首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The nematode Steinernema carpocapsae (All) strain was significantly more effective against peachtree borer larvae (Synanthedon exitiosa [Lepidoptera: Sesiidae]) than Steinernema riobrave (7-12) strain in field and laboratory experiments. Eighty-eight percent control of peachtree borer larvae was obtained with S. carpocapsae in the field trial when applied at 3 x 10(5) infective juveniles per tree, and 92% mortality was obtained in the lab assay using 50 infective juveniles per larva.  相似文献   

2.
The effect of soil moisture on the distribution of Steinernema riobrave in a sand column was determined. Larvae of Pectinophora gossypiella were used to detect S. riobrave infective juveniles (IJ) in each 2.5-cm section of 30-cm-long soil columns. Soil moisture was determined for each section and related to the numbers of nematodes recovered from infected insect baits. Infective juveniles of S. riobrave applied on the sand column surface showed some degree of positive geotaxis. IJ in soil columns with a consistent moisture gradient grouped in the upper 12.7 cm within a water potential range of ¯40 to ¯0.0055 MPa (2% to 14% moisture). Nematodes in sand columns that were gradually dehydrating moved down the soil column, aggregating on the 28th day between 15-23 cm in depth. Nematode redistribution over time allowed IJ to remain within a water potential range of ¯0.1 to ¯0.012 MPa (5.2% to 9.5% moisture).  相似文献   

3.
The nematode Steinernema carpocapsae infects and kills many pest insects in agro-ecosystems and is commonly used in biocontrol of these pests. Growth of the nematodes prior to distribution for biocontrol commonly results in deterioration of traits that are essential for nematode persistence in field applications. To better understand the mechanisms underlying trait deterioration of the efficacy of natural parasitism in entomopathogenic nematodes, we explored the maintenance of fitness related traits including reproductive capacity, heat tolerance, virulence to insects and ‘tail standing’ (formerly called nictation) among laboratory-cultured lines derived from natural, randomly mating populations of S. carpocapsae. Laboratory cultured nematode lines with fitness-related trait values below wild-type levels regained wild-type levels of reproductive and heat tolerance traits when outcrossed with a non-deteriorated line, while virulence and ‘tail standing’ did not deteriorate in our experiments. Crossbreeding two trait-deteriorated lines with each other also resulted in restoration of trait means to wild-type levels in most crossbred lines. Our results implicate inbreeding depression as the primary cause of trait deterioration in the laboratory cultured S. carpocapsae. We further suggest the possibility of creating inbred lines purged of deleterious alleles as founders in commercial nematode growth.  相似文献   

4.
The quality of an insect as a host to an entomopathogenic nematode infective juvenile depends in part on whether or not the insect is already infected and on the stage of that infection. Previous research has shown that nematode response to hosts can change after infection and that, for uninfected hosts, CO(2) can be an important cue used by infective stage juveniles during attraction. We hypothesized that CO(2) production from an insect changes after it is infected, and that these changes could influence nematode infection decisions. Changes in CO(2) released by two insect species (Galleria mellonella and Tenebrio molitor) after infection by one of four nematode species (Steinernema carpocapsae, Steinernema feltiae, Steinernema glaseri, or Steinernema riobrave) were measured. Measurements were taken every 2h from time of initial exposure to nematodes up to 224 h after infection. Dead (freeze-killed) and live uninfected insects were used as controls. Infected G. mellonella showed two distinct peaks of CO(2) production: one between 20 and 30 h and the other between 70 and 115 h after exposure to the nematodes. Peaks were up to two times higher than levels produced by uninfected insects. Infected T. molitor showed only one peak between 25 and 50h. We found differences in peak height and timing among nematode and insect species combinations. The influence of these changes in CO(2) production on IJ attraction and infection behavior remains to be determined.  相似文献   

