首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vegetative plants of Lolium temulentum L, grown at 20°C with an 8 h photoperiod were transferred to either 5 or 2°C (8 h photoperiod) at 4th leaf maturity. Measurement of dry weight gain indicated a marked decline in relative growth rate below 5°C, with growth being reduced as much between 5 and 2°C as between 20 and 5°C. This reduction was not associated with increased mortality and was reversible if plants were returned to 20°C. Tissue explants from cold-treated plants retained the ability to extend if returned to 20°C Rates of extension in explants were less temperature sensitive than the relative growth rates observed in intact plants. Measurements of photosynthetic capacity, and of the patterns of accumulation of reserve carbohydrate in plants exposed to different temperatures, suggested that the inhibition of growth caused by chilling is not caused by an inability of the plants to fix sufficient carbon.  相似文献   

2.
Heat shock (25° C) of 10° C-acclimated rainbow trout Oncorhynchus mykiss led to increases in heat shock protein 70 (hsp70) mRNA in blood, brain, heart, liver, red and white muscle, with levels in blood being amongst the highest. Hsp30 mRNA also increased with heat shock in all tissues with the exception of blood. When rainbow trout blood was heat shocked in vitro , both hsp70 and hsp30 mRNA increased significantly. In addition, these in vitro experiments demonstrated that blood from fish acclimated to 17° C water had a lower hsp70 mRNA heat shock induction temperature than did 5° C acclimated fish (20 v. 25° C). The hsp30 mRNA induction temperature (25° C), however, was unaffected by thermal acclimation. While increases in hsp70 mRNA levels in blood may serve as an early indicator of temperature stress in fish, tissue type, thermal history and the particular family of hsp must be considered when evaluating stress by these molecular means.  相似文献   

3.
Protein synthesis in dormant embryos of sugar maple ( Acer saccharum ) was investigated in seeds stratified at 4°C or incubated at 15°C. Seeds stratified at 4°C germinated after 27 days; seeds incubated at 15°C failed to germinate. Stratification increased the embryo's capacity for protein synthesis by day 11 as measured by in vivo incorporation of [35S]-methionine into purified protein. At 4°C protein synthesis in the embryonic axis rose in a linear fashion prior to germination, whereas in cotyledons it increased until day 20 and then declined. Analysis of radiolabelled proteins by two-dimensional gel electrophoresis revealed that the levels of specific proteins were altered by temperature, primarily in the cotyledons. Several proteins were expressed in the cotyledons at 15°C but were absent in unstratified embryos and in embryos stratified at 4°C. That is, the expression of these proteins was repressed during stratification and release from dormancy. Levels of other proteins in the cotyledons declined at 4°C during stratification. We suggest that one or more of these proteins may be associated with the inhibition of growth of the embryonic axis imposed by the cotyledons.  相似文献   

4.
Yeast cells show an adaptive response to a mild heat shock, resulting in thermotolerance acquisition. This is accompanied by induction of heat-shock protein (hsp) synthesis and rapid accumulation of trehalose. Genetic approaches to determine the specific role of trehalose in heat-induced thermotolerance in Saccharomyces cerevisiae have been hampered by the finding that deletion of TPS1 , the gene encoding trehalose-6-phosphate synthase, causes a variety of pleiotropic effects, including inability to grow on glucose-containing media. Here, we have studied a tps1 mutant of the yeast Schizosaccharomyces pombe that reportedly has no such growth defects. We show that tps1 mutants have a serious defect in heat shock-induced acquisition of thermotolerance if conditioned at highly elevated temperatures (40–42.5°C), which, in wild-type cells, prevent hsp but not trehalose synthesis. In contrast, hsp synthesis appears to become particularly important under conditions in which trehalose synthesis is either absent (in tps1 mutant strains) or not fully induced (conditioning at moderately elevated temperatures, i.e. 35°C). In addition, pka1 mutants deficient in cAMP-dependent protein kinase were examined. Unconditioned pka1 cells had low levels of trehalose but a high basal level of thermotolerance. It was found that pka1 mutant cells, contrary to wild-type cells, accumulated large amounts of trehalose, even during a 50°C treatment. pka1 tps1 double mutants lacked this ability and showed reduced intrinsic thermotolerance, indicating a particularly important role for trehalose synthesis, which takes place during the challenging heat shock.  相似文献   

