首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calreticulin is an endoplasmic reticulum Ca(2+) binding chaperone that has multiple functions inside and outside of the endoplasmic reticulum. It is involved in the quality control of newly synthesized proteins and glycoproteins, interacting with various other endoplasmic reticulum chaperones, specifically calnexin and ER protein of 57-kDa in the calreticulin/calnexin cycle. Calreticulin also plays a crucial role in regulating intracellular Ca(2+) homeostasis, associating calreticulin with a wide variety of signaling processes, such as cardiogenesis, adipocyte differentiation and cellular stress responses. The role of calreticulin outside of the endoplasmic reticulum is also extensive, including functions in wound healing and immunity. Therefore, calreticulin has important implications in health and disease. Signaling facts.  相似文献   

2.
Calcium (Ca2+) is a universal signalling molecule involved in many aspects of cellular function. The majority of intracellular Ca2+ is stored in the endoplasmic reticulum and once Ca2+ is released from the endoplasmic reticulum, specific plasma membrane Ca2+ channels are activated, resulting in increased intracellular Ca2+. In the lumen of the endoplasmic reticulum, Ca2+ is buffered by Ca2+ binding chaperones such as calreticulin. Calreticulin-deficiency is lethal in utero due to impaired cardiac development and in the absence of calreticulin, Ca2+ storage capacity within the endoplasmic reticulum and inositol 1,4,5-trisphosphate (InsP3) receptor mediated Ca2+ release from the endoplasmic reticulum are compromised. Over-expression of constitutively active calcineurin in the heart rescues calreticulin-deficient mice from embryonic lethality. This observation indicates that calreticulin is a key upstream regulator of calcineurin in Ca2+-signalling pathways and highlights the importance of the endoplasmic reticulum and endoplasmic reticulum-dependent Ca2+ homeostasis for cellular commitment and tissue development during organogenesis. Furthermore, Ca2+ handling by the endoplasmic reticulum has profound effects on cell sensitivity to apoptosis. Signalling between calreticulin in the lumen of the endoplasmic reticulum and calcineurin in the cytoplasm may play a role in the modulation of cell sensitivity to apoptosis and the regulation of Ca2+-dependent apoptotic pathways.  相似文献   

3.
Calreticulin in cardiac development and pathology   总被引:6,自引:0,他引:6  
Calreticulin is a Ca(2+) binding/storage chaperone resident in the lumen of endoplasmic reticulum (ER). The protein is an important component of the calreticulin/calnexin cycle and the quality control pathways in the ER. In mice, calreticulin deficiency is lethal due to impaired cardiac development. This is not surprising because the protein is expressed at high level at early stages of cardiac development. Overexpression of the protein in developing and postnatal heart leads to bradycardia, complete heart block and sudden death. Recent studies on calreticulin-deficient and transgenic mice revealed that the protein is a key upstream regulator of calcineurin-dependent pathways during cardiac development. Calreticulin and ER may play important role in cardiac development and postnatal pathologies.  相似文献   

4.
Endoplasmic reticulum quality control and apoptosis   总被引:7,自引:0,他引:7  
  相似文献   

5.
Calnexin and calreticulin are membrane-bound and soluble chaperones, respectively, of the endoplasmic reticulum (ER) which interact transiently with a broad spectrum of newly synthesized glycoproteins. In addition to sharing substantial sequence identity, both calnexin and calreticulin bind to monoglucosylated oligosaccharides of the form Glc(1)Man(5-9)GlcNAc(2), interact with the thiol oxidoreductase, ERp57, and are capable of acting as chaperones in vitro to suppress the aggregation of non-native proteins. To understand how these diverse functions are coordinated, we have localized the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. Recent structural studies suggest that both proteins consist of a globular domain and an extended arm domain comprised of two sequence motifs repeated in tandem. Our results indicate that the primary lectin site of calnexin and calreticulin resides within the globular domain, but the results also point to a much weaker secondary site within the arm domain which lacks specificity for monoglucosylated oligosaccharides. For both proteins, a site of interaction with ERp57 is centered on the arm domain, which retains approximately 50% of binding compared with full-length controls. This site is in addition to a Zn(2+)-dependent site located within the globular domain of both proteins. Finally, calnexin and calreticulin suppress the aggregation of unfolded proteins via a polypeptide binding site located within their globular domains but require the arm domain for full chaperone function. These findings are integrated into a model that describes the interaction of glycoprotein folding intermediates with calnexin and calreticulin.  相似文献   

