首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 893 毫秒
1.
An exocellular pyrophosphatase, active on the nucleotide precursors of peptidoglycans, has been found in the culture medium of Streptomyces mediterranei ME/R 17. This enzyme was separated from the DD-carboxypeptidase by batchwise adsorption on DEAE cellulose. The pyrophosphatase had no strict substrate requirements, it hydrolyzed various UDP-sugar substrates: UDP-GlcNAc, UDP-Mur NAc and UDP-MurNAc peptides, giving rise to the corresponding sugar phosphate and to UMP. The enzyme preparation also contained a 5'-nucleotidase activity and UMP was further split to give uridine. This nucleotidase activity was inhibited by potassium tetraborate. Both cytoplasmic and particulate preparations from cells of S. mediterranei also contained a pyrophosphatase activity while only the particulate fractions showed the DD-carboxypeptidase activity. The pyrophosphatase excretion was tested during the grwoth cycle. The activity of the enzyme showed a constant increase throughout the exponential growth and a stronger increase in the late exponential phase. Such a result could be correlated with a consumption of the nutrients in the culture medium, in fact a relatively poor culture medium had a strong positive effect upon the production of the exocellular pyrophosphatase.  相似文献   

2.
The nitrite reductase from the extreme halophilic archaeon, Haloferax mediterranei, has been purified and characterised. H. mediterranei is capable of growing in a minimal medium (inorganic salts and glucose as a carbon source) with nitrate as the only nitrogen source. The overall purification was 46-fold with about 4% recovery of activity. The enzyme is a monomeric protein of approximately 66 kDa. A pH of 7.5 and high temperatures up to 60 degrees C are necessary for optimum activity. Reduced methyl viologen has been found to be an electron donor as effective as ferredoxin. NADPH and NADH, which are electron donors in nitrite reductases from different non-photosynthetic bacteria, were not effective with nitrite reductase from H. mediterranei.  相似文献   

3.
P Moretti  G Hintermann  R Hütter 《Plasmid》1985,14(2):126-133
Strain LBG A3136 of Nocardia mediterranei (ETH Collection) was found to contain a low-copy-number covalently closed circular extrachromosomal element, pMEA 100, which could only be isolated from mycelium grown on agar plates. pMEA 100 could not be isolated from the closely related strain ATCC 13685. Hybridization experiments showed that pMEA 100 is present in strain LBG A3136 in the free as well as in the integrated form whereas in strain ATCC 13685 only an integrated form was detected. Excision and reintegration in strain LBG A3136 seemed to be site specific. pMEA100 was found to be self-transmissible, eliciting the lethal zygosis phenotype, and is possibly involved in fertility in N. mediterranei.  相似文献   

4.
A new procedure for transformation of Amycolatopsis (Nocardia) mediterranei LBG A3136 was developed. The method makes use of polyethylene glycol and alkaline cations and enables direct transformation of the A. mediterranei mycelium with high efficiency: more than 10(6) transformants per microgram of DNA were obtained. Transformation of A. mediterranei is stimulated by the ionophore antibiotic valinomycin and abolished by arsenate and p-chloromercuribenzenesulfonate. pMEA123, a vector based on the indigenous plasmid pMEA100 and containing the erythromycin resistance gene, was constructed.  相似文献   

5.
The actinomycete Amycolatopsis mediterranei produces the commercially and medically important polyketide antibiotic rifamycin, which is widely used against mycobacterial infections. The rifamycin biosynthetic (rif) gene cluster has been isolated, cloned and characterized from A. mediterranei S699 and A. mediterranei LBGA 3136. However, there are several other strains of A. mediterranei which also produce rifamycins. In order to detect the variability in the rif gene cluster among these strains, several strains were screened by PCR amplification using oligonucleotide primers based on the published DNA sequence of the rif gene cluster and by using dEBS II (second component of deoxy-erythronolide biosynthase gene) as a gene probe. Out of eight strains of A. mediterranei selected for the study, seven of them showed the expected amplification of the DNA fragments whereas the amplified DNA pattern was different in strain A. mediterranei DSM 46095. This strain also showed striking differences in the banding pattern obtained after hybridization of its genomic DNA against the dEBS II probe. Initial cloning and characterization of the 4-kb DNA fragment from the strain DSM 46095, representing a part of the putative rifamycin biosynthetic cluster, revealed nearly 10% and 8% differences in the DNA and amino acid sequence, respectively, as compared to that of A. mediterranei S699 and A. mediterranei LBGA 3136. The entire rif gene cluster was later cloned on two cosmids from A. mediterranei DSM 46095. Based on the partial sequence analysis of the cluster and sequence comparison with the published sequence, it was deduced that among eight strains of A. mediterranei, only A. mediterranei DSM 46095 carries a novel rifamycin biosynthetic gene cluster.  相似文献   