5.
The response to heat stress in six yeast species isolated from Antarctica was examined. The yeast were classified into two groups: one psychrophilic, with a maximum growth temperature of 20°C, and the other psychrotrophic, capable of growth at temperatures above 20°C. In addition to species-specific heat shock protein (hsp) profiles, a heat shock (15°C–25°C for 3 h) induced the synthesis of a 110-kDa protein common to the psychrophiles, Mrakia stokesii, M. frigida, and M. gelida, but not evident in Leucosporidium antarcticum. Immunoblot analyses revealed heat shock inducible proteins (hsps) corresponding to hsps 70 and 90. Interestingly, no proteins corresponding to hsps 60 and 104 were observed in any of the psychrophilic species examined. In the psychrotrophic yeast, Leucosporidium fellii and L. scottii, in addition to the presence of hsps 70 and 90, a protein corresponding to hsp 104 was observed. In psychrotrophic yeast, as observed in psychrophilic yeast, the absence of a protein corresponding to hsp 60 was noted. Relatively high endogenous levels of trehalose which were elevated upon a heat shock were exhibited by all species. A 10 Celsius degree increase in temperature above the growth temperature (15°C) of psychrophiles and psychrotrophs was optimal for heat shock induced thermotolerance. On the other hand, in psychrotrophic yeast grown at 25°C, only a 5 Celsius degree increase in temperature was necessary for heat shock induced thermotolerance. Induced thermotolerance in all yeast species was coincident with hsp synthesis and trehalose accumulation. It was concluded that psychrophilic and psychrotrophic yeast, although exhibiting a stress response similar to mesophilic Saccharomyces cerevisiae, nevertheless had distinctive stress protein profiles. Received: August 7, 1997 / Accepted: October 22, 1997  相似文献   

6.
The heat shock response in three vegetatively propagated clones of Salix viminalis L. was studied. In the clone 78198, synthesis of a total of 58 proteins was induced or increased by heat shock. Of these proteins, 39 were found in both leaves and callus, 8 only in leaves, and 11 only in callus. The number of heat shock proteins differed between the three clones studied. The molecular weights of the heat shock proteins ranged from 18000 to over 94000. The optimal synthesis of heat shock proteins took place at 37–40°C, but several proteins could be induced at 25–30°C. The synthesis of the majority of the proteins present at a normal growth temperature (20°C) was not completely blocked by the heat shock. More than 12 h was needed for the reappearance of the normal protein synthesis pattern after heat shock.  相似文献   

7.
Survival, oxygen consumption (     ), total plasma cortisol and glucose levels and gill heat-shock protein 70 (hsp70) expression were measured in 10 and 50 g juvenile Atlantic cod Gadus morhua during an acute temperature increase (2° C h−1) to their critical thermal maximum. Ninety three per cent of the fish in both size classes survived to 24° C; however, mortality was 100% within 15 min of reaching this temperature. The     for both size classes increased significantly with temperature, reaching peak values at 22° C that were c. 2·8-fold those of control (10° C) fish. Resting plasma cortisol and glucose levels were lower in 10 g as compared to 50 g fish. Plasma glucose levels were highly variable in both size classes, and significant increases were only seen at >22° C for the 10 g fish. In contrast, plasma cortisol showed an exponential increase with temperature starting at 16° C in both size classes, and reached maximum levels at 22° C that were 19-fold (10 g fish) and 35-fold (50 g fish) higher than their respective control groups. Both the constitutive (73 kDa) and inducible (72 kDa) isoforms of hsp70 were detected in both size classes using the widely utilized mouse monoclonal antibody. Expression of these isoforms, however, did not change when Atlantic cod were exposed to elevated temperature, and the 72 kDa isoform was not detected using salmonid-specific antibodies. These results indicate that juvenile Atlantic cod are very sensitive to acute increases in water temperature. In addition, they (1) show that     and plasma cortisol, but not plasma glucose or gill hsp 70 levels, are sensitive indicators of thermal stress in Atlantic cod and (2) support previous reports that the upper critical temperature for this species is 16° C.  相似文献   

