首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is now established that the mitochondrial production of formate is a major process in the endogenous generation of folate-linked one-carbon groups. We have developed an in vivo approach involving the constant infusion of [13C]formate until isotopic steady state is attained to measure the rate of endogenous formate production in rats fed on either a folate-replete or folate-deficient diet. Formate was produced at a rate of 76 μmol·h−1·100 g of body weight−1 in the folate-replete rats, and this was decreased by 44% in folate-deficient rats. This decreased formate production was confirmed in isolated rat liver mitochondria where formate production from serine, the principal precursor of one-carbon groups, was decreased by 85%, although formate production from sarcosine and dimethylglycine (choline metabolites) was significantly increased. We attribute this unexpected result to the demonstrated production of formaldehyde by sarcosine dehydrogenase and dimethylglycine dehydrogenase from their respective substrates in the absence of tetrahydrofolate and subsequent formation of formate by formaldehyde dehydrogenase. Comparison of formate production with the ingestion of dietary formate precursors (serine, glycine, tryptophan, histidine, methionine, and choline) showed that ∼75% of these precursors were converted to formate, indicating that formate is a significant, although underappreciated end product of choline and amino acid oxidation. Ingestion of a high protein diet did not result in increased production of formate, suggesting a regulation of the conversion of these precursors at the mitochondrial level to formate.  相似文献   

2.
1. The concentrations of RNA, DNA and protein are decreased in cells of Euglena gracilis var. bacillaris grown on suboptimum concentrations of vitamin B(12). 2. The addition of vitamin B(12) to deficient cells stimulates the incorporation of [(14)C]formate into the above cell components as well as into thymine of DNA and serine and methionine of protein. 3. In a cell-free system from vitamin B(12)-deficient cells, the incorporation of labelled formate into thymidylate is decreased to a greater extent with uridine than with deoxyuridine as the substrate. 4. The addition of unlabelled glutamate dilutes the radioactivity incorporated into thymine from labelled formate. 5. These results are interpreted to mean that, in DNA synthesis, vitamin B(12) has a greater role in the reduction of ribotides to deoxyribotides than in the reduction of formate to thymine methyl and that the vitamin B(12)-dependent conversion of glutamate into beta-methylaspartate also contributes to thymine synthesis.  相似文献   

3.
The requirements for in vitro mitochondrial protein synthesis have been studied using isolated mitochondria from cultured adrenal Y-1 tumor cells from mice. By reducing the reaction volume to 50 microliter we were able to assay in replicate the requirements for various reaction components using trichloroacetic acid (TCA)-precipitable counts for a quantitative evaluation with time of incubation. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis followed by autoradiography was also used for a qualitative and quantitative evaluation of the translation products. With the optimized system, 1 to 3% of added [35S]methionine was incorporated. The products of mitochondrial protein synthesis range from 70,000 to 5000 molecular weight. Major autoradiographic bands were observed at 38,000, 31,000, 23,000, 20,000, and 5600 molecular weight as separated on 10 to 20% gradient SDS-polyacrylamide gels; however, 20 to 30 protein products of various molecular weights were discernible. Mitochondrial concentrations of 0.8 to 1.4 mg/ml of incubation gave the better incorporation of [35S]methionine per milligram of protein. Total [35S]methionine incorporated into mitochondrial protein was greatest at 25 degrees C after 90 min. Chloramphenicol at 10 micrograms/ml inhibited mitochondrial protein synthesis by more than 50% and at 100 micrograms/ml inhibited incorporation by more than 95%. Cycloheximide had no effect on incorporation at less than 1.0 mg/ml. Magnesium and ATP in a molar ratio of one to one at 5 mM gave optimal incorporation. Other energy generating systems using oxidative phosphorylation to supply ATP for protein synthesis were not as effective as ATP and 5 mM phosphoenol pyruvate, 20 micrograms/ml pyruvate kinase and 5 mM a-ketoglutarate. In contrast to in vitro yeast mitochondrial protein synthesis, no enhancement of in vitro adrenal cell mitochondrial protein synthesis was found with GTP or its analogs. The buffers N,N-bis(2-hydroxyethyl)glycine, N-(tris(hydroxymethyl)methyl)glycine, and N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid were superior to Tris-HCl for mitochondrial protein synthesis. Optimal pH for [35S]methionine incorporation into mitochondrial proteins was pH 7.0 to 7.6. Potassium at 50 to 90 mM gave the best incorporation of [35S]methionine, and the higher molecular weight products of translation were enhanced at these concentrations. Sodium at 10 to 40 mM had no effect; however, 100 mM sodium inhibited label incorporation by 30%. Calcium at 100 microM inhibited mitochondrial protein synthesis by approximately 50%, and at 1.0 mM little if any incorporation occurred.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
In eukaryotes, enzymes responsible for the interconversion of one-carbon units exist in parallel in both mitochondria and the cytoplasm. Strains of Saccharomyces cerevisiae were constructed that possess combinations of gene disruptions at the SHM1 [mitochondrial serine hydroxymethyltransferase (SHMTm)], SHM2 [cytoplasmic SHMT (SHMTc)], MIS1 [mitochondrial C(1)-tetrahydrofolate synthase (C(1)-THFSm)], ADE3 [cytoplasmic C(1)-THF synthase (C(1)-THFSc)], GCV1 [glycine cleavage system (GCV) protein T], and the GLY1 (involved in glycine synthesis) loci. Analysis of the in vivo growth characteristics and phenotypes was used to determine the contribution to cytoplasmic nucleic acid and amino acid anabolism by the mitochondrial enzymes involved in the interconversion of folate coenzymes. The data indicate that mitochondria transport formate to the cytoplasmic compartment and mitochondrial synthesis of formate appears to rely primarily on SHMTm rather than the glycine cleavage system. The glycine cleavage system and SHMTm cooperate to specifically synthesize serine. With the inactivation of SHM1, however, the glycine cleavage system can make an observable contribution to the level of mitochondrial formate. Inactivation of SHM1, SHM2 and ADE3 is required to render yeast auxotrophic for TMP and methionine, suggesting that TMP synthesized in mitochondria may be available to the cytoplasmic compartment.  相似文献   

