首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In silico analysis showed that the differentially expressed type 3 oil palm metallothionein-like genes MT3-A and MT3-B share at least 11 common putative promoter regulatory elements. The identified motifs include W-boxes, TATCCA element, binding element for cytokinin response regulators and pollen-specific elements. A high degree of conservation was observed in their genomic organisation where the coding regions are divided at two identical positions in both genes by two AT-rich introns. Promoter activity of the MT3-B gene was analysed using a transient assay by bombarding oil palm tissue slices with a β-glucuronidase (GUS) gene construct and a stable reporter assay by analysing GUS expression in transformed Arabidopsis thaliana plants. Transient expression analysis revealed MT3-B promoter activity in oil palm root tissues but not in fruit mesocarp at 12 weeks after anthesis and spear leaves. The T3 homozygous transgenic Arabidopsis plants, harbouring the MT3-B promoter/GUS construct, showed reporter activity in cotyledons and mature leaves with lower expression levels in root tissues. The expression levels in the roots of the T3 homozygous transgenic plants increased five- and 2.5-folds when treated with 80 μM of Zn2+ and Fe2+, respectively. Altogether, these results indicate that the MT3-A and MT3-B promoter activities may be regulated by a variety of abiotic factors and MT3-B promoter may potentially be manipulated for use in plant genetic engineering for induced synthesis of gene product.  相似文献   

2.
3.
The 1,053-bp promoter of the oil palm metallothionein gene (so-called MSP1) and its 5′ deletions were fused to the GUS reporter gene, and analysed in transiently transformed oil palm tissues. The full length promoter showed sevenfold higher activity in the mesocarp than in leaves and 1.5-fold more activity than the CaMV35S promoter in the mesocarp. The 1,053-bp region containing the 5′ untranslated region (UTR) gave the highest activity in the mesocarp, while the 148-bp region was required for minimal promoter activity. Two positive regulatory regions were identified at nucleotides (nt) −953 to −619 and −420 to −256 regions. Fine-tune deletion of the −619 to −420 nt region led to the identification of a 21-bp negative regulatory sequence in the −598 to −577 nt region, which is involved in mesocarp-specific expression. Gel mobility shift assay revealed a strong interaction of the leaf nuclear extract with the 21-bp region. An AGTTAGG core-sequence within this region was identified as a novel negative regulatory element controlling fruit-specificity of the MSP1 promoter. Abscisic acid (ABA) and copper (Cu2+) induced the activity of the promoter and its 5′ deletions more effectively than methyl jasmonate (MeJa) and ethylene. In the mesocarp, the full length promoter showed stronger inducibility in response to ABA and Cu2+ than its 5′ deletions, while in leaves, the −420 nt fragment was the most inducible by ABA and Cu2+. These results suggest that the MSP1 promoter and its regulatory regions are potentially useful for engineering fruit-specific and inducible gene expression in oil palm.  相似文献   

4.
5.
One of the targets in oil palm genetic engineering programme is the production of polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-valerate (PHBV) in the oil palm leaf tissues. Production of PHB requires the use of phbA (β-ketothiolase type A), phbB (acetoacetyl-CoA reductase) and phbC (PHB synthase) genes of Ralstonia eutropha, whereas bktB (β-ketothiolase type B), phbB, phbC genes of R. eutropha and tdcB (threonine dehydratase) gene of Escherichia coli were used for PHBV production. Each of these genes was fused with a transit peptide (Tp) of oil palm acyl-carrier-protein (ACP) gene, driven by an oil palm leaf-specific promoter (LSP1) to genetically engineer the PHB/PHBV pathway to the plastids of the leaf tissues. In total, four transformation vectors, designated pLSP15 (PHB) and pLSP20 (PHBV), and pLSP13 (PHB) and pLSP23 (PHBV), were constructed for transformation in Arabidopsis thaliana and oil palm, respectively. The phosphinothricin acetyltransferase gene (bar) driven by CaMV35S promoter in pLSP15 and pLSP20, and ubiquitin promoter in pLSP13 and pLSP23 were used as the plant selectable markers. Matrix attachment region of tobacco (RB7MAR) was also included in the vectors to stabilize the transgene expression and to minimize silencing due to positional effect. Restriction digestion, PCR amplification and/or sequencing were carried out to ensure sequence integrity and orientation.  相似文献   