8.
SUMMARY. 1. Soyedina carolinensis Claassen, a leaf shredding stonefly, was reared in a series of three laboratory experiments from early instar to adult on different species of deciduous leaves and at various constant and fluctuating temperature regimes.
2. Experiment 1, which involved rearing larvae on fourteen different leaf diets at ambient stream temperatures, showed that diet significantly affected larval growth and adult size but did not affect overall developmental time.
3. Experiment 2, which involved rearing larvae on five different leaf diets at each of three fluctuating temperature regimes (viz ambient White Clay Creek (WCC), ambient WCC+3°C, and ambient WCC+6°C), showed that: (i) adding 6°C to the normal temperature regime of WCC was lethal to 99% of the larvae regardless of diet; and (ii) warming WCC by 3°C did not affect developmental time but did significantly reduce adult size relative to adults reared at WCC temperatures on certain diets.
4. Experiment 3, which involved rearing larvae on five different leaf diets at each of five constant temperatures (viz 5, 10, 15, 20, 25°C), showed that: (i) temperature significantly affected the mortality, growth, and development time of larvae whereas diet only affected larval growth and mortality; (ii) temperatures at or near 10°C yielded maximum larval growth and survival for most diets; (iii) at 5°C, larval mortality was high and growth was low resulting in a few small adults for most diets; (iv) larval mortality was at or near 100% at 15°C regardless of diet; and (v) no larvae survived at 20 and 25°C.  相似文献   

9.
We have compared the effects of a mild heat shock and febrile temperatures on heat-shock protein (hsp) synthesis and development of stress tolerance in T lymphocytes. Our previous studies demonstrated that febrile temperatures (less than or equal to 41 degrees C) induced the synthesis of hsp110, hsp90, and the constitutive or cognate form of hsp70 (hscp70; a weak induction of the strongly stress-induced hsp70 was also observed. In the studies reported herein, we demonstrate that a mild heat shock (42.5 degrees C) reverses this ratio; that is, hsp70 and not hscp70 is the predominate member of this family synthesized at this temperature. Modest heat shock also enhanced the synthesis of hsp110 and hsp90. In order to assess the relationship between hsp synthesis and the acquisition of thermotolerance, purified T cells were first incubated at 42.5 degrees C (induction temperature) and then subsequently subjected to a severe heat-shock challenge (45 degrees C, 30 min). T cells first incubated at a mild heat-shock temperature were capable of total protein synthesis at a more rapid rate following a severe heat shock than control cells (induction temperature 37 degrees C). This phenomenon, which has been previously termed translational tolerance, did not develop in cells incubated at the febrile temperature (induction temperature 41 degrees C). Protection of translation also extended to immunologically relevant proteins such as interleukin-2 and the interleukin-2 receptor. Because clonal expansion is a critical event during an immune response, the effects of hyperthermic stress on DNA replication (mitogen-induced T cell proliferation) was also evaluated in thermotolerant T cells. DNA synthesis in control cells (induction temperature 37 degrees C) was severely inhibited following heat-shock challenge at 44 degrees C or 45 degrees C; in contrast, T cells preincubated at 42.5 degrees C rapidly recovered their DNA synthetic capacity. T cells preincubated at a febrile temperature were moderately protected against hyperthermic stress. The acquisition of thermotolerance was also associated with enhanced resistance to chemical (ethanol)-induced stress but not to heavy metal toxicity (cadmium) or dexamethasone-induced immunosuppression. These studies suggest that prior hsp synthesis may protect immune function against some forms of stress (e.g., febrile episode) but would be ineffective against others such as elevated glucocorticoid levels which normally occur during an immune response.  相似文献   

10.
Heat shock proteins in maize   总被引:27,自引:19,他引:8       下载免费PDF全文
Cooper P  Ho TH 《Plant physiology》1983,71(2):215-222
The pattern of protein synthesis in roots of 3-day-old maize seedlings (Zea mays L.) is rapidly and dramatically altered when the incubation temperature is raised from 25 to 40°C. One-dimensional sodium dodecyl sulfate gels reveal that although synthesis of the proteins observed at 25°C continues at 40°C, a new set of `heat shock proteins' (hsp) is induced within 20 minutes of the temperature transition. The hsp have molecular weights of 87, 85, 79, 78, 77, 72, 70, 27, 22, and 18 kilodaltons. The 10 hsp are visible on autoradiograms but not on stained gels, suggesting that the proteins do not accumulate to any great extent.

The induction of the hsp is transitory. With prolonged high temperature treatment, the synthesis of hsp continues for 4 hours in excised roots and for 8 hours in the roots of intact seedlings before declining sharply. Coincident to the decline in synthesis of the 10 hsp is the gradual increase in intensity of three new polypeptides having molecular weights of 62, 49.5, and 19 kilodaltons. These proteins begin to appear about the time that synthesis of the other 10 hsp becomes maximal.

Shifting the temperature back to 25°C also causes a decline in synthesis of hsp, but this decline occurs more rapidly than that seen during prolonged heat shock. A decrease in hsp synthesis becomes apparent 2 hours after the roots are returned to 25°C.