5.
Liver mitochondria from rats fed ethanol chronically demonstrate an impaired ability to incorporate [35S]methionine into polypeptide products in vitro. This ethanol-induced effect on mitochondrial translation in vitro could not be attributed to significant differences in the methionine precursor pool sizes of ethanol and control mitochondria or to the acute effects of residual ethanol. The observed reduction of radiolabeled methionine incorporation into mitochondrial gene products of ethanol mitochondria in vitro reflects a decrease in the synthesis of all the mitochondrial gene products. However, the percentage of total radiolabel incorporated into each gene product is unaffected by ethanol, suggesting an ethanol-induced coordinate depression of mitochondrial protein synthesis. Moreover, SDS-PAGE and densitometry of submitochondrial particles from ethanol-fed and control rats demonstrated that the steady-state concentration of each of the mitochondrial gene products is decreased in ethanol-fed rats. This reduction of the steady-state concentration of the mitochondrial gene products may be related to the observed depressions of oxidative phosphorylation activities associated with hepatic mitochondria from ethanol-fed rats.  相似文献   

6.
Extracts of Klebsiella pneumoniae convert 5-S-methyl-5-thio-D-ribose (methylthioribose) to methionine and formate. To probe the terminal steps of this biotransformation, [1-13C]methylthioribose has been synthesized and its metabolism examined. When supplemented with Mg2+, ATP, L-glutamine, and dioxygen, cell-free extracts of K. pneumoniae converted 50% of the [1-13C]methylthioribose to [13C]formate. The formation of [13C]formate was established by 13C and 1H NMR spectroscopy studies of the purified formate, and by 13C and 1H NMR spectroscopy and mass spectrometry studies of its p-phenylphenacyl derivative. By contrast, no incorporation of label from [1-13C]methylthioribose into the biosynthesized methionine was detected by either mass spectrometry or 13C and 1H NMR spectroscopy. The most reasonable interpretation of these results is that C-1 of methylthioribose is converted directly to formate concomitant with the conversion of carbon atoms 2-5 to methionine. The penultimate step in the conversion of methylthioribose to methionine and formate is an oxidative carbon-carbon bond cleavage reaction in which an equivalent of dioxygen is consumed. To investigate the fate of the dioxygen utilized in this reaction, the metabolism of [1-13C]methylthioribose in the presence of 18O2 was also examined. Mass spectrometry revealed the biosynthesis of substantial amounts of both [18O1]methionine and [13C, 18O1]formate under these conditions. These results suggest that the oxidative transformation in the conversion of methylthioribose to methionine and formate may be catalyzed by a novel intramolecular dioxygenase. A mechanism for this dioxygenase is proposed.  相似文献   