5.
We tested the effect of soil type on the performance of the entomopathogenic pathogenic nematodes Steinernema scarabaei, Steinernema glaseri, Heterorhabditis zealandica, and Heterorhabditis bacteriophora. Soil types used were loamy sand, sandy loam, loam, silt loam, clay loam, acidic sand, and a highly organic potting mix. Infectivity was tested by exposing third-instar Anomala orientalis or Popillia japonica to nematodes in laboratory and greenhouse experiments and determining nematode establishment in the larvae and larval mortality. Infectivity of H. bacteriophora and H. zealandica was the highest in potting mix, did not differ among loamy sand and the loams, and was the lowest in acidic sand. Infectivity of S. glaseri was significantly lower in acidic sand than in loamy sand in a laboratory experiment but not in a greenhouse experiment, and did not differ among the other soils. Infectivity of S. scarabaei was lower in silt loam and clay loam than in loamy sand in a greenhouse experiment but not in a laboratory experiment, but was the lowest in acidic sand and potting mix. Persistence was determined in laboratory experiments by baiting nematode-inoculated soil with Galleria mellonella larvae. Persistence of both Heterorhabditis spp. and S. glaseri was the shortest in potting mix and showed no clear differences among the other substrates. Persistence of S. scarabaei was high in all substrates and its recovery declined significantly over time only in clay loam. In conclusion, generalizations on nematode performance in different soil types have to be done carefully as the effect of soil parameters including soil texture, pH, and organic matter may vary with nematode species.  相似文献   

6.
Galleria mellonella larvae infected with Steinernema riobrave soon showed (after 24 h) the typical growth of its Xenorhabdus sp. RIO symbiont and, in parallel, the growth of another Gram negative bacterial species in the body cavity. A population of Entercoccus sp. in the nematode infected larvae collapsed to zero by 96 h. The level of antibiotic and antimycotic activity followed a pattern similar to that of the growth curve to stationary phase of the Xenorhabdus sp. RIO symbiont, over a period of 168 h. The antimycotic activity was composed of exo- and endochitinases as well as other proteinaceous and some small molecule compounds. The changing pH, relatively high growth rate of Xenorhabdus sp. RIO compared with that of other Gram negative bacterial species and of collapse of the Enterococcus sp. population enabled Xenorhabdus sp. RIO to out-compete other species.  相似文献   

7.
The objective of this study was to determine the susceptibility of the two primary direct insect pests of hazelnuts in Oregon to three species of entomopathogenic nematodes. The entomopathogenic nematodes (Heterorhabditis marelatus Pt. Reyes, Steinernema carpocapsae All and Steinernema kraussei L137) were used in laboratory soil bioassays to determine their virulence against filbertworm, Cydia latiferreana (Walsingham) (Lepidoptera: Tortricidae) and filbert weevil, Curculio occidentalis (Casey) (Coleoptera: Curculionidae). All three nematode species were infective in laboratory bioassays. Infectivity ranged from 73-100% and 23-85% for filbertworm and filbert weevil, respectively. Field results were similar to those found in the laboratory with filbertworm larvae being more susceptible to nematode infection.  相似文献   

8.
9.
The cotton boll weevil, Anthonomus grandis, is an economically important pest of cotton in tropical and subtropical areas of several countries in the Americas, causing severe losses due to their damage in cotton floral buds. Enzymatic assays using gut extracts from larval and adult boll weevil have demonstrated the presence of digestive serine proteinase-like activities. Furthermore, in vitro assays showed that soybean Kunitz trypsin inhibitor (SKTI) was able to inhibit these enzymes. Previously, in vivo effects of black-eyed pea trypsin chymotrypsin inhibitor (BTCI) have been demonstrated towards the boll weevil pest. Here, when neonate larvae were reared on an artificial diet containing SKTI at three different concentrations, a reduction of larval weight of up to 64% was observed for highest SKTI concentration 500 microM. The presence of SKTI caused an increase in mortality and severe deformities of larvae, pupae and adult insects. This work therefore represents the first observation of a Kunitz trypsin inhibitor active in vivo and in vitro against A. grandis. Bioassays suggested that SKTI could be used as a tool in engineering crop plants, which might exhibit increased resistance against cotton boll weevil.  相似文献   

