共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously demonstrated that monocytes produce IL-23 during Francisella infection, and that IL-23 induces IFNgamma from NK cells. Here, we demonstrate that IFNgamma-priming of monocytes enhances IL-23 production during Francisella infection. This effect was seen on the IL12/23 p40 subunit. Induction of IL-12/23 p40 is reported to be enhanced by IRF-1 and IRF-8. Consistently, microarray analysis of IFNgamma-treated monocytes revealed a significant induction of the IRFs. Interestingly, IFNgamma-primed monocytes produced IL-12 p70, a more potent inducer of IFNgamma than IL-23. We propose that there exists an amplification loop between monocyte IL-23 and NK/T cell IFNgamma that leads to IL-12 p70 production. 相似文献
2.
Background
Francisella tularensis is a highly virulent facultative intracellular bacterium, disseminating in vivo mainly within host mononuclear phagocytes. After entry into macrophages, F. tularensis initially resides in a phagosomal compartment, whose maturation is then arrested. Bacteria escape rapidly into the cytoplasm, where they replicate freely. We recently demonstrated that nucleolin, an eukaryotic protein able to traffic from the nucleus to the cell surface, acted as a surface receptor for F. tularensis LVS on human monocyte-like THP-1 cells.Methodology/Principal Findings
Here, we followed the fate of nucleolin once F. tularensis has been endocytosed. We first confirmed by siRNA silencing experiments that expression of nucleolin protein was essential for binding of LVS on human macrophage-type THP-1 cells. We then showed that nucleolin co-localized with intracellular bacteria in the phagosomal compartment. Strikingly, in that compartment, nucleolin also co-localized with LAMP-1, a late endosomal marker. Co-immunoprecipation assays further demonstrated an interaction of nucleolin with LAMP-1. Co-localization of nucleolin with LVS was no longer detectable at 24 h when bacteria were multiplying in the cytoplasm. In contrast, with an iglC mutant of LVS, which remains trapped into the phagosomal compartment, or with inert particles, nucleolin/bacteria co-localization remained almost constant.Conclusions/Significance
We herein confirm the importance of nucleolin expression for LVS binding and its specificity as nucleolin is not involved in binding of another intracellular pathogen as L. monocytogenes or an inert particle. Association of nucleolin with F. tularensis during infection continues intracellularly after endocytosis of the bacteria. The present work therefore unravels for the first time the presence of nucleolin in the phagosomal compartment of macrophages. 相似文献3.
Francisella tularensis selectively induces proinflammatory changes in endothelial cells 总被引:2,自引:0,他引:2
Forestal CA Benach JL Carbonara C Italo JK Lisinski TJ Furie MB 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(5):2563-2570
Naturally acquired infections with Francisella tularensis, the bacterial agent of tularemia, occur infrequently in humans. However, the high infectivity and lethality of the organism in humans raise concerns that it might be exploited as a weapon of bioterrorism. Despite this potential for illicit use, the pathogenesis of tularemia is not well understood. To examine how F. tularensis interacts with cells of its mammalian hosts, we tested the ability of a live vaccine strain (LVS) to induce proinflammatory changes in cultured HUVEC. Living F. tularensis LVS induced HUVEC to express the adhesion molecules VCAM-1 and ICAM-1, but not E-selectin, and to secrete the chemokine CXCL8, but not CCL2. Stimulation of HUVEC by the living bacteria was partially suppressed by polymyxin B, an inhibitor of LPS, but did not require serum, suggesting that F. tularensis LVS does not stimulate endothelium through the serum-dependent pathway that is typically used by LPS from enteric bacteria. In contrast to the living organisms, suspensions of killed F. tularensis LVS acquired the ability to increase endothelial expression of both E-selectin and CCL2. Up-regulation of E-selectin and CCL2 by the killed bacteria was not inhibited by polymyxin B. Exposure of HUVEC to either live or killed F. tularensis LVS for 24 h promoted the transendothelial migration of subsequently added neutrophils. These data indicate that multiple components of F. tularensis LVS induce proinflammatory changes in endothelial cells in an atypical manner that may contribute to the exceptional infectivity and virulence of this pathogen. 相似文献
4.
