidly. LH levels fell during March when testicular weight was maximal. Plasma androgen concentrations reached their peak values in the second half of March (androstenedione: 0.9 +/- 0.1 ng/ml: testosterone: 3.6 +/- 0.6 ng/ml). A small temporary increase in LH was seen in May and June after the breeding season as testicular weight declined rapidly before levels returned to the basal state (0.5-7 ng/ml) that lasted until December. There were clear seasonal variations in the androgenic response of the testis to LH challenge. Plasma prolactin concentrations (2-3 ng/ml) were basal from August until the end of March when levels rose steadily to reach peak values (up to 13 ng/ml) in May and June just before maximum daylength and temperature. The circannual variations in plasma prolactin after castration were indistinguishable from those in intact animals, but LH concentrations were higher than normal for at least 1 year after castration.  相似文献   

11.
The effects of unilateral castration and vasectomy on the weight and microscopic appearance of the contralateral testis and on the blood levels of testosterone, LH and FSH, were studied in German Fleckvieh bulls. Testicular weights were higher in hemicastrated bulls (P < 0.01) and unilaterally vasectomized bulls (P < 0.05) when compared to controls, 377 ± 45g (x ± s, N = 4 and 281 ± 12g, N = 4 vs 226 ± 38g, N = 3, respectively.Testosterone concentrations were higher during the weeks 14 to 22 after surgery in both treated groups. LH levels were not different from controls, but FSH levels increased significantly (P < 0.01) two weeks after hemicastration and unilateral vasectomy.Different factors appear to regulate the LH and the FSH concentrations in bulls. The increase of FSH after hemicastration may indicate a reduced production of inhibin or an inhibin-like substance from the testes, and a similar increase after unilateral vasectomy suggests that this substance may be resorbed distal to the testes.  相似文献   

12.
Ten, bull calves of the Norwegian Red breed were hemicastrated at the age of 1 1 2 -3 months . Ten, normal bull calves of similar age served as controls. No significant differences were found in plasma testosterone levels or in weight between the two groups during the ensuing seven-month test period. Eight, male pigs were hemicastrated at 1-2 months of age. Eight, normal male pigs served as controls. Plasma testosterone, androstenone, and body weight were measured fortnightly in all pigs until the age of 6-7 months. Androstenone in adipose tissue was measured from 4-5 months of age. No significant differences were found between normal and hemicastrated animals in any monthly interval. However, when combining the measurement at 5-6 and 6-7 months of age for plasma testosterone and 5alpha-androstenone and 5alpha-androstenone in fat, the normal pigs had significantly higher values than the hemicastrates (p<0.05). The weight of the single testis from the hemicastrated pigs at slaughter nearly equalled the combined weight of both testes from the controls. Thus, hemicastration did not appear to have any significant effect on the level of testicular steroids in plasma in bulls or growth rate in bulls and boars, but did have a slight effect on testicular steroids in plasma in pigs at 5-7 months of age.  相似文献   

13.
Pituitary and gonadal function during physical exercise in the male rat   总被引:16,自引:0,他引:16  
The effects of training and acute exercise on serum testosterone, luteinizing hormone (LH) and corticosterone levels and on testicular endocrine function in male rats were studied. In the first part of the study, the rats were trained progressively on a treadmill, over 8 weeks. Training did not change the basal levels of serum testosterone, LH and corticosterone, or the testicular concentrations of testosterone and its precursors progesterone and androstenedione. The levels of testicular LH (30.3 +/- 2.6 ng/g wet wt, mean +/- SEM) and lactogen (150 +/- 14 pg/g) receptors were unchanged after training. However, the capacity of testicular interstitial cell suspensions to produce cAMP and testosterone increased by 20-30% during in vitro gonadotropin stimulation. In the second part, the trained and untrained control animals underwent acute exhaustive exercise. Serum testosterone levels decreased by 74 and 42% in trained and untrained rats, respectively (P less than 0.02), and corticosterone rose by 182% in trained and 146% in untrained rats (P less than 0.01), whereas the LH level was unchanged. Testicular levels of testosterone and its precursors decreased, with the exception of unchanged androstenedione, in trained rats; the cAMP concentration was unchanged. In both trained and untrained rats, acute exercise decreased the capacity of interstitial cell suspensions to produce cAMP, whereas there were no consistent effects on testosterone production. Acute exercise had no effect on LH or lactogen receptors in testis tissue. In conclusion, training had no effect on serum or testicular androgen concentrations, but increased Leydig cell capacity to produce testosterone and cAMP. Acute exercise decreased serum and testicular testosterone concentrations without affecting serum LH. A direct inhibitory effect of the increased serum corticosterone level on the hypothalamic-pituitary level and/or testis may be the explanation for this finding.  相似文献   

