首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxygenation metabolism of arachidonic acid (ArA) has been early described in blood platelets, in particular with its conversion into the potent labile thromboxane A2 that induces platelet aggregation and vascular smooth muscle cells contraction. In addition, the primary prostaglandins D2 and E2 have been mainly reported as inhibitors of platelet function. The platelet 12-lipoxygenase (12-LOX) product, i.e. the hydroperoxide 12-HpETE, appears to stimulate platelet ArA metabolism at the level of its release from membrane phospholipids through phospholipase A2 (cPLA2) and cyclooxygenase (COX-1) activities, the first enzymes in prostanoid production cascade. Also, 12-HpETE may regulate the oxygenation of other polyunsaturated fatty acids (PUFA) by platelets, especially that of eicosapentaenoic acid (EPA). On the other hand, the reduced product of 12-HpETE, 12-HETE, is able to antagonize TxA2 action. This is even more obvious for the 12-LOX end-products from docosahexaenoic acid (DHA), 11- and 14-HDoHE. In addition, 12-HpETE plays a key role in platelet oxidative stress as observed in pathophysiological conditions, but may be regulated by DHA with a bimodal way according to its concentration. Other oxygenated products of PUFA, especially omega-3 PUFA, produced outside platelets may affect platelet functions as well.  相似文献   

2.
Glucose is the typical carbon source for producing microbial polyunsaturated fatty acids (PUFA) with single cell microorganisms such as thraustochytrids. We assessed the use of a fish oil derived glycerol by-product (raw glycerol), produced by a fish oil processing plant, as a carbon source to produce single cell oil rich in polyunsaturated fatty acids (PUFA), notably docosahexaenoic acid (DHA). These results were compared to those obtained when using analytical grade glycerol, and glucose. The thraustochytrid strain tested produced similar amounts of oil and PUFA when grown with both types of glycerol, and results were also similar to those obtained using glucose. After 6 days of fermentation, approximately 320 mg/g of oil, and 145 mg/g of PUFA were produced with all carbon sources tested. All oils produced by our strain were 99.95% in the triacylglycerol form. To date, this is the first report of using raw glycerol derived from fish oil for producing microbial triglyceride oil rich in PUFA.  相似文献   

3.
Very long chain polyunsaturated fatty acids (VLCPUFAs) such as arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are valuable commodities that provide important human health benefits. We report the transgenic production of significant amounts of AA and EPA in Brassica juncea seeds via a stepwise metabolic engineering strategy. Using a series of transformations with increasing numbers of transgenes, we demonstrate the incremental production of VLCPUFAs, achieving AA levels of up to 25% and EPA levels of up to 15% of total seed fatty acids. Both fatty acids were almost exclusively found in triacylglycerols, with AA located preferentially at sn-2 and sn-3 positions and EPA distributed almost equally at all three positions. Moreover, we reconstituted the DHA biosynthetic pathway in plant seeds, demonstrating the practical feasibility of large-scale production of this important omega-3 fatty acid in oilseed crops.  相似文献   

4.

Key message

Mosses have high contents of polyunsaturated fatty acids. Tissue-specific differences in fatty acid contents and fatty acid desaturase (FADS)-encoding gene expression exist. The arachidonic acid-synthesizing FADS operate in the ER.

Abstract

Polyunsaturated fatty acids (PUFAs) are important cellular compounds with manifold biological functions. Many PUFAs are essential for the human diet and beneficial for human health. In this study, we report on the high amounts of very long-chain (vl) PUFAs (≥C20) such as arachidonic acid (AA) in seven moss species. These species were established in axenic in vitro culture, as a prerequisite for comparative metabolic studies under highly standardized laboratory conditions. In the model organism Physcomitrella patens, tissue-specific differences in the fatty acid compositions between the filamentous protonema and the leafy gametophores were observed. These metabolic differences correspond with differential gene expression of fatty acid desaturase (FADS)-encoding genes in both developmental stages, as determined via microarray analyses. Depending on the developmental stage and the species, AA amounts for 6–31 %, respectively, of the total fatty acids. Subcellular localization of the corresponding FADS revealed the endoplasmic reticulum as the cellular compartment for AA synthesis. Our results show that vlPUFAs are highly abundant metabolites in mosses. Standardized cultivation techniques using photobioreactors along with the availability of the P. patens genome sequence and the high rate of homologous recombination are the basis for targeted metabolic engineering in moss. The potential of producing vlPUFAs of interest from mosses will be highlighted as a promising area in plant biotechnology.  相似文献   