6.
The structural gene, pkmA, was cloned and sequenced from a rifamycin SV-producing Amycolatopsis mediterranei U32 strain. The N-terminal portion of the deduced amino acid sequence of pkmA showed significant similarity to the family of serine/threonine protein kinases. It contains all the structural features which are highly conserved in protein kinases, including the Gly-X-Gly-X-X-Gly motif of ATP binding and the essential amino acids known to be important for the recognition of the correct hydroxyamino acid in serine/threonine protein specific kinases. The protein possesses a region rich in Ala and Pro residues around the middle of pkmA open reading frame, which might be involved in the transmembrane function, as suggested by PhoA fusion protein analysis. The pkmA gene was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein, and the protein was found to have the activity of autophosphorylation. A double crossover gene replacement was achieved by inserting an aparmycin resistance gene into pkmA in A. mediterranei chromosomal DNA. The phenotypic analysis of the mutant suggested that pkmA gene is involved in carbon source-dependent pigment formation in A. mediterranei U32.  相似文献   

7.
8.
A new plasmid, pA387, has been isolated from "Amycolatopsis sp." (DSM 43387). This plasmid could be isolated from liquid culture as well as mycelium from agar plates by a modified procedure. Plasmid pA387 is about 29.6 kb and can be cured at low frequency by protoplasting and ethidium bromide and heat treatment. Hybridization experiments showed that this plasmid is present in free form and does not integrate into the chromosome. A hybrid plasmid was constructed by cloning a 5.1-kb fragment of pA387 into the Escherichia coli vector pDM10. This hybrid plasmid, termed pRL1, could be transformed into Amycolatopsis mediterranei and A. orientalis by electroporation. A transformation frequency of 2.2 x 10(3) transformants per micrograms of DNA at 12.5 kV/cm and a pulse duration of 10.8 ms was obtained in A. mediterranei, whereas 1.1 x 10(5) transformants per microgram of DNA were obtained at a field strength of 7.5 kV/cm and a pulse duration of 7.6 ms in A. orientalis. Plasmid pRL1 is the first hybrid plasmid which could be used successfully for the transformation of A. mediterranei. The plasmid has a rather high copy number, is genetically stable, and can be easily reisolated from A. mediterranei. Plasmid pRL1 will be useful for further construction of a shuttle vector for E. coli and A. mediterranei and becomes the basis for the development of gene cloning techniques in Amycolatopsis spp.  相似文献   

9.
23S rRNA gene from the halophilic archaeon Haloferax mediterranei (strain ATCC 33500) was cloned and sequenced. Proceeding from the 2,912 nucleotides long sequence, the secondary structure of Haloferax genus large subunit rRNA was proposed. Haloferax mediterranei intergenic spacers 16S/23S and 23S/5S were also sequenced, and found to be 382 and 116 nucleotides long respectively. The 16S/23S spacer showed an Ala-tRNA intervening sequence, which is a common feature in Euryarchaeota. Sequence analysis of 23S rRNA and 16S rRNA was performed for the six organisms from the family Halobacteriaceae with both available gene sequences. Phylogenetic trees with completely different topology were obtained using both molecules.  相似文献   

10.
R Lal  S Lal  E Grund    R Eichenlaub 《Applied microbiology》1991,57(3):665-671
A new plasmid, pA387, has been isolated from "Amycolatopsis sp." (DSM 43387). This plasmid could be isolated from liquid culture as well as mycelium from agar plates by a modified procedure. Plasmid pA387 is about 29.6 kb and can be cured at low frequency by protoplasting and ethidium bromide and heat treatment. Hybridization experiments showed that this plasmid is present in free form and does not integrate into the chromosome. A hybrid plasmid was constructed by cloning a 5.1-kb fragment of pA387 into the Escherichia coli vector pDM10. This hybrid plasmid, termed pRL1, could be transformed into Amycolatopsis mediterranei and A. orientalis by electroporation. A transformation frequency of 2.2 x 10(3) transformants per micrograms of DNA at 12.5 kV/cm and a pulse duration of 10.8 ms was obtained in A. mediterranei, whereas 1.1 x 10(5) transformants per microgram of DNA were obtained at a field strength of 7.5 kV/cm and a pulse duration of 7.6 ms in A. orientalis. Plasmid pRL1 is the first hybrid plasmid which could be used successfully for the transformation of A. mediterranei. The plasmid has a rather high copy number, is genetically stable, and can be easily reisolated from A. mediterranei. Plasmid pRL1 will be useful for further construction of a shuttle vector for E. coli and A. mediterranei and becomes the basis for the development of gene cloning techniques in Amycolatopsis spp.  相似文献   