6.
The hepatitis C virus (HCV) genome encodes two envelope glycoproteins (E1 and E2) which interact noncovalently to form a heterodimer (E1-E2). During the folding and assembly of HCV glycoproteins, a large portion of these proteins are trapped in aggregates, reducing the efficiency of native E1-E2 complex assembly. To better understand this phenomenon and to try to increase the efficiency of HCV glycoprotein folding, endoplasmic reticulum chaperones potentially interacting with these proteins were studied. Calnexin, calreticulin, and BiP were shown to interact with E1 and E2, whereas no interaction was detected between GRP94 and HCV glycoproteins. The association of HCV glycoproteins with calnexin and calreticulin was faster than with BiP, and the kinetics of interaction with calnexin and calreticulin were very similar. However, calreticulin and BiP interacted preferentially with aggregates whereas calnexin preferentially associated with monomeric forms of HCV glycoproteins or noncovalent complexes. Tunicamycin treatment inhibited the binding of HCV glycoproteins to calnexin and calreticulin, indicating the importance of N-linked oligosaccharides for these interactions. The effect of the co-overexpression of each chaperone on the folding of HCV glycoproteins was also analyzed. However, the levels of native E1-E2 complexes were not increased. Together, our data suggest that calnexin plays a role in the productive folding of HCV glycoproteins whereas calreticulin and BiP are probably involved in a nonproductive pathway of folding.  相似文献   

7.
Calreticulin is a Ca2+ binding/storage chaperone resident protein of the endoplasmic reticulum. This protein plays a key role in the calreticulin/calnexin cycle and the quality control pathways in the endoplasmic reticulum. Calreticulin deficiency is lethal due to impaired cardiac development. However, over-expression of the protein in developing and postnatal heart leads to bradycardia, complete heart block and sudden death. Ultrastructural evidence indicates that the deficiency associated with the absence of calreticulin in the heart may be due to a defect in the development of the contractile apparatus and/or a defect in development of the conductive system as well as a metabolic abnormality. Collectively, we postulate that calreticulin and endoplasmic reticulum plays an important role in cardiac development and postnatal pathologies.  相似文献   

8.
Szperl M  Opas M 《Postepy biochemii》2005,51(4):382-386
The endoplasmic reticulum (ER) plays a vital role in many cellular processes, including Ca2+ storage and release. Calreticulin is a Ca2+-binding chaperon residing in ER. The protein is a key component of the quality control pathways in ER. In the ER lumen, calreticulin performs two major functions, works as a chaperon and regulates Ca2+ homeostasis. In cardiac muscle, calreticulin plays an important role in cardiac development and pathology.  相似文献   

9.
It is now well established that calreticulin is a high capacity Ca(2+)-binding protein which is a major Ca2+ storage protein of the lumen of endoplasmic reticulum membranes in a wide variety of tissues with the exception of skeletal and cardiac muscles. However, in nervous tissue, confusion exists regarding the nature of the intracellular Ca2+ stores, as the organelle responsible for Ca2+ storage has been identified as the endoplasmic reticulum by some investigators and as the specialized organelle, calciosome by others. Calreticulin, calsequestrin, and calsequestrin-like proteins have all been, on different occasions, reported to be present in calciosomes. Cerebral and cerebellar tissues, moreover, have been shown to contain somewhat different systems of Ca(2+)-buffering proteins. In the present paper we discuss evidence that the Ca2+ storage systems of the retina may prove to be more complex than those of other neuronal tissues. Biochemical and immunocytochemical evidence indicates the presence of either an isoform of calreticulin or another protein that is antigenically similar to calreticulin, but of slightly higher molecular weight, in the endoplasmic reticulum of both neurons and Müller glia from rabbit neural retina. However, as retinal neurons express Purkinje cell markers, one may expect to observe the presence of calsequestrin in these cells as well. Secondly, antibodies against the onchocercal RAL-1 antigen recognize a protein sharing 62-65% amino acid sequence identity with calreticulin. The anti-RAL-1 antibodies show specificity for the retina. Whether or not the RAL-1 antigen is an active part of the Ca2+ storage systems of the retina remains to be verified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Calreticulin is a ubiquitous endoplasmic reticulum Ca2+ binding chaperone. The protein has been implicated in a variety of diverse functions. Calreticulin is a lectin-like chaperone and, together with calnexin, it plays an important role in quality control during protein synthesis, folding, and posttranslational modification. Calreticulin binds Ca2+ and affects cellular Ca2+ homeostasis. The protein increases the Ca2+ storage capacity of the endoplasmic reticulum and modulates the function of endoplasmic reticulum Ca2+-ATPase. Calreticulin also plays a role in the control of cell adhesion and steroid-sensitive gene expression. Recently, the protein has been identified and characterized in higher plants but its precise role in plant cells awaits further investigation.  相似文献   