10.
Entomopathogenic nematodes (EPNs) distribution in natural areas and crop field edges in La Rioja (Northern Spain) has been studied taking into account environmental and physical-chemical soil factors. Five hundred soil samples from 100 sites of the most representative habitats were assayed for the presence of EPNs. The occurrence of EPNs statistically fitted to a negative binomial distribution, which pointed out that the natural distribution of these nematodes in La Rioja was in aggregates. There were no statistical differences (p < or = 0.05) in the abundance of EPNs to environmental and physical-chemical variables, although, there were statistical differences in the altitude, annual mean air temperature and rainfall, potential vegetation series and moisture percentage recovery frequency. Twenty-seven samples from 14 sites were positive for EPNs. From these samples, twenty isolates were identified to a species level and fifteen strains were selected: 11 Steinernema feltiae, two S. carpocapsae and two S. kraussei strains. S. kraussei was isolated from humid soils of cool and high altitude habitats and S. carpocapsae was found to occur in heavy soils of dry and temperate habitats. S. feltiae was the most common species with a wide range of altitude, temperature, rainfall, pH and soil moisture, although this species preferred sandy soils. The virulence of nematode strains were assessed using G. mellonella as insect host, recording the larval mortality percentage and the time to insect die, as well as the number of infective juveniles produced to evaluate the reproductive potential and the time tooks to leave the insect cadaver to determinate the infection cycle length. The ecological trends and biological results are discussed in relationship with their future use as biological control.  相似文献   

11.
Termites exploit microbially rich resources such as decayed wood and soil that are colonized by potentially pathogenic and parasitic fungi, bacteria, viruses, and nematodes. In colonies composed of thousands of individuals, the risk of infection among nestmates is significant, and individual and social behavior could involve various adaptations to resist disease and parasitism. Here we show that the dampwood termite Zootermopsis angusticollis (Hagen) exhibits a dosage dependent susceptibility to the soil nematode Steinernema carpocapsae (Weiser) (Mexican strain) and that this social insect significantly alters its behavior in response to this entomopathogenic roundworm. Relative to their baseline behavior, termites exposed to infective juveniles increased the frequency and duration of allogrooming and vibratory displays as well as two other novel behaviors, abdominal tip-raising and self-scratching. Whereas the first two behaviors likely reflect general adaptations to reduce susceptibility to a variety of pathogens and parasites, the latter behaviors might be specific to nematodes because they have never been observed in Z. angusticollis in any other pathogenic context. Our results support the hypotheses that behavioral responses in termites are important in the control of pathogenic and parasitic microorganisms and that termite susceptibility is socially mediated.  相似文献   

12.
The potential of entomopathogenic nematodes, Heterorhabditis bacteriophora, Heterorhabditis zealandica and Steinernema khoisanae, to infect pupariating larvae, pupae and adults of Ceratitis capitata and Ceratitis rosa was investigated in laboratory bioassays. Pupariating larvae and adult flies were susceptible to nematode infection, with no infection recorded for the pupae. Pupariating larvae of C. capitata were generally more susceptible to infection than those of C. rosa. Significantly more larvae of C. capitata were infected by H. bacteriophora. For C. rosa, highest infectivity of larvae was obtained with H. zealandica. In contrast, adults of both species were highly infected by S. khoisanae.  相似文献   