6.
7.
Metallothioneins (MTs) are cysteine-rich metal-binding proteins that are involved in cell growth regulation, transportation of metal ions and detoxification of heavy metals. A mesocarp-specific metallothionein-like gene (MT3-A) promoter was isolated from the oil palm (Elaeis guineensis Jacq). A vector construct containing the MT3-A promoter fused to the β-glucuronidase (GUS) gene in the pCAMBIA 1304 vector was produced and used in Agrobacterium-mediated transformation of tomato. Histochemical GUS assay of different tissues of transgenic tomato showed that the MT3-A promoter only drove GUS expression in the reproductive tissues and organs, including the anther, fruit and seed coat. Competitive RT-PCR and GUS fluorometric assay showed changes in the level of GUS mRNA and enzyme activity in the transgenic tomato (T0). No GUS mRNA was found in roots and leaves of transgenic tomato. In contrast, the leaves of transgenic tomato seedlings (T1) produced the highest GUS activity when treated with 150 μM Cu2+ compared to the control (without Cu2+). However, Zn2+ and Fe2+ treatments did not show GUS expression in the leaves of the transgenic tomato seedlings. Interestingly, the results showed a breaking-off tissue-specific activity of the oil palm MT3-A promoter in T1 seedlings of tomato when subjected to Cu2+ ions.  相似文献   

8.
We describe a newRenilla reniformis luciferase reporter gene,RiLUC, which was designed to allow detection of luciferase activity in studies involvingAgrobacterium-based transient expression studies. TheRLUC gene was altered to contain a modified intron from the castor bean catalase gene while maintaining consensus eukaryotic splicing sites recognized by the plant spliceosome.RLUC andRiLUC reporter genes were fused to the synthetic plant SUPER promoter. Luciferase activity within agrobacteria containing the SUPER-RLUC construct increased during growth in culture. In contrast, agrobacteria harboring the SUPER-RiLUC gene fusion showed no detectable luciferase activity. Agrobacteria containing these gene fusions were cotransformed with a compatible normalization plasmid containing a cauliflower mosaic virus 35S promoter (CaMV) joined to the firefly luciferase coding region (FiLUC) and infused into tobacco leaf tissues through stomatal openings. The kinetics of luciferase production from theRLUC orRiLUC reporters were consistent, with expression of theRiLUC gene being limited to transiently transformed plant cells.RiLUC activity from the reporter gene fusions was measured transiently and within stably transformed tobacco leaf tissues. Analysis of stably transformed tobacco plants harboring either reporter gene fusion showed that the intron altered neither the levels of luciferase activity nor tissue-specific expression patterns driven by the SUPER promoter. These results demonstrate that theRiLUC reporter gene can be used to monitor luciferase expression in transient and stable transformation experiments without interference from contaminating agrobacteria.  相似文献   

9.
10.
11.
12.
Using NADPH-dependent acetoacetyl-CoA reductase gene (phbB) and poly-β-hydroxybutyrate (PHB) synthase gene (phbC) cloned from Alcaligenes eutrophus H16 and expression vector pKK223-3, the authors constructed an E. coli expression vector pKCB containing independent phbB and phbC operators, respectively, and transfered it into E. coli JM109. The microscopy and GC analysis indicated that E. coli JM109 (containing pKCB) induced by IPTG could synthesize poly-β- hydroxybutyrate (PHB). By DNA processing, three tuber-specific plant expression vectors, pP- SAGB (containing phbB), pBIBGC ( containing phbC) and pPSAGCB ( containing both phbB and phbC), were successfully constructed. In 5 transformed potato cuhivars, the authors screened 20 positive lines.  相似文献   