11.
Calreticulin and calnexin are Ca2+-binding proteins with chaperone activity in the endoplasmic reticulum. These proteins have been eliminated by gene replacement in Dictyostelium, the only microorganism known to harbor both proteins; family members in Dictyostelium are located at the base of phylogenetic trees. A dramatic decline in the rate of phagocytosis was observed in double mutants lacking calreticulin and calnexin, whereas only mild changes occurred in single mutants. Dictyostelium cells are professional phagocytes, capable of internalizing particles by a sequence of activities: adhesion of the particle to the cell surface, actin-dependent outgrowth of a phagocytic cup, and separation of the phagosome from the plasma membrane. In the double-null mutants, particles still adhered to the cell surface, but the outgrowth of phagocytic cups was compromised. Green fluorescent protein-tagged calreticulin and calnexin, expressed in wild-type cells, revealed a direct link of the endoplasmic reticulum to the phagocytic cup enclosing a particle, such that the Ca2+ storage capacity of calreticulin and calnexin might directly modulate activities of the actin system during particle uptake.  相似文献   

12.
Calreticulin and calnexin are homologous lectins that serve as molecular chaperones for glycoproteins in the endoplasmic reticulum of eukaryotic cells. Here we show that calreticulin depletion specifically accelerates the maturation of cellular and viral glycoproteins with a modest decrease in folding efficiency. Calnexin depletion prevents proper maturation of some proteins such as influenza hemagglutinin but does not interfere appreciably with the maturation of several others. A dramatic loss of stringency in the ER quality control with transport at the cell surface of misfolded glycoprotein conformers is only observed when substrate access to both calreticulin and calnexin is prevented. Although not fully interchangeable during assistance of glycoprotein folding, calreticulin and calnexin may work, independently, as efficient and crucial factors for retention in the ER of nonnative polypeptides.  相似文献   

13.
The endoplasmic reticulum: a multifunctional signaling organelle   总被引:25,自引:0,他引:25  
Berridge MJ 《Cell calcium》2002,32(5-6):235-249
  相似文献   

14.
The soluble, calcium-binding protein calreticulin shares high sequence homology with calnexin, a transmembrane chaperone of glycoprotein folding. Our experiments demonstrated that calreticulin, like calnexin, associated transiently with numerous newly synthesized proteins in the endoplasmic reticulum. The population of proteins that bound to calreticulin was partially overlapping with those that bound to calnexin. Hemagglutinin (HA) of influenza virus was shown to associate with both calreticulin and calnexin. Using HA as a model substrate, it was found that both calreticulin- and calnexin-bound HA corresponded primarily to incompletely disulfide-bonded folding intermediates and conformationally trapped forms. Binding of all substrates was oligosaccharide-dependent and required the trimming of glucose residues from asparagine-linked core glycans by glucosidases I and II. In vitro, alpha-mannosidase digestion of calreticulin-bound HA indicated that calreticulin was specific for monoglucosylated glycans. Thus, calreticulin appeared to be a lectin with similar oligosaccharide specificity as its membrane-bound homologue, calnexin. Both are therefore likely to play an important role in glycoprotein maturation and quality control in the endoplasmic reticulum.  相似文献   

15.
Calreticulin is a Ca(2+)-binding molecular chaperone of the lumen of the endoplasmic reticulum. Calreticulin has been shown to be essential for cardiac and neural development in mice, but the mechanism by which it functions in cell differentiation is not fully understood. To examine the role of calreticulin in cardiac differentiation, the calreticulin gene was introduced into rat cardiomyoblast H9c2 cells, and the effect of calreticulin overexpression on cardiac differentiation was examined. Upon culture in a differentiation medium containing fetal calf serum (1%) and retinoic acid (10 nm), cells transfected with the calreticulin gene were highly susceptible to apoptosis compared with controls. In the gene-transfected cells, protein kinase B/Akt signaling was significantly suppressed during differentiation. Furthermore, protein phosphatase 2A, a Ser/Thr protein phosphatase, was significantly up-regulated, implying suppression of Akt signaling due to dephosphorylation of Akt by the up-regulated protein phosphatase 2A via regulation of Ca(2+) homeostasis. Thus, overexpression of calreticulin promotes differentiation-dependent apoptosis in H9c2 cells by suppressing the Akt signaling pathway. These findings indicate a novel mechanism by which cytoplasmic Akt signaling is modulated to cause apoptosis by a resident protein of the endoplasmic reticulum, calreticulin.  相似文献   