Francisella tularensis is an obligate intracellular bacterium that induces severe, acute, often fatal disease when acquired by the respiratory route. Despite the seriousness of this pathogen, very little is understood about its interaction with key target cells in the airways and lungs (alveolar macrophages and airway dendritic cells (DC)) after inhalation. In this study we demonstrate replication of F. tularensis in primary DC. Early after infection, F. tularensis induced increased expression of MHC class II and CD86 on DC, but not macrophages. This was followed by depletion of DC from the airways and lungs. Despite logarithmic replication and phenotypic maturation of DC, F. tularensis failed to induce production of several key proinflammatory cytokines, including TNF-alpha and IL-6, from DC. However, F. tularensis infection did elicit production of the potent immunosuppressive cytokine, TGF-beta. Furthermore, F. tularensis actively suppressed the ability of DC to secrete cytokines in response to specific TLR agonists. Finally, we also found that infection of DC and macrophages in the lungs appears to actually increase the severity of pulmonary infection with F. tularensis. For example, depletion of airway DC and alveolar macrophages before infection resulted in significantly prolonged survival times. Together, these data suggest F. tularensis is able to selectively uncouple Ag-presenting functions from proinflammatory cytokine secretion by critical APCs in the lungs, which may serve to create a relatively immunosuppressive environment favorable to replication and dissemination of the organism. 相似文献
5.
Francisella tularensis is the causative agent of tularaemia, a disease which occurs naturally in some countries in the northern hemisphere. Recently, there has been a high level of interest in devising vaccines against the bacterium because of the potential for it to be used as a bioterrorism agent. Previous human volunteer studies have shown that a strain of F. tularensis [the live vaccine strain (LVS)] that has been attenuated by laboratory passage is effective in humans as a vaccine against airborne disease. However, for a variety of reasons it seems unlikely that the LVS strain will be licensed for use in humans. Against this background there is an effort to devise a licensable vaccine against tularaemia. The prospects for a killed whole-cell subunit of live attenuated vaccine are reviewed. A rationally attenuated mutant seems the most likely route to a new tularaemia vaccine. 相似文献
6.
7.
Our laboratory’s investigations into mechanisms of protective immunity against Francisella tularensis Live Vaccine Strain (LVS) have uncovered mediators important in host defense against primary infection, as well as those correlated with successful vaccination. One such potential correlate was IL-12p40, a pleiotropic cytokine that promotes Th1 T cell function as part of IL-12p70. LVS-infected IL-12p40 deficient knockout (KO) mice maintain a chronic infection, but IL-12p35 KO mice clear LVS infection; thus the role that IL-12p40 plays in immunity to LVS is independent of the IL-12p70 heterodimer. IL-12p40 can also partner with IL-23p19 to create the heterodimeric cytokine IL-23. Here, we directly tested the role of IL-23 in LVS resistance, and found IL-23 to be largely dispensable for immunity to LVS following intradermal or intranasal infection. IL-23p19 KO splenocytes were fully competent in controlling intramacrophage LVS replication in an in vitro overlay assay. Further, antibody responses in IL-23p19 KO mice were similar to those of normal wild type mice after LVS infection. IL-23p19 KO mice or normal wild type mice that survived primary LVS infection survived maximal doses of LVS secondary challenge. Thus p40 has a novel role in clearance of LVS infection that is unrelated to either IL-12 or IL-23. 相似文献
8.
Thomas RM Twine SM Fulton KM Tessier L Kilmury SL Ding W Harmer N Michell SL Oyston PC Titball RW Prior JL 《Journal of bacteriology》2011,193(19):5498-5509
In Francisella tularensis subsp. tularensis, DsbA has been shown to be an essential virulence factor and has been observed to migrate to multiple protein spots on two-dimensional electrophoresis gels. In this work, we show that the protein is modified with a 1,156-Da glycan moiety in O-linkage. The results of mass spectrometry studies suggest that the glycan is a hexasaccharide, comprised of N-acetylhexosamines, hexoses, and an unknown monosaccharide. Disruption of two genes within the FTT0789-FTT0800 putative polysaccharide locus, including a galE homologue (FTT0791) and a putative glycosyltransferase (FTT0798), resulted in loss of glycan modification of DsbA. The F. tularensis subsp. tularensis ΔFTT0798 and ΔFTT0791::Cm mutants remained virulent in the murine model of subcutaneous tularemia. This indicates that glycosylation of DsbA does not play a major role in virulence under these conditions. This is the first report of the detailed characterization of the DsbA glycan and putative role of the FTT0789-FTT0800 gene cluster in glycan biosynthesis. 相似文献
9.
Vasoactive intestinal peptide (VIP), a neuropeptide present in the lymphoid microenvironment, acts as a potent anti-inflammatory agent that inhibits the function of activated macrophages. VIP was shown to inhibit IL-6, TNFalpha, IL-12, chemokine, and nitric oxide production in endotoxin-activated macrophages. The present study reports the effect of VIP on IL-8 production by stimulated human monocytes. VIP inhibits IL-8 production in a dose- and time-dependent manner at the mRNA level. The specific VPAC1 receptor mediates the inhibitory effect of VIP. Two transduction pathways appear to be involved, a major cAMP-independent pathway and a secondary cAMP-dependent pathway. Of obvious physiological significance is the fact that VIP, presumably through the inhibition of IL-8 production, dramatically reduces the monocyte-induced neutrophil chemotaxis, an important event in the pathogenesis of several inflammatory and autoimmune disorders. These findings support the proposed role of VIP as a key endogenous anti-inflammatory agent and describe a novel mechanism, i.e., the inhibition of the production of monocyte-derived IL-8. 相似文献
10.