13.
Polyacrylamide gel electrophoresis was used to examine gut, Malpighian tube, fat-body, testes, and ovariole tissues of the adult cotton boll weevil, Anthonomus grandis Boh. Esterases for which the inheritance has been reported previously by Terranova using whole-body homogenates were detected in dissected tissues and the probable physiological function of each allozyme is suggested. EST-1 occurs most frequently in ovarioles and female fat bodies. EST-2 is most often found in fat bodies and may be important in lipid turnover. No sex difference was observed. EST-3S is found in fat bodies and reproductive tissue, while EST-3F is always located in gut tissues, indicating that EST-3 is not controlled by a single autosomal locus with two codominant alleles as previously reported. EST-4, the most abundant esterase, can be detected in gut tissue at any age and is probably involved in digestion. EST-5 contains four allozymes which appear most frequently in testes and may be important during reproduction.  相似文献   

14.
The effect of thermal acclimation on trehalose accumulation and the acquisition of thermotolerance was studied in three species of entomopathogenic nematodes adapted to either cold or warm temperatures. All three Steinernema species accumulated trehalose when acclimated at either 5 or 35 degrees C, but the amount of trehalose accumulation differed by species and temperature. The trehalose content of the cold adapted Steinernema feltiae increased by 350 and 182%, of intermediate Steinernema carpocapsae by 146 and 122% and of warm adapted Steinernema riobrave by 30 and 87% over the initial level (18.25, 27.24 and 23.97 microg trehalose/mg dry weight, respectively) during acclimation at 5 and 35 degrees C, respectively. Warm and cold acclimation enhanced heat (40 degrees C for 8h) and freezing (-20 degrees C for 4h) tolerance of S. carpocapsae and the enhanced tolerance was positively correlated with the increased trehalose levels. Warm and cold acclimation also enhanced heat but not freezing tolerance of S. feltiae and the enhanced heat tolerance was positively correlated with the increased trehalose levels. In contrast, warm and cold acclimation enhanced the freezing but not heat tolerance of S. riobrave, and increased freezing tolerance of only warm acclimated S. riobrave was positively correlated with the increased trehalose levels. The effect of acclimation on maintenance of original virulence by either heat or freeze stressed nematodes against the wax moth Galleria mellonella larvae was temperature dependent and differed among species. During freezing stress, both cold and warm acclimated S. carpocapsae (84%) and during heat stress, only warm acclimated S. carpocapsae (95%) maintained significantly higher original virulence than the non-acclimated (36 and 47%, respectively) nematodes. Both cold and warm acclimated S. feltiae maintained significantly higher original virulence (69%) than the non-acclimated S. feltiae (0%) during heat but not freezing stress. In contrast, both warm and cold acclimated S. riobrave maintained significantly higher virulence (41%) than the non-acclimated (14%) nematodes during freezing, but not during heat stress. Our data indicate that trehalose accumulation is not only a cold associated phenomenon but is a general response of nematodes to thermal stress. However, the extent of enhanced thermal stress tolerance conferred by the accumulated trehalose differs with nematode species.  相似文献   

15.
The free-living stage of entomopathogenic nematodes occurs in soil, and is an environmental-friendly alternative for biological control. However, their dispersal capability is limited. Earthworms improve soil characteristics, changing soil structure and influencing many edaphic organisms. Thus, earthworms could be used as vectors to introduce/disperse beneficial organisms. Nevertheless this interaction has not been studied in detail. This study presents the infectivity results of Steinernema feltiae after passing through the Eisenia fetida gut. Although entomopathogenic nematodes have no deleterious effects on earthworms, their passage through E. fetida gut seriously affected their mobility and virulence.  相似文献   

