首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial respiration of arsenic and selenium   总被引:21,自引:0,他引:21  
Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram-positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.  相似文献   

2.
A newly discovered arsenate-reducing bacterium, strain OREX-4, differed significantly from strains MIT-13 and SES-3, the previously described arsenate-reducing isolates, which grew on nitrate but not on sulfate. In contrast, strain OREX-4 did not respire nitrate but grew on lactate, with either arsenate or sulfate serving as the electron acceptor, and even preferred arsenate. Both arsenate and sulfate reduction were inhibited by molybdate. Strain OREX-4, a gram-positive bacterium with a hexagonal S-layer on its cell wall, metabolized compounds commonly used by sulfate reducers. Scorodite (FeAsO42· H2O) an arsenate-containing mineral, provided micromolar concentrations of arsenate that supported cell growth. Physiologically and phylogenetically, strain OREX-4 was far-removed from strains MIT-13 and SES-3: strain OREX-4 grew on different electron donors and electron acceptors, and fell within the gram-positive group of the Bacteria, whereas MIT-13 and SES-3 fell together in the ɛ-subdivision of the Proteobacteria. Together, these results suggest that organisms spread among diverse bacterial phyla can use arsenate as a terminal electron acceptor, and that dissimilatory arsenate reduction might occur in the sulfidogenic zone at arsenate concentrations of environmental interest. 16S rRNA sequence analysis indicated that strain OREX-4 is a new species of the genus Desulfotomaculum, and accordingly, the name Desulfotomaculum auripigmentum is proposed. Received: 22 October 1997 / Accepted: 16 June 1997  相似文献   

3.
Iron reduction in marine sulfitic environments may occur via a mechanism involving direct bacterial reduction with the use of hydrogen as an electron donor, direct bacterial reduction involving carbon turnover, or by indirect reduction where sulfide acts to reduce iron. In the presented experiments, the relative importance of direct and indirect mechanisms of iron reduction, and the contribution of these two mechanisms to overall carbon turnover has been evaluated in two marsh environments. Sediments collected from two Northeastern US salt marshes each having different Fe (III) histories were incubated with the addition of reactive iron (as amorphous oxyhydroxide). These sediments were either incubated alone or in conjunction with sodium molybdate. Production of both inorganic and organic pore water constituents and a calculation of net carbon production were used as measures to compare the relative importance of direct bacterial reduction and indirect bacterial reduction. Results indicate that in the environments tested, the majority of the reduced iron found results from indirect reduction mediated by hydrogen sulfide, a result of dissolution and precipitation phenomena, or is a result of direct bacterial reduction using hydrogen as an electron donor. Direct iron reduction plays a minor role in carbon turnover in these environments.  相似文献   

4.
Biogeochemical cycling of iron and sulphur in leaching environments   总被引:2,自引:0,他引:2  
Abstract: Bacterial dissimilatory reduction of iron and sulphur in extremely acidic environments is described. Evidence for reduction at two disused mine sites is presented, within stratified 'acid streamers' growths and in sediments from an acid mine drainage stream. A high proportion (approx. 40%) of mesophilic heterotrophic acidophiles were found to be capable of reducing ferric iron (soluble and insoluble forms) under microaerophilic and anoxic conditions. Mixed cultures of Thiobacillus ferrooxidans and Acidiphilium -like isolate SJH displayed cycling of iron in shake flask and fermenter cultures. Oxido-reduction of iron in mixed cultures was determined by oxygen concentration and availability of organic substrates. Some moderately thermophilic iron-oxidis- ing bacteria were also shown to be capable of reducing ferric iron under conditions of limiting oxygen when grown in glycerol/yeast extract or elemental sulphur media. Cycling of iron was observed in pure cultures of these acidophiles. Sulphate-reducing bacteria isolated from acid streamers could be grown in acidified glycerol/yeast extract media (as low as pH 2.9), but not in media used conventionally for their laboratory culture. An endospore-forming, non-motile rod resembling Desulfotomaculum has been isolated. This bacterium has a wide pH spectrum, and appears to be acid-tolerant rather than acidophilic.  相似文献   