7.
Antimycin A-dependent induction of cyanide-resistant respiration in Hansenula anomala was reversibly blocked by carbonylcyanide-m-chlorophenylhydrazone (CCCP). When the cells were pulse-labeled with [35S]methionine in the presence of both antimycin A and CCCP, the radioactivity was incorporated into a 39 kDa mitochondrial protein. Upon removal of CCCP, this protein was processed into a 36 kDa form. The increase in the 36 kDa protein completely paralleled that in cyanide-resistant respiration activity, suggesting that the 39 kDa protein is the precursor of the 36 kDa protein, which is responsible for cyanide-resistant respiration.  相似文献   

8.
Many of nitric oxide's biological effects are mediated via NO binding to the iron in heme-containing proteins. Cobalamin (vitamin B(12)) is structurally similar to heme and is a cofactor for methionine synthase, a key enzyme in folate metabolism. NO inhibits methionine synthase activity in vitro, but data concerning NO binding to cobalamin are controversial. We now show spectroscopically that NO reacts with all three valency states of cobalamin and that NO's inhibition of methionine synthase activity most likely involves its reaction with monovalent cobalamin. By following incorporation of the methyl moiety of [(14)C]methyltetrahydrofolic acid into protein, we show that NO inhibits methionine synthase activity in vivo, in cultured mammalian cells. The inhibition of methionine synthase activity disrupted carbon flow through the folate pathway as measured by decreased incorporation of [(14)C]formate into methionine, serine, and purine nucleotides. Homocysteine, but not cysteine, attenuated NO's inhibition of purine synthesis, providing further evidence that NO was acting through methionine synthase inhibition. NO's effect was observed both when NO donors were added to cells and when NO was produced physiologically in co-culture experiments. Treating cells with an NO synthase inhibitor increased formate incorporation into methionine, serine, and purines and methyl-tetrahydrofolate incorporation into protein. Thus, physiological concentrations of NO appear to regulate carbon flow through the folate pathway.  相似文献   

9.
Aeration of carrot storage tissue disks in water was accompanied by net folate synthesis and by changes in the specific activities of key folate-dependent enzymes. Disks aerated in 0.1 mM gibberellic acid (GA3) for 48 hr contained higher concentrations of methyltetrahydrofolates but aeration in 5 mM L-methionine reduced net folate synthesis. Gibberellic acid also increased the specific activities of 5,10-methylenetetrahydrofolate reductase (E.C. 1.1.1.68), serine hydroxymethyltransferase (E.C. 2.1.2.1) and 5-methyltetrahydrofolate: homocysteine transmethylase. The levels of these enzymes in disks aerated in L-methionine (5 mM) were comparable or slightly higher than those of disks aerated in water. Activity of the reductase and 10-formyltetrahydrofolate synthetase (E.C. 6.3.4.3) was inhibited by L-methionine in vitro. Aeration increased ability to incorporate formate [14C] into serine, glycine and methionine. Disks aerated for 36 hr in 0.1 mM GA3 incorporated greater amounts of 14C into free methionine but those aerated in L-methionine (5 mM) had less ability to metabolize formate and the specific radioactivities of free glycine, serine and methionine were low.  相似文献   

10.
Nguyen KT  Pei D 《Biochemistry》2005,44(23):8514-8522
N-Formyl peptides are derived from proteolytic degradation/processing of bacterial and mitochondrial proteins and serve as potent chemoattractants for mammalian phagocytic leukocytes. A response to the chemotactic N-formyl peptides released by commensal bacteria in the gut region could be detrimental, leading to unwanted inflammation. Here, two enzymes that act sequentially to degrade N-formyl peptides were purified from the rat intestinal mucosal layer and biochemically characterized. The first enzyme cleaves chemotactic peptide f-MLF to release N-formylmethionine (f-Met) and dipeptide leucylphenylalanine, with a k(cat) value of 14 s(-)(1), a K(M) value of 0.60 mM, and a k(cat)/K(M) value of 22 500 M(-)(1) s(-)(1). In-gel tryptic digestion followed by mass spectral fingerprinting identified the protein as the alpha-N-acylpeptide hydrolase (or acylamino acid-releasing enzyme, EC 3.4.19.1). The second enzyme hydrolyzes N-formylmethionine into formate and methionine with a k(cat) value of 7.9 s(-)(1), a K(M) value of 3.1 mM, and a k(cat)/K(M) value of 2550 M(-)(1) s(-)(1). This protein was identified as the N-acylase IA (or N(alpha)-acyl-l-amino acid amidohydrolase, EC 3.5.1.14). Together, these two enzymes play a protective role in degrading bacterial and mitochondrial N-formylated peptides.  相似文献   