16.
We investigated differential susceptibility of lady beetles to entomopathogenic nematodes, for two reasons: (1) to estimate potential nontarget effects on natural lady beetle populations, (2) to compare the susceptibility of exotic versus native lady beetle species. We hypothesize that successful establishment of some exotically introduced arthropods may be due, in part, to a lower susceptibility relative to competing native species. In laboratory studies, we compared the pathogenicity, virulence, and reproductive capacity of Heterorhabditis bacteriophora and Steinernema carpocapsae among two native (Coleomegilla maculata and Olla v-nigrum) and two successfully established exotic (Harmonia axyridis and Coccinella septempunctata) lady beetles, and a known susceptible lepidopteran host, Agrotis ipsilon. After 1 and 2 days of exposure to either nematode species, mortality of A. ipsilon was higher than in all lady beetles. Thus, we predict that nematode field applications would have significantly less impact on lady beetle populations than on a susceptible target pest. Additionally, the impact of soil-applied nematodes may be lower on lady beetles than on soil-dwelling hosts because the former spends relatively less time on the soil. Exotic lady beetles were less susceptible to nematode infection than native species. Reproductive capacity data also indicated lower host suitability in H. axyridis, but not in C. septempunctata. Overall, the hypothesis that low susceptibility to pathogens in certain exotic lady beetles may have contributed to competitive establishment was supported (especially for H. axyridis). Additional studies incorporating different hosts and pathogens from various geographic locations will be required to further address the hypothesis.  相似文献   

17.
18.
The seasonal dynamics of entomopathogenic nematodes (EPNs) of the genus Steinernema and Heterorhabditis were studied during one season in meadow and oak wood habitats, in the vicinity of Ceské Budejovice, Czech Republic. The influences of soil temperature, moisture, and abundance of suitable hosts on EPN dynamics were investigated. The host range of these nematodes, in both habitats was also observed. A total of four EPN species were found in both habitats. Steinernema affine was the dominant species both in oak wood and in meadow. Additionally, the oak wood habitat was inhabited by S. kraussei and S. weiseri; the meadow habitat by Heterorhabditis bacteriophora. The mean abundance of total EPN community was 28,000ind./m(2) in oak wood and 11,000ind./m(2) in meadow. The seasonal dynamics of entomopathogenic nematodes in both habitats were characterized by high nematode densities in the beginning of the season, followed by a rapid decrease, and then stabilization. EPN abundances did not show any apparent correlation with soil temperature and moisture, but they were negatively correlated with the abundance of suitable insect hosts. Inter- and intraspecific competition for limited nutrients (hosts) probably played a major role in EPN seasonal dynamics. Broad host range of entomopathogenic nematodes in both habitats was predominantly represented by dipteran and coleopteran larvae. Most common hosts belonged to the families Asilidae, Bibionidae, and Empididae (Diptera), as well as Carabidae and Curculionidae (Coleoptera).  相似文献   

19.
The diploid chromosome number of the cotton boll weevil, Anthonomus grandis Boheman, is 44. Both C‐ and N‐banding techniques of mitotic cells demonstrated constitutive heterochromatin in the p arm of the eight largest chromosomes, the p arm of the X chromosome, and the centromeric region of autosomal groups A–D. Neither the y nor the group E autosomes appeared to contain constitutive heterochromatin. Supernumerary chromosomes were not found in the boll weevil. Restriction endonuclease banding of primary spermatocytes revealed a rod‐shaped Xy tetrad in which the X and y were terminally associated. The p arm of the large, submetacentric X was C‐band positive. While two of the autosomal tetrads were typically ring‐shaped in primary spermatocytes, the remaining 19 autosomal tetrads were rod‐shaped. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The susceptibility of pupating larvae of pollen beetles, Meligethes spp. Stephens (Coleoptera: Nitidulidae) and brassica pod midges, Dasyneura brassicae Winnertz (Diptera: Cecidomyidae) to entomopathogenic nematodes (Nematoda: Rhabditida) was studied in the laboratory. The results showed that brassica pod midge larvae were almost unaffected by the tested nematodes (Steinernema bicornutum, S. feltiae and Heterorhabditis bacteriophora) whereas successful pupation of pollen beetle larvae was reduced with increasing number of nematodes (S. bicornutum, S. carpocapsae, S. feltiae and H. bacteriophora). The exposed larvae had been collected in the field and some of the pollen beetle larvae were parasitised by parasitoid wasps. It appeared that parasitised larvae were less affected by nematodes than non-parasitised larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号