13.
14.
二次转化获得整合phbA、phbB、phbC基因的转基因烟草(英文)   总被引:7,自引:0,他引:7  
将携有导肽序列的phbB(编码乙酰乙酰CoA还原酶 )和phbC(编码PHB合酶 )连入pBIB_HYG得到组成型表达载体pZCB ,用冻融法转入根癌土壤杆菌 (Agrobacteriumtumefaciens (SmithetTownsend)Conn)并由其介导转化已整合且表达phbA(编码 3_酮硫裂解酶 )基因并具有卡那霉素抗性的转基因烟草 (NicotianatabacumL .)。通过二次转化可避开传统杂交育种 ,在 5个月内获得整合PHB合成所需 3个基因的转基因烟草。所获转基因植株表型正常 ,经PCR、PCR_Southern、RT_PCR_DNA杂交检测确定有 5 0株烟草稳定整合phbB、phbC基因 ,其中 6 .6 7%的植株可在转录水平表达双基因  相似文献   

15.
NADPH-dependent acetoacetyl-CoA reductase gene (phbB) and poly-β-hydroxybu-tyrate (PHB) synthase gene (phbC) for biosynthesis of PHB were amplified and cloned from chromosomal DNA of Alcaligenes eutrophus H16 using PCR. The restriction maps and sequencing results show that both phbB and phbC have been cloned. It was found that the two genes cloned were highly homologous in DNA sequences to those being reported abroad. By DNA processing, the authors have constructed three tuber-specific plant expression vectors: pPSAGB (containing phbB), pBIBGC (containing phbC) and pPSAGCB (containing both phbB and phbC).  相似文献   

16.
17.
18.
The organisation of two invertase genes (invGE and invGF) linked in direct tandem repeat within the potato genome is detailed. The genes exhibit a similar intron/exon structure which differs from previously described plant invertase genes; while intron locations are conserved between the genes, minor differences in exon length are seen. Both genes encode enzymes with putative extracellular location. Biochemical analysis of gene expression showed expression in floral tissues for both genes, with expression of the upstream gene (invGE) also detected in leaf tissue. Promoter sequences from both genes have been fused to the -glucuronidase (GUS) reporter gene (uidA) and transformed into potato. One promoter-GUS reporter construct was also transformed into tobacco. Histochemical analysis of transgenic lines defined specific expression from the downstream (invGF) promoter in potato and tobacco pollen, with expression first detected in the late uninucleate stage of tobacco microspore development. The invGE promoter determined expression in pollen and other floral tissues, but also at lateral nodes in stem, root and tuber. An association of invertase expression with generative tissue, both in vegetative and sexual modes of growth, is indicated.  相似文献   

19.
20.
Previous studies have implicated the DE-1 (-111/-106) and alpha A-CRYBP1 (-66/-57) sites for activity of the mouse alpha A-crystallin promoter in transiently transfected lens cells. Here we have used the bacterial chloramphenicol acetyltransferase (CAT) reporter gene to test the functional importance of the putative DE-1 and alpha A-CRYBP1 regulatory elements by site-specific and deletion mutagenesis in stably transformed alpha TN4-1 lens cells and in transgenic mice. FVB/N and C57BL/6 x SJL F2 hybrid transgenic mice were assayed for CAT activity in the lens, heart, lung, kidney, spleen, liver, cerebrum, and muscle. F0, F1, and F2 mice from multiple lines carrying single mutations of the DE-1 or alpha A-CRYBP1 sites showed high levels of CAT activity in the lens, but not in any of the non-lens tissues. By contrast, despite activity of the wild-type promoter, none of the mutant promoter/CAT constructs were active in the transiently transfected and stably transformed lens cells. The mice carrying transgenes with either site-specific mutations in both the DE-1 and alpha A-CRYBP1 sites or a deletion of the entire DE-1 and part of the alpha A-CRYBP1 site (-60/+46) fused to the CAT gene did not exhibit CAT activity above background in any of the tissues examined, including the lens. Our results thus indicate that the DE-1 and alpha A-CRYBP1 sites are functionally redundant in transgenic mice. Moreover, the present data coupled with previous transfection and transgenic mouse experiments suggest that this functional redundancy is confined to lens expression within the mouse and is not evident in transiently transfected and stably transformed lens cells, making the cultured lens cells sensitive indicators of functional elements of crystallin genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号