Sheenkov NV Opochinskiĭ EF Valyshev AV Valysheva IV Kartashova OL Parshina AV Bukharin OV 《Zhurnal mikrobiologii, epidemiologii, i immunobiologii》2006,(1):63-66
The study of the persistence potential of 64 F. tularensis strains isolated from different sources was carried out. The wide spread of the antilysozyme, antilactoferrin and anticomplementory activities of F. tularensis were detected. F. tularensis, isolated from ticks and water, were characterized by the highest level of the expression of antilysozyme activity, while anticomplementory and antilactoferrin activities of the infective agents were characteristic of those microorganisms which were isolated from rodents and their excrements. 相似文献
11.
12.
Nübel U Reissbrodt R Weller A Grunow R Porsch-Ozcürümez M Tomaso H Hofer E Splettstoesser W Finke EJ Tschäpe H Witte W 《Journal of bacteriology》2006,188(14):5319-5324
We have sequenced fragments of five metabolic housekeeping genes and two genes encoding outer membrane proteins from 81 isolates of Francisella tularensis, representing all four subspecies. Phylogenetic clustering of gene sequences from F. tularensis subsp. tularensis and F. tularensis subsp. holarctica aligned well with subspecies affiliations. In contrast, F. tularensis subsp. novicida and F. tularensis subsp. mediasiatica were indicated to be phylogenetically incoherent taxa. Incongruent gene trees and mosaic structures of housekeeping genes provided evidence for genetic recombination in F. tularensis. 相似文献
13.
Aims: To determine the range of free available chlorine (FAC) required for disinfection of the live vaccine strain (LVS) and wild‐type strains of Francisella tularensis. Methods and Results: Seven strains of planktonic F. tularensis were exposed to 0·5 mg·l?1 FAC for two pH values, 7 and 8, at 5 and 25°C. LVS was inactivated 2 to 4 times more quickly than any of the wild‐type F. tularensis strains at pH 8 and 5°C. Conclusions: Free available chlorine residual concentrations routinely maintained in drinking water distribution systems would require up to two hours to reduce all F. tularensis strains by 4 log10. LVS was inactivated most quickly of the tested strains. Significance and Impact of the Study: This work provides contact time (CT) values that are useful for drinking water risk assessment and also suggests that LVS may not be a good surrogate in disinfection studies. 相似文献
14.
Romanova LV Mishan'kin BN Pichurina NL Vodop'ianov SO Saiamov SR 《Zhurnal mikrobiologii, epidemiologii, i immunobiologii》2000,(2):11-15
Conditions for the appearance of F. tularensis uncultivated forms and for their reversion into the initial state have been studied. As revealed in this study, the combined influence of stress factors (starvation and low temperature) may result in the transition of F. tularensis into the uncultivated state in which it persists in the environment during the period between epidemics. The reversion of F. tularensis uncultivated forms into the initial state has been carried out with the use of sensitive animals. The uncultivated state of F. tularensis should be regarded as the actual form of the existence of the causative agent of tularemia in soil and water ecosystems. 相似文献
15.
16.
The comparative study of the specificity of antibodies in human sera after tularemia infection and immunization with live tularemia infection was carried out with the use of passive hemagglutination and immunoblotting techniques. The sera of tularemia patients contained two different types of immunoglobulins: strictly specific to the antigenic epitopes of F. tularensis Iipopolysaccharide (LPS) and strictly specific to F. tularensis subsp. novicida LPS. Such phenomenon may be due to phase variations of the antigenic structure of F. tularensis LPS in the body of a slightly susceptible host. The immune sera of vaccinated were found to contain antibodies, strictly specific only to F. tularensis LPS. At the same time in one vaccinee by the presence of pronounced postvaccinal reactions was found sharply defined interaction between serum imunoglobulins and F. tularensis subsp. novicida LPS. As the result, the data on the possibility of the antigenic modification of F. tularensis in tularemia infection in humans were obtained. At the same time antigenic epitopes, characteristic of faintly pathogenic and closely related F. tularensis novicida LPS, appeared in the structure of F. tularensis LPS. 相似文献
17.