5.
The effects of various saturated and unsaturated fatty acids (FAs) on the proliferative response and phospholipase D (PLD) activity of rat thymocytes were investigated. When added to culture medium as complexes with albumin, all the FAs tested, except stearic acid, inhibited the ConA-induced thymocyte proliferation, eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids being the most inhibitory. Apart from 22:6n-3 which slightly increased the percentage of late apoptotic and necrotic thymocytes in the presence of mitogen, none of the FAs induced significant apoptosis or necrosis. A short 2-h preincubation of rat thymocytes in the presence of FA-albumin complexes was sufficient to induce a significant enrichment of cell phospholipids with each FA and to stimulate thymocyte PLD activity. However, 20:5n-3 was inactive despite a large enrichment in phospholipids. Furthermore, the PLD activity of activated thymocytes was negatively correlated to the proliferative response, with the exception of 20:5n-3-supplemented cells. These results support further our current hypothesis that PLD activity conveys antiproliferative signals in lymphoid cells, and suggest that 20:5n-3 inhibits thymocyte proliferation by a particular mechanism unrelated to that of the other FAs.  相似文献   

6.
The n-3 and n-6 series of polyunsaturated fatty acids (PUFAs) are important for numerous metabolic functions that reduce the risk of inflammation, cancer, and heart diseases. These fatty acids (FAs) have been detected in high concentrations in some species of algae. The amount of the n-3 and n-6 PUFAs is closely associated with abiotic factors, such as solar radiation intensity, salinity, and temperature variation. However, abiotic influence on PUFA levels, along with the physiological function of these molecules in algae, remains inconclusive. In the present study, the quantities of the n-3 and n-6 in Antarctic red algae species Iridaea cordata, Palmaria decipiens, Plocamium cartilagineum, and Pyropia endiviifolia were determined. The lipids were extracted from the macroalgae according to the method followed by Bligh and Dyer (1959) and converted to methyl esters for further analysis using gas chromatography. The main n-6 PUFA identified and quantified in this study of Antarctic red algae were linoleic acid (18:2n-6), dihomo-γ-linolenic acid (20:3n-6), and arachidonic acid (20:4n-6). The eicosapentaenoic acid was detected at high concentrations in all species, with approximately 62.8% of total FA in P. endiviifolia, 75.4% in P. decipiens, 50.4% in I. cordata, and 20.1% in P. cartilagineum. The results corroborate those of the literature and show that PUFAs increased in red algae environments, with increased production of n-3 and n-6 PUFAs.  相似文献   

7.
We examined the relationship between the transbilayer distribution of aminophospholipids, such as phosphatidylethanolamine (PE), PE plasmalogen and phosphatidylserine, and the oxidative stability of polyunsaturated fatty acids (PUFAs) in the aminophospholipids. To modulate the transbilayer distribution of aminophospholipid in liposomes, we used phosphatidylcholine (PC) with two types of acyl chain region: dipalmitoyl (PC16:0) or dioleoyl (PC18:1). In the smaller-sized liposomes, the proportions of aminophospholipid in the liposomal external layer were significantly higher in liposomes containing PC18:1 than in those containing PC16:0. Additionally, aminophospholipids in the external layer of smaller-sized liposomes were able to protect their component PUFAs from 2,2'-azobis(2-amidinopropane)dihydrochloride-mediated lipid peroxidation.  相似文献   