11.
When Escherichia coli was grown in the presence of tungstate, inactive forms of two molybdoenzymes, nitrate reductase and formate dehydrogenase, accumulated and were converted to their active forms upon incubation of cell suspensions with molybdate and chloramphenicol. The conversion to the active enzymes did not occur in cell extracts. When incubated with [(99)Mo]molybdate and chloramphenicol, the tungstate-grown cells incorporated (99)Mo into protein components which were released from membranes by procedures used to release nitrate reductase and formate dehydrogenase and which migrated with these activities on polyacrylamide gels. Although neither activity was formed during incubation of the crude extract with molybdate, (99)Mo was incorporated into protein components which were released from the membrane fraction under the same conditions and were similar to the active enzymes in their electrophoretic properties. The in vitro incorporation of (99)Mo occurred specifically into these components and was equal to or greater than the amount incorporated in vivo under the same conditions. Molybdenum in preformed, active nitrate reductase and formate dehydrogenase did not exchange with [(99)Mo]molybdate, demonstrating that the observed incorporation depended on the demolybdo forms of the enzymes. We conclude that molybdate may be incorporated into the demolybdo forms both in vivo and in vitro; some unknown additional factor or step, required for active enzyme formation, occurs in vivo but not in vitro under the conditions employed.  相似文献   

12.
The effect of inactivation of cobalamin by N2O on the intestinal absorption of folate was studied using rat everted gut sacs. Further, in view of uncertainties about the presence of methionine synthetase in gut [1], this enzyme was measured. Everted gut sacs were incubated with [2-14C]tetrahydrofolate, and the subsequent appearance of labelled formyl- and methyl [14C] tetrahydrofolate in everted segments of small intestine of rats was studied. Considerable methionine synthetase activity was present in washed everted gut sacs but not in gut segments in the absence of such treatment. Methionine synthetase activity declined after exposure to N2O, which oxidizes and inactivates cob(I)alamin. Folate uptake by gut sacs was not affected by 24 h exposure of the animals to N2O but fell significantly after 7 days exposure. There was a significant fall in the amount of formyltetrahydrofolate formed after cobalamin inactivation and this was reversed by supplying either methionine, methylthioadenosine or sodium formate. Serine had no effect. The data support the hypothesis that methionine and methylthioadenosine act by supplying single carbon units at the formate level of oxidation.  相似文献   

13.
Methionine restriction without energy restriction increases, like caloric restriction, maximum longevity in rodents. Previous studies have shown that methionine restriction strongly decreases mitochondrial reactive oxygen species (ROS) production and oxidative damage to mitochondrial DNA, lowers membrane unsaturation, and decreases five different markers of protein oxidation in rat heart and liver mitochondria. It is unknown whether methionine supplementation in the diet can induce opposite changes, which is also interesting because excessive dietary methionine is hepatotoxic and induces cardiovascular alterations. Because the detailed mechanisms of methionine-related hepatotoxicity and cardiovascular toxicity are poorly understood and today many Western human populations consume levels of dietary protein (and thus, methionine) 2–3.3 fold higher than the average adult requirement, in the present experiment we analyze the effect of a methionine supplemented diet on mitochondrial ROS production and oxidative damage in the rat liver and heart mitochondria. In this investigation male Wistar rats were fed either a L-methionine-supplemented (2.5 g/100 g) diet without changing any other dietary components or a control (0.86 g/100 g) diet for 7 weeks. It was found that methionine supplementation increased mitochondrial ROS generation and percent free radical leak in rat liver mitochondria but not in rat heart. In agreement with these data oxidative damage to mitochondrial DNA increased only in rat liver, but no changes were observed in five different markers of protein oxidation in both organs. The content of mitochondrial respiratory chain complexes and AIF (apoptosis inducing factor) did not change after the dietary supplementation while fatty acid unsaturation decreased. Methionine, S-AdenosylMethionine and S-AdenosylHomocysteine concentration increased in both organs in the supplemented group. These results show that methionine supplementation in the diet specifically increases mitochondrial ROS production and mitochondrial DNA oxidative damage in rat liver mitochondria offering a plausible mechanism for its hepatotoxicity.  相似文献   