5.
Benzene-amended microcosms prepared with saturated soil or sediment from five hydrocarbon-contaminated sites and one pristine site were monitored for a year and a half to determine the rate of benzene biodegradation under a variety of electron-accepting conditions. Sustainable benzene degradation was observed under specific conditions in microcosms from four of the six sites. Significant differences were observed between sites with respect to lag times before the onset of degradation, rates of degradation, sustainability of the activity, and environmental conditions supporting degradation. Benzene degradation was observed under sulfate-reducing, nitrate-reducing, and iron(III)-reducing conditions, but not under methanogenic conditions. The presence of competing substrates such as toluene, xylenes, and ethylbenzene was found to inhibit anaerobic benzene degradation in microcosms where sulfate or possibly nitrate was the electron acceptor for benzene degradation, but not in microcosms from where iron(III) was the electron acceptor. The presence of organic matter, indicated by a high fraction organic carbon (foc), also appeared to inhibit the biodegradation of benzene; microcosms constructed with soils with the highest foc exhibited the longest lag times before the onset of benzene degradation. The initial extent of hydrocarbon contamination did not appear to correlate with anaerobic benzene-degrading activity.  相似文献   

6.
On electrolysis of NAD+ in aqueous solution at a potential corresponding to the initial one-electron reduction of NAD+ to a free radical, a greenish-yellow color appears which fades when electrolysis is complete. Literature ultraviolet absorption data for the resulting dimer show considerable variation. When the electrolysis is conducted in darkness, the colored product has ?340 of approx. 5700 M?1 · cm?1 and ?259 of approx. 31000 M?1 · cm?1. On ultraviolet and visible illumination, the color disappears, the 340-nm peak decreases and the 259-nm peak increases. On only visible illumination, the color disappears, both peaks increases, the dimer's polarographic oxidation wave decreases and the wave due to 1-substituted nicotinamide reduction increases. The data suggest that the dimer decomposes to NAD+ and 1,4-NADH.  相似文献   

7.
Although most dieters strive to achieve “ideal” body weight, clinical and laboratory evidence clearly supports the value of a modest weight loss goalto attain health and emotional benefit. Weight loss as low as 5% has been shown to reduce or eliminate disorders associated with obesity, though several questions remain partially or completely unanswered regarding the roles of degree of weight loss, method of weight loss, distribution of fat reduction, and other variables. This paper reviews the effect of degree of weight loss on specific disease states and risk factors and discusses the impact of ethnic background at distribution, age, and mode of weight loss on outcome.  相似文献   

8.
Abstract The interaction between nitrate- and dimethyl-sulphoxide (DMSO)-reducing pathways was demonstrated in intact cells of Rhodobacter capsulatus AD2 removed from cultures grown under different conditions. The results provide evidence of competition between the DMSO and nitrate reductases for a common electron pool. Furthermore, strong inhibition was observed of the anaerobic dark DMSO-dependent growth of R. capsulatus by nitrate in the growth medium. This phenomenon is also discussed.  相似文献   

9.
It is widely believed that turnover of nitrogenous (N) compounds (especially proteins) incurs a high respiratory cost. Thus, if protein turnover costs change with temperature, this would influence the dependence of respiration rate on growth temperature. Here, we examined the extent to which protein turnover cost explained differences in N-utilization costs (nitrate uptake/reduction, ammonium assimilation, amino acid and protein syntheses, protein turnover and amino acid export) and in respiration rate with changes in growth temperature. By measurements and literature data, we evaluated each N-utilization cost in Petunia x hybrida petals grown at 20, 25 or 35 degrees C throughout their whole lifespans. Protein turnover cost accounted for 73% of the integrated N-utilization cost on a whole-petal basis at 35 degrees C. The difference in this cost on a dry weight basis between 25 and 35 degrees C accounted for 75% of the difference in N-utilization cost and 45% of the difference in respiratory cost. The cost of nitrate uptake/reduction was high at low growth temperatures. We concluded that respiratory cost in petals was strongly influenced by protein turnover and nitrate uptake/reduction, and on the shoot basis, C investment in biomass was highest at 25 degrees C.  相似文献   

10.
The perchlorate (ClO4)-respiring organism, strain perc1ace, can grow using nitrate (NO3) as a terminal electron acceptor. In resting cell suspensions, NO3 grown cells reduced ClO4, and ClO4 grown cells reduced NO3. Activity assays showed that nitrate reductase (NR) activity was 1.31 μmol min−1 (mg protein)−1 in ClO4 grown cells, and perchlorate reductase (PR) activity was 4.24 μmol min−1 (mg protein)−1 in NO3 grown cells. PR activity was detected within the periplasmic space, with activities as high as 14 μmol min−1 (mg protein)−1. The NR had a pH optimum of 9.0 while the PR had an optimum of 8.0. This study suggests that separate terminal reductases are present in strain perclace to reduce NO3 and ClO4.  相似文献   