Shifting the temperature from 25 to 45°C results in a pattern of protein synthesis different from that observed after a shift to 40°C. Normal protein synthesis continues, except four proteins, which are produced in small amounts at lower temperatures, show greatly enhanced synthesis at 45°C. These proteins have apparent molecular weights of 83, 81, 68, and 65 kilodaltons. Also, the 10 hsp listed above are not synthesized. It is suggested that at least two distinct high-temperature responses are present in maize, which may reflect the metabolic changes generated at different elevated temperatures.

  相似文献   

11.
We investigated the effect of temperature during growth and development on the relationship between light-harvesting capacity, indicated by chlorophyll concentration, and light-utilization potential, indicated by light- and bicarbonate-saturated photosynthetic oxygen evolution, in Solanum tuberosum L. cv. Norland. Conal plantles were transplanted and grown at 20°C for 2 weeks before transfer to 12, 16, 20, 24 and 28°C for 6 weeks. After 4 weeks of the temperature treatments, leaf tissue fresh weights per area were one-third higher in plants grown at 12°C vs those grown at 28°C. Conversely, chlorophyll content per area in tissue grown at 12°C was less than one-half of that of tissue grown at 28°C at 4 weeks. Photosynthetic capacity measured at a common temperature of 20°C and expressed on a chlorophyll basis was inversely proportional to growth temperature. Leaf tissue from plants grown at 12°C for 4 weeks had photosynthetic rates that were 3-fold higher on a chlorophyll basis than comparable tissue from plants grown at 28°C. These results suggest that the relationship between light-harvesting capacity and light-utilization potential varies 3-fold in response to the growth temperatures examined. The role of this response in avoidance of photoinhibition is discussed.  相似文献   

12.
Response to natural and laboratory selection at the Drosophila hsp70 genes   总被引:4,自引:0,他引:4  
Abstract.— To determine whether and how laboratory and natural selection act on the hsp70 (70-Kd heat-shock protein) genes of Drosophila melanogaster , we examined hsp70 allele frequencies in two sets of populations. First, five populations reared at different temperatures for more than 20 years differentially fixed both a large insertion/deletion (indel) polymorphism at the 87A7 hsp70 cluster ("56H8"/"122") and a single nucleotide polymorphism at the 87C1 hsp70 cluster. In both cases, the 18°C and 25°C populations fixed one allele and the 28°C populations the other, consistent with previously described evolved differences among these populations in Hsp70 expression and thermo-tolerance. Second, we examined 56H8 and 122 frequencies in a set of 11 populations founded from flies collected along a latitudinal transect of eastern Australia. The 56H8 allele frequencies are positively associated with latitude, consistent with maintenance of the 56H8/122 polymorphism by natural selection. Thermal extremes and average values are negatively correlated with latitude. These results suggest that natural selection imposed by temperature and thermal variability may affect hsp70 allele frequencies.  相似文献   

13.
Lolium temulentum L. plants were grown at 20°C and transferred to 2°C or 5°C at 21, 28 or 35 days after sowing, when leaves 3, 4 and 5, respectively, were at mid-expansion and leaves 4, 5 and 6 were just emerging. Leaves of plants exposed to 2°C for 7 or 14 days before their date of emergence at 20°C failed to appear at all during the course of the experiment. Transfer to 2°C at emergence resulted in a delay of about 40 days before expansion was detected and subsequent growth was extremely slow. By contrast, although leaves of seedlings exposed to 5°C at or prior to emergence were significantly smaller and slower-growing than the same leaves of plants maintained at 20°C, the difference in vegetative development and tillering between 2°C and 5°C was much less marked than between 5°C and 2°C, implying the existence of a rather sharp threshold for growth between the latter temperatures. Leaves transferred to 2°C at mid-expansion attained a final size not very different from leaves exposed to 5°C at the same time, but expension rates were only 20–30% of those at 5°C, and the time taken to achieve full expansion a corresponding 3 to 5 times longer. These responses were quantified by fitting Richards functions to measurements of leaf extension and determining, from the parameters of the curves, asymptotic maximal lengths, mean relative and absolute extension rates, inflexion points and durations of growth. The potential usefulness of Lolium temulentum as a model species for studying the relationship between temperature and growth in the Granmineae is discussed.  相似文献   