Shirey KA Cole LE Keegan AD Vogel SN 《Journal of immunology (Baltimore, Md. : 1950)》2008,181(6):4159-4167
Francisella tularensis (Ft), the causative agent of tularemia, elicits a potent inflammatory response early in infection, yet persists within host macrophages and can be lethal if left unchecked. We report in this study that Ft live vaccine strain (LVS) infection of murine macrophages induced TLR2-dependent expression of alternative activation markers that followed the appearance of classically activated markers. Intraperitoneal infection with Ft LVS also resulted in induction of alternatively activated macrophages (AA-Mphi). Induction of AA-Mphi by treatment of cells with rIL-4 or by infection with Ft LVS promoted replication of intracellular Ftn, in contrast to classically activated (IFN-gamma plus LPS) macrophages that promoted intracellular killing of Ft LVS. Ft LVS failed to induce alternative activation in IL-4Ralpha(-/-) or STAT6(-/-) macrophages and prolonged the classical inflammatory response in these cells, resulting in intracellular killing of Ft. Treatment of macrophages with anti-IL-4 and anti-IL-13 Ab blunted Ft-induced AA-Mphi differentiation and resulted in increased expression of IL-12 p70 and decreased bacterial replication. In vivo, Ft-infected IL-4Ralpha(-/-) mice exhibited increased survival compared with wild-type mice. Thus, redirection of macrophage differentiation by Ft LVS from a classical to an alternative activation state enables the organism to survive at the expense of the host. 相似文献
18.
Kidoya H Umemura M Kawabe T Matsuzaki G Yahagi A Imamura R Suda T 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(12):8024-8031
Fas ligand (FasL) has the potential to induce inflammation accompanied by massive neutrophil infiltration. We previously reported that FasL rapidly induces the production of various inflammatory cytokines including IL-1beta and IL-17. In this study, we investigated the mechanism of the FasL-induced IL-17 production. We found that the culture supernatant of mouse resident peritoneal exudate cells (PEC) cocultured with FasL-expressing tumor (FFL) cells induced IL-17 production in freshly isolated resident PEC. Anti-IL-1beta Ab strongly inhibited the IL-17-inducing activity. However, rIL-1beta by itself induced only weak IL-17 production. Intriguingly, anti-IL-12 Ab but not an IL-15-neutralizing agent, IL15R-Fc, strongly inhibited the FasL-induced IL-17-inducing activity. IL-23, which shares the p40 subunit with IL-12, but not IL-12 itself, induced IL-17 production synergistically with IL-1beta in resident PEC. FasL induced the production of IL-23 in PEC in vivo and in vitro, and IL-17 production following the i.p. injection of FFL cells was severely impaired in p40-/- mice, indicating that IL-23 plays an important role in the FasL-induced IL-17 production. FFL also induced the production of IL-23 in bone marrow- or PEC-derived dendritic cells (DCs). Finally, FasL induced only weak p40 production in a mixture of p40-/- and Fas-/- DC, indicating that FasL induces IL-23 production in DC mainly in a cell-autonomous manner. 相似文献
19.
Dasu MR Devaraj S Jialal I 《American journal of physiology. Endocrinology and metabolism》2007,293(1):E337-E346
Previously, IL-1beta secretion from Type 2 diabetic patients has been shown to be increased compared with controls. In this study, we aimed to delineate the mechanism of IL-1beta induction under high-glucose (HG) conditions in human monocytes. THP-1 cells cultured in normal glucose were treated with increasing concentrations of d-glucose (10-25 mM) for 6-72 h. IL-1beta and IL-1 receptor antagonist levels were measured by ELISA and Western blots, whereas mRNA was quantitated by RT-PCR. Specific inhibitors and small interfering RNAs of PKC, p38, ERK1/2, NF-kappaB, and NADPH oxidase were used to determine the mediators in parallel experiments under HG conditions. IL-1beta-secreted protein, cellular protein, and mRNA increase under HG conditions is time and dose dependent, with maximum increase at 15 mM (48 h; P < 0.05). IL-1 receptor antagonist release was time and dose dependent, similar to IL-1beta expression pattern; however, the molar ratio of IL-1beta to IL-1RA was increased. Data from inhibitor and small interfering RNA experiments indicate that IL-1beta release under HG is mediated by PKC-alpha, via phosphorylation of p38 MAPK, and ERK1/2 leading to NF-kappaB activation, resulting in increased mRNA and protein for IL-1beta. At the same time, it appears that NADPH oxidase via p47phox activates NF-kappaB, resulting in increased IL-1beta secretion. Data suggest that, under HG conditions, monocytes release significantly higher amounts of IL-1beta through multiple mechanisms, further compounding the disease progression. Targeting signaling pathways mediating IL-1beta release could result in the amelioration of inflammation and possibly diabetic vasculopathies. 相似文献
20.
I N Shishov V G Ma?ski? G I Basilova 《Zhurnal mikrobiologii, epidemiologii, i immunobiologii》1986,(7):37-40
The assimilation and mutual transformation of exogenous purine and pyrimidine bases and their nucleosides in the known subspecies of F. tularensis have been studied by means of radio-labeled compounds. The possibility of using the specific features of the metabolism of these compounds in F. tularensis, established in this study, for taxonomy and differential diagnosis has been demonstrated. 相似文献