11.
A new, phylogenetically distinct, dissimilatory, Fe(III)-reducing bacterium was isolated from surface sediment of a hydrocarbon-contaminated ditch. The isolate, designated strain PAL-1, was an obligately anaerobic, non-fermentative, motile, gram-negative vibrio. PAL-1 grew in a defined medium with acetate as electron donor and ferric pyrophosphate, ferric oxyhydroxide, ferric citrate, Co(III)-EDTA, or elemental sulfur as sole electron acceptor. PAL-1 also used proline, hydrogen, lactate, propionate, succinate, fumarate, pyruvate, or yeast extract as electron donors for Fe(III) reduction. It is the first bacterium known to couple the oxidation of an amino acid to Fe(III) reduction. PAl-1 did not reduce oxygen, Mn(IV), U(VI), Cr(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PAL-1 exhibited dithionite-reduced minus air-oxidized difference spectra that were characteristic of c-type cytochromes. Analysis of the 16S rRNA gene sequence of PAL-1 showed that the strain is not related to any of the described metal-reducing bacteria in the Proteobacteria and, together with Flexistipes sinusarabici, forms a separate line of descent within the Bacteria. Phenotypically and phylogenetically, strain PAl-1 differs from all other described bacteria, and represents the type strain of a new genus and species, Geovibrio ferrireducens. Received: 26 September 1995 / Accepted: 28 February 1996  相似文献   

12.
Drag reduction by skin mucus was measured from Gulf of Eilat fish. Activity of burst swimmers was greater than manoeuvre swimming fish. Large fish from the same species had higher mucus drag reducing activity than smaller specimens.  相似文献   

13.
14.
羰基不对称还原作为合成手性醇的重要方法,已成为近年来有机合成的研究热点。与传统化学法相比,利用还原酶催化前手性羰基化合物的不对称还原具有显著优势。介绍了还原酶的来源与形式,对完整细胞还原酶与游离还原酶在手性药物不对称合成中的应用进行了简要综述。  相似文献   

15.
Amino acid fermentation and hydrogen transfer in mixed cultures   总被引:2,自引:0,他引:2  
Abstract The degradation of the following amino acids was investigated in mixed cultures obtained from a waste water purification plant: aspartate, glutamate, serine, alanine, valine and leucine. Inhibition of sulfate-reducing bacteria in these mixed cultures by molybdate was found to inhibit amino acid degradation. The degradation of serine, alanine, valine and leucine was accelerated considerably by active sulfate reduction. The fermentation of aspartate and glutamate was not stimulated by the presence of sulfate-reducing bacteria. The existence of species which are able to ferment valine and leucine by coupling their oxidation to the reduction of exogenous acetate to butyrate was demonstrated.  相似文献   

16.
Synopsis The threespine stickleback, Gasterosteus aculeatus, is an extensively armored fish inhabiting both marine and fresh waters across its holarctic distribution. Marine fish nearly always possess a full complement of bony lateral plates running from just behind the head to the tail, and a robust pelvic girdle complex. These armor features appear to constrain lateral and ventral abdominal distention, and therefore clutch volume. Freshwater populations in many areas exhibit variable reduction in lateral plate number, and in some regions the pelvic girdle is also reduced or lost. Freshwater populations also vary in the degree of abdominal distention exhibited by gravid females. We tested whether reduction in armoring might be correlated with increased clutch volume using five populations from the Cook Inlet area of Alaska. The hypothesis that populations having reduced pelvic girdle complexes would have greater size-adjusted clutch volumes was not supported. In fact, our two full-pelvic populations as a group had larger volumes. Similarly, size-adjusted clutch volumes were not related to pelvic phenotype within either of our two pelvic-reduced populations, nor to lateral plate morph within a fifth population. Other factors that may explain the interpopulation differences in clutch volume in threespine stickleback include body shape, food quantity and quality, intensity of predation, and even behavior. Except for a preliminary analysis of body shape, these possibilities remain unexplored. The concept of phenotypic integration suggests that these factors should be analyzed as a suite rather than individually.  相似文献   

17.
Seasonal variations in anaerobic respiration pathways were investigated at three saltmarsh sites using chemical data, sulfate reduction rate measurements, enumerations of culturable populations of anaerobic iron-reducing bacteria (FeRB), and quantification of in situ 16S rRNA hybridization signals targeted for sulfate-reducing bacteria (SRB). Bacterial sulfate reduction in the sediments followed seasonal changes in temperature and primary production of the saltmarsh, with activity levels lowest in winter and highest in summer. In contrast, a dramatic decrease in the FeRB population size was observed during summer at all sites. The collapse of FeRB populations during summer was ascribed to high rates of sulfide production by SRB, resulting in abiotic reduction of bioavailable Fe(III) (hydr)oxides. To test this hypothesis, sediment slurry incubations at 10, 20 and 30 °C were carried out. Increases in temperature and labile organic carbon availability (acetate or lactate additions) increased rates of sulfate reduction while decreasing the abundance of culturable anaerobic FeRB. These trends were not reversed by the addition of amorphous Fe(III) (hydr)oxides to the slurries. However, when sulfate reduction was inhibited by molybdate, no decline in FeRB growth was observed with increasing temperature. Addition of dissolved sulfide adversely impacted propagation of FeRB whether molybdate was added or not. Both field and laboratory data therefore support a sulfide-mediated limitation of microbial iron respiration by SRB. When total sediment respiration rates reach their highest levels during summer, SRB force a decline in the FeRB populations. As sulfate reduction activity slows down after the summer, the FeRB are able to recover.  相似文献   