14.
Previous studies in our laboratory showed that isolated, intact adult rat liver mitochondria are able to oxidize the 3-carbon of serine and the N-methyl carbon of sarcosine to formate without the addition of any other cofactors or substrates. Conversion of these 1-carbon units to formate requires several folate-interconverting enzymes in mitochondria. The enzyme(s) responsible for conversion of 5,10-methylene-tetrahydrofolate (CH(2)-THF) to 10-formyl-THF in adult mammalian mitochondria are currently unknown. A new mitochondrial CH(2)-THF dehydrogenase isozyme, encoded by the MTHFD2L gene, has now been identified. The recombinant protein exhibits robust NADP(+)-dependent CH(2)-THF dehydrogenase activity when expressed in yeast. The enzyme is localized to mitochondria when expressed in CHO cells and behaves as a peripheral membrane protein, tightly associated with the matrix side of the mitochondrial inner membrane. The MTHFD2L gene is subject to alternative splicing and is expressed in adult tissues in humans and rodents. This CH(2)-THF dehydrogenase isozyme thus fills the remaining gap in the pathway from CH(2)-THF to formate in adult mammalian mitochondria.  相似文献   

15.
The availability of a series of phage T4 lysozymes with up to 14 methionine residues incorporated within the protein has made it possible to systematically compare the effect on protein stability of selenomethionine relative to methionine. Wild-type lysozyme contains two fully buried methionine residues plus three more on the surface. The substitution of these methionine residues with selenomethionine slightly stabilizes the protein. As more and more methionine residues are substituted into the protein, there is a progressive loss of stability. This is, however, increasingly offset in the selenomethionine variants, ultimately resulting in a differential increase in melting temperature of about 7 degrees C. This increase, corresponding to about 0.25 kcal/mol per substitution, is in reasonable agreement with the difference in the solvent transfer free energy between the two amino acids.  相似文献   

16.
ABSTRACT. The fate of the [methyl-14C] group of S-adenosylmethionine (AdoMet) in bloodstream forms of Trypanosoma brucei brucei, was studied. Trypanosomes were incubated with either [methyl-14C]methionine, [U-14C]methionine, S-[methyl-14C]AdoMet or [35S]methionine and incorporation into the total TCA precipitable fractions was followed. Incorporation of label into protein through methylation was estimated by comparing molar incorporation of [methyl-14C] and [U-14C]methionine to [35S]methionine. After 4-h incubation with [U-14C]methionine, [methyl-14C]methionine or [35S]methionine, cells incorporated label at mean rates of 2,880 pmol, 1,305 pmol and 296 pmol per mg total cellular protein, respectively. Cells incubated with [U-14C] or [methyl-14C]methionine in the presence of cycloheximide (50 μg/ml) for four hours incorporated label eight- and twofold more rapidly, respectively, than cells incubated with [35S]methionine and cycloheximide. [Methyl-14C] and [U-14C]methionine incorporation were > 85% decreased by co-incubation with unlabeled AdoMet (1 mM). The level of protein methylation remaining after 4-h treatment with cycloheximide was also inhibited with unlabeled AdoMet. The acid precipitable label from [U-14C]methionine incorporation was not appreciably hydrolyzed by DNAse or RNAse treatment but was 95% solubilized by proteinase K. [U-14C]methionine incorporated into the TCA precipitable fraction was susceptible to alkaline borate treatment, indicating that much of this label (55%) was incorporated as carboxymethyl groups. The rate of total lipid methylation was found to be 1.5 times that of protein methylation by incubating cells with [U-14C]methionine for six hours and differential extraction of the TCA lysate. These studies show T. b. brucei maintains rapid lipid and protein methylation, confirming previous studies demonstrating rapid conversion of methionine to AdoMet and subsequent production of post-methylation products of AdoMet in African trypanosomes.  相似文献   