8.
Phenytoin sodium/diphenyl hydantoin (DPH) is used by a major segment of epileptics and neuro surgery patients with head injury to prevent seizures. DPH is a known mutagen, carcinogen, and teratogen. Essential fatty acids (EFAs) are critical for various tissues and were reported to act as anti-mutagenic agents. In the present study we assessed the effect of five EFAs on DPH-induced genetic damage both in vitro and in vivo. DPH induced significant genetic damage. Of all the EFAs (linoleic acid, α-linolenic acid, gamma-linolenic acid, arachidonic acid, dihomo-gamma-linolenic acid, and eicosapentaenoic acid) studied, all except eicosapentaenoic acid showed significant decrease in DPH induced genetic damage as assessed by micronucleus (MN) test. However, gamma-linolenic acid (GLA) was found to be the most effective in reducing the number of MN containing lymphocytes both in vitro and in vivo to control values. EFAs when tested alone produced insignificant increase in the amount of genetic damage but when tested in combination with DPH the number of micronuclei containing lymphocytes was reduced; but the DNA ladder pattern, an indication of DNA damage, was increased. This apparently paradoxical action of EFAs, especially of GLA, suggests that, in all probability, fatty acids induce apoptosis of cells that harbor significant DNA damage. Based on these results we suggest that GLA functions as a unique endogenous molecule that protects cells from accumulating genetic damage.  相似文献   

9.
10.
Vitamin A (retinol reacts extremely rapidly (k = 1.4 x 10(9) M-1 s-1) with thiyl free radicals derived from glutathione to form a free radical with a very strong visible absorption (lambda max. = 380 nm, E max. = 4.0 x 10(4) M-1 cm-1). Arachidonate, linolenate, linoleate and ascorbate also react readily but much more slowly (k = 2.2 x 10(7), 1.9 x 10(7), 1.3 x 10(7) and 3.6 x 10(8) M-1 s-1 respectively). These results support the possibility that vitamin A might play a role in protecting lipid membranes against thiyl free radical mediated damage.  相似文献   

11.
Menopause is associated with endothelial dysfunction and oxidative stress. In this condition, reduced n-3 polyunsaturated fatty acids (n-3 PUFAs) contribute to cardiovascular disease. We investigated whether treatment with n-3 PUFA reverses endothelial dysfunction and oxidative stress in experimental menopause. Thirty female rats underwent either sham-surgery or bilateral ovariectomy or bilateral ovariectomy+oral n-3 PUFA (0.8 g kg-1 day-1 for 2 months).Ovariectomy caused endothelial dysfunction to acetylcholine, which was reversed by superoxide scavenger Tiron. Erythrocyte membrane lipid composition was characterized by reduced n-3 PUFA total content and omega-3 index, and by concomitant increase in n-6:n-3 PUFA ratio. Ovariectomy-related oxidative stress, demonstrated by both enhanced superoxide production and 3-nitrotyrosine expression in aorta, was associated with increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit NOX-4 protein expression. Endothelial nitric oxide synthase (eNOS) functional inhibition by l-NG-nitroarginine methyl ester, protein expression and activity did not change.In ovariectomized rats, treatment with n-3 PUFA increased n-3 PUFA total content and omega-3 index and decreased n-6:n-3 PUFA ratio in erythrocyte membrane, reversed vascular oxidative stress, endothelial dysfunction, aortic 3-nitrotyrosine and markedly lowered NOX-4 protein expression; eNOS protein expression also increased, paralleled by reversal of inhibitory binding to Caveolin-1, while ex-vivo functional inhibition and NOS synthesis were unchanged.These findings demonstrate in vivo a therapeutic benefit of n-3 PUFA on menopause-associated endothelial dysfunction by reversal of alterations in membrane lipid composition induced by ovariectomy and by reduction of vascular oxidative stress. In this setting they also identify NOX-4 as a potential target to reduce oxidative stress-mediated vascular complications.  相似文献   