18.
Two strains of sulfate-reducing bacteria (J.5.4.2-L4.2.8T and J.3.6.1-H7) were isolated from a pyrite-forming enrichment culture and were compared phylogenetically and physiologically to the closest related type strain Desulfovibrio sulfodismutans DSM 3696T. The isolated strains were vibrio-shaped, motile rods that stained Gram-negative. Growth occurred from 15 to 37 °C and within a pH range of 6.5–8.5. Both strains used sulfate, thiosulfate, sulfite, and dimethyl sulfoxide (DMSO) as electron acceptor when grown with lactate. Lactate was incompletely oxidized to acetate. Formate and H2 were used as electron donor in the presence of acetate. Dismutation of thiosulfate and pyrosulfite was observed. The two new isolates differed from D. sulfodismutans by the utilization of DMSO as electron acceptor, 82% genome-wide average nucleotide identity (ANI) and 32% digital DNA-DNA hybridization (dDDH), thus representing a novel species. The type strain of the type species Desulfovibrio desulfuricans Essex6T revealed merely 88% 16S rRNA gene identity and 49% genome-wide average amino acid identity (AAI) to the new isolates as well as to D. sulfodismutans. Furthermore, the dominance of menaquinone MK-7 over MK-6 and the dominance of ai-C15:0 fatty acids were observed not only in the two new isolated strains but also in D. sulfodismutans. Therefore, the definition of a new genus is indicated for which the name Desulfolutivibrio is proposed. We propose for strains J.5.4.2-L4.2.8T and J.3.6.1-H7 the name Desulfolutivibrio sulfoxidireducens gen. nov. sp. nov. with strain J.5.4.2-L4.2.8T defined as type strain. In addition, we propose the reclassification of Desulfovibrio sulfodismutans as Desulfolutivibrio sulfodismutans comb. nov.  相似文献   

19.
Aim:  Characterization of an anaerobic thermophilic bacterium and subcellular localization of its Cr(VI)-reducing activity for potential bioremediation applications.
Methods and Results:  16S rRNA gene sequence-based analyses of bacterial strains isolated from sediment samples of a Bakreshwar (India) hot spring, enriched anaerobically in iron-reducing medium, found them to be 86–96% similar to reported Thermoanaerobacter strains. The most efficient iron reducer among these, BSB-33, could also reduce Cr(VI) at an optimum temperature of 60°C and pH 6·5. Filtered culture medium could reduce Cr(VI) but not Fe(III). Cell-free extracts reduced Cr(VI) inefficiently under aerobic conditions but efficiently anaerobically. Fractionation of the cell-free extracts showed that chromium reduction activity was present in both the cytoplasm and membrane.
Conclusions:  BSB-33 reduced Fe(III) and Cr(VI) anaerobically at 60°C optimally. After fractionation, the reducing activity of Cr(VI) was found in both cytoplasmic and membrane fractions.
Significance and Impact of the Study:  To the best of our knowledge, this is the first systematic study of anaerobic Cr(VI) reduction by a gram-positive thermophilic micro-organism and, in contrast to our results, none of the earlier reports has mentioned Cr(VI)-reducing activity to be present both in the cytoplasm and membrane of an organism. The strain may offer itself as a potential candidate for bioremediation.  相似文献   

20.
手性醇是许多手性药物合成的关键手性砌块,利用微生物细胞催化相应前手性羰基化合物不对称还原,是合成手性醇的重要方法之一。但应用野生微生物催化时,反应的时空产率、立体选择性较低。详细介绍了利用微生物重组技术以促进前手性羰基化合物不对称还原反应合成手性醇的国内外研究进展。从酶的种类、表达系统以及辅酶再生系统3个方面对重组细胞催化反应体系的构建进行了概述。同时按照反应底物的类型,对重组微生物在催化不同类型羰基化合物不对称还原合成手性醇中的应用分别进行了归纳和介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号