16.
Calreticulin is a 60-kDa Ca(2+)-binding protein of the endo(sarco)plasmic reticulum membranes of a variety of cellular systems. The protein binds approximately 25 mol of Ca2+ with low affinity and approximately 1 mol of Ca2+ with high affinity and is believed to be a site for Ca2+ binding/storage in the lumen of the endo(sarco)plasmic reticulum. In the present study, we describe purification procedures for the isolation of recombinant and native calreticulin. Recombinant calreticulin was expressed in Escherichia coli, using the glutathione S-transferase fusion protein system, and was purified to homogeneity on glutathione-Sepharose followed by Mono Q FPLC chromatography. A selective ammonium sulfate precipitation method was developed for the purification of native calreticulin. The protein was purified from ammonium sulfate precipitates by diethylaminoethyl-Sephadex and hydroxylapatite chromatography procedures, which eliminates the need to prepare membrane fractions. The purification procedures reported here for recombinant and native calreticulin yield homogeneous preparations of the proteins, as judged by the HPLC reverse-phase chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified native and recombinant calreticulin were identified by their NH2-terminal amino acid sequences, by their Ca2+ binding properties, and by their reactivity with anticalreticulin antibodies.  相似文献   

17.
18.
Calreticulin, a Ca(2+) storage protein and chaperone in the endoplasmic reticulum, also modulates cell adhesiveness. Overexpression of calreticulin correlates with (i) increased cell adhesiveness, (ii) increased expression of N-cadherin and vinculin, and (iii) decreased protein phosphorylation on tyrosine. Among proteins that are dephosphorylated in cells that overexpress calreticulin is beta-catenin, a structural component of cadherin-dependent adhesion complexes, a member of the armadillo family of proteins and a part of the Wnt signaling pathway. We postulate that the changes in cell adhesiveness may be due to calreticulin-mediated effects on a signaling pathway from the endoplasmic reticulum, which impinges on the Wnt signaling pathway via the cadherin/catenin protein system and involves changes in the activity of protein-tyrosine kinases and/or phosphatases.  相似文献   

19.
The endoplasmic reticulum (ER) is the primary site for synthesis and folding of secreted and membrane-bound proteins. Proteins are translocated into ER lumen in an unfolded state and require protein chaperones and catalysts of protein folding to assist in proper folding. Properly folded proteins traffic from the ER to the Golgi apparatus; misfolded proteins are targeted to degradation. Unfolded protein response (UPR) is a highly regulated intracellular signaling pathway that prevents accumulation of misfolded proteins in the ER lumen. UPR provides an adaptive mechanism by which cells can augment protein folding and processing capacities of the ER. If protein misfolding is not resolved, the UPR triggers apoptotic cascades. Although the molecular mechanisms underlying ER stress-induced apoptosis are not completely understood, increasing evidence suggests that ER and mitochondria cooperate to signal cell death. Mitochondria and ER form structural and functional networks (mitochondria-associated ER membranes [MAMs]) essential to maintain cellular homeostasis and determine cell fate under various pathophysiological conditions. Regulated Ca(2+) transfer from the ER to the mitochondria is important in maintaining control of prosurvival/prodeath pathways. We discuss the signaling/communication between the ER and mitochondria and focus on the role of the mitochondrial permeability transition pore in these complex processes.  相似文献   

20.
Calreticulin is the major high capacity, low affinity Ca2+ binding protein localized within the endoplasmic reticulum. It functions as a reservoir for triggered release of Ca2+ by the endoplasmic reticulum and is thus integral to eukaryotic signal transduction pathways involving Ca2+ as a second messenger. The early branching photosynthetic protist Euglena gracilis is shown to possess calreticulin as its major high capacity Ca2+ binding protein. The protein was purified, microsequenced and cloned. Like its homologues from higher eukaryotes, calreticulin from Euglena possesses a short signal peptide for endoplasmic reticulum import and the C-terminal retention signal KDEL, indicating that these components of the eukaryotic protein routing apparatus were functional in their present form prior to divergence of the euglenozoan lineage. A gene phytogeny for calreticulin and calnexin sequences in the context of eukaryotic homologues indicates i) that these Ca2+ binding endoplasmic reticulum proteins descend from a gene duplication that occurred in the earliest stages of eukaryotic evolution and furthermore iii that Euglenozoa express the calreticulin protein of the kinetoplastid (trypanosomes and their relatives) lineage, rather than that of the eukaryotic chlorophyte which gave rise to Euglena's plastids. Evidence for conservation of endoplasmic reticulum routing and Ca2+ binding function of calreticulin from Euglena traces the functional history of Ca2+ second messenger signal transduction pathways deep into eukaryotic evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号