12.
Empirical data providing evidence for a colimitation of an herbivore by two or more essential nutrients are scarce, particularly in regard to biochemical resources. Here, a graphical model is presented, which describes the growth of an herbivore in a system with two potentially limiting resources. To verify this model, life-history experiments were conducted with the herbivore Daphnia magna feeding on the picocyanobacterium Synechococcus elongatus, which was supplemented with increasing amounts of cholesterol either in the presence or the absence of saturating amounts of eicosapentaenoic acid (EPA). For comparison, D. magna was raised on diets containing different proportions of S. elongatus and the cholesterol- and EPA-rich eukaryotic alga Nannochloropsis limnetica. Somatic and population growth of D. magna on a sterol- and EPA-deficient diet was initially constrained by the absence of sterols. With increased sterol availability, a colimitation by EPA became apparent and when the sterol requirements were met, the growth-limiting factor was shifted from a limitation by sterols to a limitation by EPA. These data imply that herbivores are frequently limited by two or more essential nutrients simultaneously. Hence, the concept of colimitation has to be incorporated into models assessing nutrient-limited growth kinetics of herbivores to accurately predict demographic changes and population dynamics.  相似文献   

13.
In mammalian tissues and cells, a characteristic of phosphatidylinositol (PI) is a high abundance of arachidonic acid (AA) relative to the other phospholipids. In this study, we investigated the effects of supplementation of several polyunsaturated fatty acids (PUFAs) on the AA concentration of the PI fraction using a cultured cell system. Neither alpha-linolenic acid nor eicosapentaenoic acid supplement reduced the level of AA in PI of HepG2 cells. In contrast to the n-3 series PUFAs, adding podocarpic acid (20:3, Delta-5,11,14) and pinolenic acid (18:3, Delta-5,9,12) reduced the AA content of the PI fraction from a control value of 15.9% to 7.0 and 8.7%, respectively. In the experiments with pinolenic acid, selective and significant accumulation of 20:3 (Delta-7,11,14), the chain-elongated metabolite of pinolenic acid, was observed in the PI fraction. On the other hand, adding columbinic acid (18:3, Delta-5t,9,12) had no effect on AA content of the PI fraction. Because both podocarpic acid and pinolenic acid are non-methylene-interrupted fatty acids (NMIFAs) that are not converted to AA metabolically, these NMIFAs may be interesting experimental tools for research on the function of PI-origin bioactive lipids.  相似文献   

14.
Earlier, we reported that oils rich in omega-3 eicosapentaenoic acid and docosahexaenoic acid and omega-6 gamma-linolenic acid and arachidonic acid prevented the development of alloxan-induced diabetes mellitus in experimental animals. Here we report the results of our studies with pure saturated stearic acid (SA), monounsaturated oleic acid (OA) and omega-6 arachidonic acid (AA) on alloxan-induced diabetes mellitus in Wistar male rats. Prior oral supplementation with AA prevented alloxan-induced diabetes mellitus, whereas both SA and OA were ineffective. Cyclo-oxygenase (COX) and lipoxygenase (LO) inhibitors did not block this protective action of AA against alloxan-induced diabetes, suggesting that both prostaglandins and leukotrienes are not involved, and that AA by itself is effective. Furthermore, AA restored the anti-oxidant status to normal range in various tissues. These results suggest that AA protects pancreatic beta cells against alloxan-induced diabetes in experimental animals by attenuating oxidant stress.  相似文献   

15.
16.
It has recently become clear the role played by alterations in apoptosis during the development of several chronic diseases (i.e. inflammatory, neurodegenerative and neoplastic pathologies). For this reason, the research for possible therapeutic strategies involving the modulation of the apoptotic pathways has attracted considerable interest in the past few years. In particular, it has been shown that apoptosis may be induced or inhibited by a variety of nutritional compounds providing health benefits. The aim of this review is to examine the ability of different dietary polyunsaturated fatty acids (PUFAs) to induce apoptosis, especially in the cancer field. The molecular effects of different PUFAs found in dairy products, meat, fish, vegetable seeds and oils, and known to affect the incidence and progression of cancer and other chronic diseases, will be analyzed. To this aim, our effort will concentrate in critically reviewing the published works concerning the effects of: (a) the n-6 PUFAs γ-linolenic acid, arachidonic acid, and conjugated linoleic acid; (b) the n-3 PUFAs eicosapentaenoic acid and docosahexaenoic acid on the apoptotic process. We will also pay attention to the recent findings regarding the possible role of PUFAs as regulators of the endoplasmic reticulum stress-pathway of apoptosis.  相似文献   