17.
Extracts of Klebsiella pneumoniae oxidatively convert 1-phospho-5-S-methylthioribose (1-PMTR) to alpha-keto-gamma-methylthiobutyrate, a precursor of methionine, and to S-methylthiopropionate and formate. One equivalent of formate is produced per equivalent of alpha-keto-gamma-methylthiobutyrate and two equivalents of formate per equivalent of methylthiopropionate. Two compounds were identified as intermediates in this reaction sequence: 1-phospho-5-S-methylthioribulose (1-PMT-ribulose) and 1-phospho-2,3-diketo-5-S-methylpentane. The enzyme, 1-PMTR isomerase, which converts 1-PMTR to 1-PMT-ribulose was highly purified. In addition, a protein fraction was isolated which converts 1-PMT-ribulose to the phosphodiketone. A second protein fraction was isolated that converts the phosphodiketone to an intermediate which has not been isolated so far. This intermediate is oxidatively converted to alpha-keto-gamma-methylthiobutyrate and S-methylthiopropionate by a third protein fraction. Methylthiopropionate is not derived from free alpha-keto-gamma-methylthiobutyrate.  相似文献   

18.
Lipoamide dehydrogenase (LADase) was purified to homogeneity from rat liver mitochondria, and the intracellular distribution and biosynthesis of the LADase were investigated with antibody prepared against the purified enzyme. 1) LADase activity was mostly found in mitochondria; the activity in cytosol was about one-tenth of that in mitochondria. 2) LADase in the crude mitochondrial and cytosolic extracts and the purified LADase were immunologically identical as judged from the Ouchterlony double diffusion test. These LADases were indistinguishable from each other on immunochemical titration; i.e., the amount of LADase precipitated by a fixed amount of the anti-LADase antibody was the same for all the preparations. However, cytosolic LADase activity was inhibited by the antibody more strongly than mitochondrial LADase activity. 3) Two min after intravenous injection of [35S]methionine, more radioactivity was incorporated into cytosolic LADase than into the mitochondrial enzyme in the liver. This result suggests that localization of LADase in the cytosolic fraction is not an artifact due to leakage from mitochondria during homogenization of rat liver. 4) LADase was synthesized predominantly on free ribosomes, which indicates that LADase is synthesized on cytoplasmic ribosomes and translocated into mitochondria just as other mitochondrial proteins are. 5) After cell-free protein synthesis with post-mitochondrial supernatant, radioactivity immunoprecipitated with anti-LADase antibody was detected as a major peak with the same molecular weight as the purified LADase.  相似文献   

19.
According to the mitochondrial theory of aging, mitochondrial dysfunction increases intracellular reactive oxidative species production, leading to the oxidation of macromolecules and ultimately to cell death. In this study, we investigated the role of the mitochondrial methionine sulfoxide reductase B2 in the protection against oxidative stress. We report, for the first time, that overexpression of methionine sulfoxide reductase B2 in mitochondria of acute T-lymphoblastic leukemia MOLT-4 cell line, in which methionine sulfoxide reductase A is missing, markedly protects against hydrogen peroxide-induced oxidative stress by scavenging reactive oxygen species. The addition of hydrogen peroxide provoked a time-gradual increase of intracellular reactive oxygen species, leading to a loss in mitochondrial membrane potential and to protein carbonyl accumulation, whereas in methionine sulfoxide reductase B2-overexpressing cells, intracellular reactive oxygen species and protein oxidation remained low with the mitochondrial membrane potential highly maintained. Moreover, in these cells, delayed apoptosis was shown by a decrease in the cleavage of the apoptotic marker poly(ADP-ribose) polymerase-1 and by the lower percentage of Annexin-V-positive cells in the late and early apoptotic stages. We also provide evidence for the protective mechanism of methionine sulfoxide reductase B2 against protein oxidative damages. Our results emphasize that upon oxidative stress, the overexpression of methionine sulfoxide reductase B2 leads to the preservation of mitochondrial integrity by decreasing the intracellular reactive oxygen species build-up through its scavenging role, hence contributing to cell survival and protein maintenance.  相似文献   

20.
Polypeptide decay has been measured as a function of membrane potential. Mitochondrial translation products were pulse-labeled in vitro with [35S]methionine using isolated rat heart mitochondria in the presence of an energy-generating system. The relative rate of protein degradation was estimated from the specific activity (counts/min/mg of protein) of the labeled translation products following the addition of unlabeled methionine (chase). To modulate membrane potential, inhibitors of oxidative phosphorylation were used singly or in combination; their effect was monitored by following uptake of the nonmetabolizable lipophilic cation triphenylmethylphosphonium. When the potential was dissipated, the rate of polypeptide decay increased and vice versa. These results suggest that the stability of mitochondrial translation products is linked to a process(es) that is dependent upon delta psi; likely candidates include synthesis and/or assembly of mitochondrial gene products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号