14.
本研究以睾丸神经分布丰富的成年雄性家猫为实验动物,采用25Hz的强脉冲(50-70V)或弱脉冲(20-25V)刺激其睾丸精索上神经(SSN)和下神经(ISN),并对其左侧睾丸静脉做导管以便测定睾丸睾酮分泌及血流速度等生理参数。结果表明,对SSN进行电刺激,睾丸静脉血流速度在强刺激期间立即下降44.87%,但刺激之后又迅速恢复,而在弱刺激期间虽未发生变化,但刺激之后却显著减少27.25%;睾酮分泌在强刺激期间虽然下降42.01%,但刺激之后又平均增加2.5倍,相反,它在弱刺激期间增加87.33%,并且在刺激之后继续增加,最高时比刺激前平均增加4倍。与SSN不同,对ISN进行电刺激,血流速度虽然在强刺激期间升高12.31%,而刺激之后却呈下降趋势,然而,它在弱刺激期间和刺激之后却都未发生显著变化;睾酮分泌则无论是用强或弱刺激均未出现显著变化。因此,本研究结果表明,神经系统直接参与调节睾丸睾酮的分泌,为进一步深入研究神经与睾酮分泌之间的关系提供了可靠的依据。  相似文献   

15.
The steroidogenic capacity of young male rats of different ages was studied. Two days prior to sacrifice at 5, 10, 15, 20, 25 and 30 days of age, the rats in treatment groups were given intramuscularly either human chorionic gonadotropin (HCG) at 20 I.U. twice daily/rat or luteinizing hormone (LH) antiserum (AS) at 0.25 ml twice daily/rat. Either saline or normal sheep serum (NSS) was given to control rats. The serum and testicular testosterone concentrations in the control rats averaged 0.85 +/- 0.03 ng/ml and 1.35 +/- 0.06 ng/mg testicular protein, respectively. At day-15 the serum and testicular testosterone concentrations in the HCG-treated rats had significantly increased to 9.30 +/- 0.85 ng/ml and 11.92 ng/mg of testicular protein, respectively. At the same age, the HCG-induced higher levels of serum and testicular testosterone concentrations were significantly reduced to 2.80 +/- 0.70 ng/ml and 6.02 +/- 1.00 ng/mg protein by concomitant administration of LH/AS and HCG. Our results suggest that the testosterone production in response to HCG stimulation is age-related. It was also determined that neutralization of circulating gonadotropin in LH/AS-treated rats decreased the sensitivity of Leydig cells to gonadotropin stimulation. This in vivo model should provide an excellent opportunity for the investigation of the testicular function in developing young males.  相似文献   

16.
The dissection of nerves and ganglia anatomically related to the pelvic organs revealed one inferior mesenteric ganglion, two testicular ganglia, two hypogastric nerves, two pelvic ganglia and two pelvic nerves. The histochemical demonstration of catecholamines by a glyoxylic acid fluorescence method revealed a rich sympathetic innervation in the ductus deferens, in the three segments of the prostate and in the convoluted ductuli efferentes. The testis, epididymis and all three pairs of bulbourethral glands presented fluorescent nerve fibers only around blood vessels. Removal of the inferior mesenteric and testicular ganglia, and hypogastric neurectomy with our without ligature and sectioning of testicular arteries, had no effect on the density of the nonvascular fluorescent fibers. Removal of the periprostatic tissue caused complete denervation of the prostate and marked denervation of the ductuli efferentes and ductus deferens. Small ganglia containing fluorescent nerve cell bodies were found close to the capsule of the prostate. The results indicate that short adrenergic neurons are responsible for the sympathetic innervation of the reproductive organs of the male opossum.  相似文献   

17.
The role of beta-endorphin in testicular steroidogenesis is poorly understood. To address this issue, we treated adult hypophysectomized rats intratesticularly with either saline-50% polyvinylpyrrolidone (SAL-PVP) or human beta-endorphin (0.5 microgram/testis; a total of 1 microgram/rat/day) in SAL-PVP for 3 days. Testicular injections were made under ether anesthesia. On Day 3, rats also received injections (s.c.) of either SAL-PVP or 5 micrograms beta-endorphin in SAL-PVP to minimize the dilution of ether in the testis. One hour later, rats were treated (i.p.) with either saline or ovine LH (25 micrograms/rat). One hour after saline or LH injection, blood was obtained via heart puncture for determination of plasma progesterone (P), androstenedione (A-dione), and testosterone (T) levels. The effects of beta-endorphin (50 ng, equivalent to 13.9 pM; or 250 ng, equivalent to 69.6 pM) on P and androgen secretions in vitro were also examined. Intratesticular injections of beta-endorphin significantly (p less than 0.025) decreased the T response to LH treatment, but failed to affect plasma P and A-dione levels. Response of P to LH treatment was increased (p less than 0.005) in medium containing testicular fragments exposed to 250 ng (69.6 pM) beta-endorphin. However, beta-endorphin attenuated LH effects on A-dione and T production in vitro. These studies demonstrate that beta-endorphin inhibits T secretion, possibly because of its effect on the synthesis of T precursors. Thus, testicular beta-endorphin modulates the endocrine function of the testis in adult rats.  相似文献   