17.
Polyunsaturated fatty acids (PUFAs) can have strong effects on hibernation and daily torpor in mammals. High dietary PUFA contents were found to increase proneness for torpor, decrease body temperatures, prolong torpor bout duration, and attenuate hibernation mass loss. The mechanism by which PUFAs enhance torpor and hibernation is unknown, however. On the basis of a review of the literature, and on reexamining our own data on alpine marmots, we propose that effects on hibernation are not due to PUFAs in general, but to shifts in the ratio of n-6 PUFAs to n-3 PUFAs in membrane phospholipids. Specifically, high ratios of n-6 to n-3 PUFAs increase the activity of the Ca2+-Mg2+ pump in the sarcoplasmic reticulum of the heart (SERCA) and counteract Q10 effects on SERCA activity at low tissue temperatures. Therefore, high n-6 to n-3 PUFA ratios in cardiac myocyte membranes appear to protect the hibernating heart from arrhythmia, which in hypothermic nonhibernators is caused by massive increases in cytosolic Ca2+. The resulting reduced risk of cardiac arrest during hypothermia may explain why increased dietary uptake of n-6 PUFAs, but not of n-3 PUFAs, can strongly enhance the propensity for hibernation, and allows heterotherms to reach lower body temperatures, with associated increased energy savings. Therefore, at least for herbivorous hibernators, such as marmots, linoleic acid (C18:2 n-6)--the dietary source of all n-6 PUFAs--appears to represent a crucial and limited resource in natural environments.  相似文献   

18.
The effect of insulin on [3H]oleate binding to delipidated liver cytosolic proteins was studied in four groups of animals: untreated rats, streptozotocin induced diabetic rats, Psammomys obesus fed salt bush diet, and Psammomys obesus fed ordinary laboratory chow. The distribution of the protein bound [3H]oleate between low and high molecular weight cytosolic proteins in Psammomys differed from the distribution found in rats. Diet induced high insulin diabetes in Psammomys and streptozotocin induced low insulin diabetes in rats, modulated [3H]oleate binding in the same manner.  相似文献   

19.
In this mini review we summarize recent studies from our laboratory that show the involvement of superoxide and the lipid peroxidation product 4-hydroxynonenal in the regulation of mitochondrial uncoupling. Superoxide produced during mitochondrial respiration is a major cause of the cellular oxidative damage that may underlie degenerative diseases and ageing. Superoxide production is very sensitive to the magnitude of the mitochondrial protonmotive force, so can be strongly decreased by mild uncoupling. Superoxide is able to give rise to other reactive oxygen species, which elicit deleterious effects primarily by oxidizing intracellular components, including lipids, DNA and proteins. Superoxide-induced lipid peroxidation leads to the production of reactive aldehydes, including 4-hydroxynonenal. These aldehydic lipid peroxidation products are in turn able to modify proteins such as mitochondrial uncoupling proteins and the adenine nucleotide translocase, converting them into active proton transporters. This activation induces mild uncoupling and so diminishes mitochondrial superoxide production, hence protecting against disease and oxidative damage at the expense of energy production.  相似文献   

20.
This paper summarizes the emerging literature indicating that at least two polyunsaturated fatty acids (PUFA; linoleate, alpha-linolenate) are moderately ketogenic and that via ketone bodies significant amounts of carbon are recycled from these fatty acids into de novo synthesis of lipids including cholesterol, palmitate, stearate and oleate. This pathway (PUFA carbon recycling) is particularly active in several tissues during the suckling period when, depending on the tissue, >200 fold more carbon from alpha-linolenate can be recycled into newly synthesized lipids than is used to make docosahexaenoate. At least in rats, PUFA carbon recycling also occurs in adults and even during extreme linoleate deficiency. Hence, this pathway should be considered an obligatory component of PUFA metabolism. It is still speculative but part of the clinical benefit of the very high fat ketogenic diet in intractable seizures may be achieved by raising plasma levels of PUFA that have anti-seizure effects, especially arachidonate and docosahexaenoate. Hence, in addition to some PUFA being ketogenic substrates, the state of ketosis involves potentially beneficial changes in PUFA homeostasis. Both the molecular controls on these pathways and their clinical significance still need elucidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号