14.
Abstract Detection of stress proteins in Porphyromonas gingivalis was investigated by SDS-PAGE and Western immunoblotting procedure using a polyclonal antibody (anti hsp60) and a monoclonal antibody (anti-Dnak). Results indicate that P. gingivalis can elicit a hsp60-like stress protein when submitted to different environmental stresses such as a heat shift from 35°C to 43°C, a pH drop from 7.2 to 6.0 or an increase in oxygen concentration. Virulent and non-virulent strains of P. gingivalis responded the same way. The other bacterial species tested also showed an increased synthesis of a GroEL-like protein after heat shock, as detected by the anti hsp60 antibody. However, the monoclonal anti-Dnak recognized an hsp70-like protein only in two of the tested species.  相似文献   

15.
Frost tolerance has been reported in the shoots of wild, tuberiferous potato species such as Solanum commersonii when the plants are grown in either field or controlled conditions. However, these plants can survive as underground tubers and avoid unfavorable environmental conditions altogether. As such, leaf growth and photosynthesis at low temperature may not be required for survival of the plants. In order to determine the temperature sensitivity of S. commersonii shoots, we examined leaf growth, development and photosynthesis in plants raised at 20/16°C (day/night). 12/9°C and 5/2°C. S. commersonii leaves grown at 5°C exhibited a marked decrease in leaf area and in total chlorophyll (Chl) content per leaf area when compared with leaves grown at 20°C. Furthermore, leaves grown at 5°C did not exhibit the expected decrease in either water content or susceptibility to low-temperature-induced photoinhibition that normally characterizes cold acclimation in frost-tolerant plants. Measurements of CO2-saturated O2 evolution showed that the photosynthetic apparatus of 5°C plants was functional, even though the efficiency of photosystem II photochemistry was reduced by growth at 5°C. A decrease in the resolution of the M-peak in the slow transients for Chl a fluorescence in leaves grown at 12 and 5°C and in all leaves exposed to high light at 5°C indicated that low temperature significantly affected processes on the reducing side of QA, the primary quinone electron acceptor in photosystem II. Thus S. commarsonii exhibits the characteristics of a plant that is limited by chilling temperatures. Although S. commersonii can tolerate light frosts, its sensitivity to chilling temperatures may result in shoot dieback in winter in its native habitat. The plants may avoid both chilling and freezing temperatures by overwintering as underground tubers.  相似文献   

16.
A slow temperature transient from 37 to 42 degrees C over 3 hr instead of the usual rapid 4- to 7-min transient increases thermal resistance twofold in MTC tumor cells and yet reduces the rates of synthesis of the 70- and 22-kDa heat-stress proteins (hsp) immediately prior to and during expression of thermal resistance--2 to 8 hr after reaching 42 degrees C [S. P. Tomasovic, P. A. Steck, and D. Heitzman, Radiat. Res. 95, 399-413 (1983)]. However, examination of hsp synthesis at earlier times reaching 42 degrees C (0.5 to 2 hr) has revealed differential expression of the individual hsp that is dependent on the rate of heating. Within 30 min of reaching 42 degrees C, cells exposed to slow transients had higher rates of synthesis of the 112- and 90- but not the 70-kDa hsp. However, cells exposed to rapid transients had a higher rate of synthesis of the 70-kDa hsp by 1 hr after reaching 42 degrees C. The rate of synthesis of the 22-kDa hsp was similar in cells heated by either method. Rates of synthesis of the 112-, 90-, and 22-kDa hsp in cells exposed to rapid transients did not equal or surpass the rates for cells exposed to slow transients until between 2 and 3 hr of heating, just before expression of thermal resistance. Rate of heating also had differential effects on total protein synthesized and transport. The total protein synthesized was observed to be 40% higher in slow-transient-treated cells over the first 2 hr. Transport of an amino acid analog, aminoisobutyric acid, was significantly inhibited in rapid-transient cells immediately after reaching 42 degrees C and had not recovered 1 or 5 hr later. Similar to total protein synthesis transport in slow-transient-treated cells was unaffected. There was no significant difference between slow- and rapid-transient-treated cells in hsp degradation, cell-cycle distribution, or amino acid pool sizes in the first 4 to 6 hr after reaching 42 degrees C. These results suggest that although the ultimate thermal dose was about 10-fold higher under slow-transient conditions, the cells receiving this treatment made regulatory or metabolic adjustments, including altered hsp synthesis patterns, that reduced initial heat damage. Either the protection of total protein synthesis or that combined with higher initial rates of synthesis of some hsp could explain the previously reported increased initial D0, increased thermotolerance, and reductions in latter hsp synthesis rates seen following slow temperature transients.  相似文献   