11.
A gene encoding a new D-2-hydroxyacid dehydrogenase (E.C. 1.1.1.) from the halophilic Archaeon Haloferax mediterranei has been sequenced, cloned and expressed in Escherichia coli cells with the inducible expression plasmid pET3a. The nucleotide sequence analysis showed an open reading frame of 927 bp which encodes a 308 amino acid protein. Multiple amino acid sequence alignments of the D-2-hydroxyacid dehydrogenase from H. mediterranei showed high homology with D-2-hydroxyacid dehydrogenases from different organisms and other enzymes of this family. Analysis of the amino acid sequence showed catalytic residues conserved in hydroxyacid dehydrogenases with d-stereospecificity. In the reductive reaction, the enzyme showed broad substrate specificity, although alpha-ketoisoleucine was the most favourable of all alpha-ketocarboxylic acids tested. Kinetic data revealed that this new D-2-hydroxyacid dehydrogenase from H. mediterranei exhibits dual coenzyme-specificity, using both NADPH and NADH as coenzymes. To date, all D-2-hydroxyacid dehydrogenases have been found to be NADH-dependent. Here, we report the first example of a D-2-hydroxyacid dehydrogenase with dual coenzyme-specificity.  相似文献   

12.
The coral bleaching Vibrio shiloi LMG 19703T was characterized by means of Fluorescent Amplified Fragment Length Polymorphism (FAFLP), DNA-DNA hybridisation, mol% G+C content, fatty acids methyl ester (FAME) analysis and phenotypical tests. Numerical analysis of the FAFLP band patterns indicated that the type strain of V. shiloi in fact belongs to the species V. mediterranei. The type strains of both species shared 77% DNA similarity, as determined by DNA-DNA hybridisation experiments at stringent conditions. Moreover, V. shiloi and V. mediterranei showed almost identical fatty acid composition and phenotypical features. Collectively, the genotypic and phenotypic data presented in this study suggest that V. shiloi Kushmaro et al. 2001 should be considered a later synonym of V. mediterranei Pujalte and Garay 1986. The involvement of V. mediterranei in coral bleaching was unknown until now.  相似文献   

13.
RNA extraction from antibiotic-producing actinomycetes can be a difficult and time-consuming process due to their special peptidoglycans cell wall composition and the short life of RNA. Hence, the rapidity of cellular lysis and complete inhibition of RNase are of particular importance for isolating intact RNA of high quality. The genus of Amycolatopsis mediterranei produces many clinically important antibiotics, such as rifamycin and vancomycin; however, the available methods for bacterial RNA isolation did not work very well with this genus. In this report, we described a new method for RNA isolation using the combination of LiCl, urea and guanidinium thiocyanate to disrupt the cell wall of Amycolatopsis. Compared with earlier published RNA isolation methods, the method gave higher yields of pure and intact RNA. About 1 microg total RNA free of DNA contamination can be obtained from 1 mg wet weight of A. mediterranei. The integrity of the RNA was demonstrated by formaldehyde agarose gel electrophoresis and Northern blot analyses.  相似文献   

14.
Rifamycin SV contains one amide nitrogen atom at its C(7)N moiety. Earlier labeling studies suggested that nitrogen might be incorporated from a pathway involved in a molybdenum-dependent nitrate reductase. However, no genetic evidence is available thus far. The structural gene moeA, which is involved in molybdopterin synthesis in various organisms, has been cloned from rifamycin SV-producing Amycolatopsis mediterranei strain U32. The amino acid sequence deduced from the moeA gene showed significant similarity to members of the MoeA protein family and contains all the structural features that are highly conserved in the putative functional domains of MoeA proteins. Southern hybridization showed that there is only one moeA gene in the A. mediterranei genome. To further investigate the possible physiological function of the moeA gene, a double crossover gene replacement was achieved by inserting an aparmycin resistance gene into moeA in the A. mediterranei U32 chromosome. Phenotype analysis showed that the moeA gene is required for A. mediterranei growth in a minimal medium with nitrate as sole nitrogen source, possibly because nitrate reductase activity is diminished due to disruption of the moeA gene. Compared to the wild type strain, moeA-disrupted mutants lost 95% of their rifamycin SV production capacity in complex fermentation media. The results demonstrate that the moeA gene is necessary for rifamycin SV production in A. mediterranei, and that the nitrogen assimilation pathway involved in nitrate reductase is the major pathway for the genesis of the amide nitrogen atom in the rifamycin SV molecule.  相似文献   