18.
Hemicastration of Holstein bulls at 3 months of age resulted in increased (P<0.005) testicular weitht and testis sperm cell content at 330 days after treatment, but did not alter sperm cell concentration in the remaining hypertrophied testis. Radioimmuroassay of blood hormones at 1, 6, 12, and 24 weeks after treatment revealed that unilateral castration did not alter (P>0.1) basal levels or GnRH response profiles of either LH or testosterone compared to intact bulls. Hemicastration caused FSH to be elevated (P<0.01) compared to intact bulls at all sampling periods in both unstimulated and GnRH stimulated bulls. Prolactin varied with season and was greater (P<0.001) in hemicastrated bulls than in intact bulls at 1 and 6 weeks after treatment. Results indicate that unilateral castration at 3 months of age caused testicular hypertrophy of both steroidogenic and gametogenic function and this phenomena may be triggered by increased FSH or prolactin secretion, or both. Further, results indicate different testicular regulation mechanisms exist for pituitary LH and FSH release in bulls.  相似文献   

19.
The "antigonadal" potential of the neurohypophysial hormones, previously demonstrated in vitro, was evaluated in vivo using hypophysectomized male rats. This approach minimizes the likelihood that the in vivo "antigonadal" effect of the neurohypophysial hormones may be due to their ability to attenuate the release of pituitary gonadotropins. Given that the identity of the putative endogenous occupant of testicular pressor-selective neurohypophysial receptors remains uncertain, use was made of a substitute probe, arginine vasotocin (AVT), the utility of which has been demonstrated in vitro. Concurrent in vivo treatment of follicle-stimulating hormone (FSH; 5 micrograms/rat/day)-maintained immature hypophysectomized rats with increasing doses of AVT (0.25-25 microgram/rat/day) produced significant (P less than 0.05) dose-dependent inhibition of the testicular luteinizing hormone/human chorionic gonadotropin (LH/hCG) receptor binding capacity (but not affinity; Kd = 1.8 X 10(-10) M) from 8.8 +/- (standard error; SE) 0.4 ng/testis to a level (3.2 +/- 0.2 ng/testis) lower than that of controls (64% reduction). This AVT-induced decrease in the testicular LH/hCG receptor content of FSH-maintained immature hypophysectomized rats was associated with significant (P less than 0.05) decrements in the hCG- and N6, 2'-O-dibutyryladeosine cyclic 3',5'-monophosphate [( Bu]2cAMP)-stimulated accumulation of 3 alpha-hydroxy-5 alpha-androstan-17-one (androsterone; 52% and 42% inhibition, respectively), with virtual elimination (98% inhibition) of the forskolin-stimulated accumulation of extracellular cAMP by testicular incubates in vitro, as well as with profound suppression of spermatogenesis. Taken together, these observations indicate that the "antigonadal" effect of the neurohypophysial hormones previously demonstrated in vitro, can be fully reproduced in vivo, and that the "antigonadal" activity of the neurohypophysial hormones may be accounted for, in large part, by decreased testicular LH/hCG binding capacity, stimulable adenylate cyclase activity, and cAMP-supported androgen biosynthesis.  相似文献   

20.
In adult mice, direct intratesticular injection of ovine follicle-stimulating hormone (o-FSH-13; AFP 2846-C, from NIAMDD, less than 1% LH contamination) at 10, 100 or 1000 ng significantly elevated concentrations of testosterone (T) within the testis. These effects were rapid, with peak values attained by 15 min, and transient, with return to values comparable to that in the contralateral, saline-injected testis within 90 min. Intratesticular injection of FSH (1 microgram) significantly increased testicular T levels in 15- and 60-day old mice. This contrasted with the effects of intratesticular administration of human chorionic gonadotropin (hCG), which stimulated T production significantly at 30 days of age through adulthood. In adult mice, the equivalent LH to the possible contamination in the FSH preparation (1 ng) had no effect. Intratesticular injection of 10 ng LH produced comparable stimulation to that by 100 ng FSH (approximately 7-fold). Systemic pre-treatment with a charcoal-treated porcine follicular fluid (PFF) extract for 2 days reduced plasma FSH levels [86 +/- 17 (5) vs 700 +/- 8 (6); P less than 0.05], but had no effect on plasma LH. Twenty-four hours after the last treatment, the response to intratesticular injection of hCG (2.5 mIU), FSH (100 ng) or LH (10 ng) was also significantly attenuated in these mice. Intratesticular injection of PFF had no direct effect on testicular T levels. In vitro T production in the presence of hCG, LH or FSH were differentially affected by the concentrations of calcium (Ca2+) or magnesium (Mg2+) in the incubation media. The stimulatory effects of FSH were apparent at significantly lower levels of Ca2+ or Mg2+, than were those of LH or hCG. The results of these studies indicate that FSH is capable of stimulating testicular T production. Furthermore, the responsiveness to FSH is qualitatively different than that to LH/hCG in terms of the age pattern, as well as the dependence on Ca2+ or Mg2+. In addition, plasma FSH levels appear to influence testicular responsiveness to direct exogenous administration of gonadotropins. These studies indicate that FSH stimulation of T production can be differentiated from those of LH, and that these effects of FSH can be observed under physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号