17.
1. Plants of Bellis perennis, Dactylis glomerata and Poa annua were grown from seed in controlled-environment cabinets at either 16 or 20 °C; at the higher temperature all three species had increased total dry mass and leaf area when assessed on the basis of chronological time. On the basis of thermal time (summation of degree-days above 0 °C; days °C) temperature decreased the dry mass in P. annua.
2. Partitioning was assessed as a change in the allometric coefficients relating shoot and root dry mass, leaf and plant mass, leaf area and plant mass, and leaf area and leaf mass. Of the 12 relationships examined only three were affected by temperature: there was increased partitioning towards the shoot relative to the root in D. glomerata and increased partitioning towards leaf area rather than leaf mass in D. glomerata and B.perennis .
3. Root respiration was unaffected by temperature of growth in D. glomerata and P.annua but was lower in B. perennis grown at elevated temperature.
4. Root respiration acclimated to temperature in P. annua and B. perennis (i.e. when measured at the same temperature, respiration was higher in plants grown at 16 °C).
5. Root soluble carbohydrate concentration was unaffected by temperature of growth in any of the species. Feeding sucrose to the roots for a short period had no effect on the rate of respiration of B. perennis or D. glomerata but increased root respiration of P. annua .  相似文献   

18.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

19.
Photoinhibition of photosynthesis and its recovery were studied in intact barley ( Hordeum vuigare L. cv. Gunilla) leaves grown in a controlled environment by exposing them to two temperatures, 5 and 20°C, and a range of photon flux densities in excess of that during growth. Additionally, photoinhibtion was examined in the presence of chloramphenicol (CAP, an inhibitor of chloroplast protein synthesis) and of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Susceptibility to photoinhibition was much higher at 5 than at 20°C. Furthermore, at 20°C. CAP exacerbated photoinhibition strongly, whereas CAP had little additional effect (10%) at 5°C. These results support the model that net photoinhibition is the difference between the inactivation and repair of photosystem II (PSII); i.e. the degradation and synthesis of the reaction centre protein, Dl. Furthermore, the steady-state extent of photoinhibition was strongly dependent on temperature and the results indicated this was manifested through the effects of temperature on the repair process of PSII. We propose that the continuous repair of PS II at 20°C conferred at least some protection from photoinhibition. At 5°C the repair process was largely inhibited, with increased photoinhibition as a consequence. However, we suggest where repair is inhibited by low temperature, some protection is alternatively conferred by the photoinhibited reaction centres. Providing they are not degraded, such centres could still dissipate excitation energy non-radiatively, thereby conferring protection of remaining photochemically active centres under steady-state conditions.
A fraction of PS II centres were capable of resisting photoinhibition when the repair process was inhibited by CAP. This is discussed in relation to PS II heterogeneity. Furthermore, the repair process was not apparently activated within 3 h when barley leaves were transferred to photoinhibitory light conditions at 20°C.  相似文献   

20.
The ability of leaves to acclimate photosynthetically to low temperature was examined during leaf development in winter rye plants ( Secale cereale L. cv. Puma) grown at 20°C or at 6°C. All leaves grown at 6°C exhibit increased chlorophyll (Chl) levels per leaf area, higher rates of uncoupled, light-saturated photosystem I (PSI) electron transport, and slower increases in photosystem II (PSII) electron transport capacity, when compared with 20°C leaves. The stoiehiometry of PSI and PSII was estimated for each leaf age class by quantifying Chl in elcctrophorctic separations of Chl-protein complexes. The ratio of PSII/PSI electron transport in 20°C leaves is highly correlated with the ratio of core Chl a -proteins associated with PSII (CPa) to those associated with PSI (CP1). In contrast, PSII/PSI electron transport in 6°C leaves is not as well correlated with CPa/CP1 and is related, in part, to the amount and organization of light-harvesting Chl a/b -proteins associated with PSII. CPa/CP1 increases slowly in 6°C leaves, although the ratio of CPa/CP1 in mature 20°C and 6°C leaves is not different. The results suggest that increased PSI activity at low temperature is not related to an increase in the relative proportion of PSI and may reflect, instead, a regulatory change. Photosynthetic acclimation to low environmental temperature involves increased PSI activity in mature leaves shifted to 6°C. In leaves grown entirely at 6°C, however, acclimation includes both increased PSI activity and modifications in the rate of accumlation of PSII and in the organization of LHCII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号