15.
Amycolatopsis mediterranei produces an important antibiotic rifamycin, the biosynthesis of which involves many unusual modifications. Previous work suggested a putative P450 enzyme encoded by rif16 within the rifamycin biosynthetic gene cluster (rif) was required for the conversion of the intermediate rifamycin SV into the end product rifamycin B. In this study, we genetically proved that a putative transketolase encoded by rif15 is another essential enzyme for this conversion. Expression of merely rif15 and rif16 in a rif cluster null mutant of A. mediterranei U32 was able to convert rifamycin SV into B. However, this Rif15- and Rif16-mediated conversion was only detected in intact cells of A. meidterranei, but not in Streptomyce coelicolor or Mycobacterium smegmatis, suggesting that yet-characterized gene(s) in A. mediterranei other than those encoded by the rif cluster should be involved in this process.  相似文献   

16.
Abstract Eight species of halophilic Archaea were tested for the presence of isocitrate lyase activity. High activities (up to 100 nmol min−1 mg protein−1) were detected in Haloferax mediterranei and Haloferax volcanii when grown in medium containing acetate as the principal carbon source. Little activity was found in representatives of the genera Halobacterium and Haloarcula . Isocitrate lyase from Haloferax mediterranei required high potassium chloride concentrations, optimal activity being found at 1.5–3 M potassium chloride and pH 7.0. Replacement of potassium chloride by sodium chloride resulted in much lower activities. Sulfhydryl compounds (cysteine, glutathione) were not stimulatory. In other properties (stimulation by magnesium ions, sensitivity to different inhibitors) the enzyme resembled isocitrate lyases from representatives of the Bacteria and Eucarya.  相似文献   

17.
Southern杂交分析表明在地中海拟无枝菌酸菌U-32染色体DNA和黑曲霉niaD(硝酸还原酶基因)之间存在着明显的同源性。利用异源niaD探针从地中海拟无枝菌酸菌U-32基因文库中筛选得到一个能与niaD杂交的5.0kb的PstⅠ片段。该片段经同位素标记后能与地中海拟无枝菌酸菌U-32染色体上一个相同的PstⅠ片段杂交,位于这一片段上的2.1kb SmaⅠ-EcoR Ⅴ片段只能与以硝酸盐为唯一氮源的总RNA杂交,而不能与相同条件下以铵盐为唯一氮源的总RNA杂交,这些结果表明,所克隆到的5.0kb PstⅠDNA片段含有地中海拟无枝菌酸菌U-32的硝酸还原酶基因。这是好氧细菌硝酸还原酶基因克隆的首次报道。由该酶蛋白分子量推测,其结构基因大小在1.5kb左右,进一步的杂交分析发现在5.0kb的PstⅠ片段中含有完整的NR基因。用20种限制酶对重组质粒pJL1进行了限制酶酶谱的构建,发现有10种酶在pJL1外源片段上无切点,6种酶为单切点,EcoRⅠ与SmaⅠ各有两个切点。  相似文献   

18.
19.
20.
An industrially applied rifamycin B-producing strain, Amycolatopsis mediterranei XC 1-02, was used for further screening. A special mutation and screening procedure was adopted to select a strain, which can alleviate the inhibition caused by both aromatic amino acid and p-hydroxybenzoic acid in the pathway of rifamycin B biosynthesis as well as enhance the production of propionate, one of the precursors of rifamycin B biosynthesis. By the above methods, a strain A. mediterranei XC 9-25 was obtained, and its rifamycin B productivity in shaking flask reaches 10 g/L, which is 2.38 times higher than that of the ancestral strain XC 1-02. The productivity of rifamycin B fed-batch fermentation in 60000 L fermentor with A. mediterranei XC 9-25 reached 19.11 g/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号