首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proximate limitation on parental food delivery has long been invoked to explain the evolution of single-chick broods of pelagic seabirds such as masked boobies (Sula dactylatra). A second possible proximate limit on brood size is siblicide driven by genetic parent–offspring conflict (POC) over brood size, if siblicidal offspring can reduce brood size to one even if the parents' optimal brood size is greater than one. I tested these two hypotheses by experimentally suppressing obligate siblicide in masked booby broods and comparing breeding parameters of these broods with unmanipulated single-chick control broods. Per capita mortality rate of experimental nestlings was higher than that of controls, but this deficit was more than made up by larger brood size. Parents of experimental broods brought more food to offspring, had higher fledging success, and apparently incurred no additional major short-term cost of reproduction, relative to parents of control broods, thus refuting the food limitation hypothesis. Estimates of inclusive fitness of chicks in experimental broods were higher than were those of control nestlings, a result inconsistent with the POC hypothesis that the siblicidal offspring's optimal brood size is one while the parents' optimum is greater than one. This discrepency between natural brood size and apparent brood size optima might be resolved in several ways: experimental artifacts may give misleading estimates of optimal brood size; experimental and control offspring may have different reproductive values at the time of fledging; nestling masked boobies may face a special frequency-dependent case of POC in which the high risk of sharing a nest with a siblicidal sibling makes invasion of other behavioral genotypes difficult even when offspring and parent inclusive fitnesses are higher from a nonsiblicidal brood of two than from a brood of one.  相似文献   

2.
The androgen hormone testosterone (T) mediates vertebrate aggression in many contexts and according to the Challenge Hypothesis is up-regulated during social challenges. While originally applied to challenges experienced by breeding adults, we show for the first time that T is similarly up-regulated during deadly sibling aggression in young birds. When two nestling Nazca boobies hatch, one--usually the older chick--virtually always kills the other chick by pushing it from the nest. We compared concentrations of T, dehydroepiandrosterone (DHEA; a precursor of T), and corticosterone (Cort; a stress hormone) of chicks at various stages. T was elevated during fights in both chicks in two-chick broods, but not before and after fights, and not in chicks lacking a nest mate. DHEA was elevated 1 day after hatching and declined with age but appeared not to vary in concert with aggression. Cort did not vary across fighting and nonfighting periods. In conjunction with an earlier study [Tarlow, E.M., Wikelski, M., Anderson, D.J., 2001. Hormonal correlates of siblicide in Galapagos Nazca boobies. Horm. Behav. 40:14-20], these results indicate that T is temporarily up-regulated around the time of fights, as predicted by the Challenge Hypothesis. Our data suggest a general role for T during challenges at any time in life, not just during breeding.  相似文献   

3.
We examined androgens in clutches of two booby species that differ in their sibling conflict. Blue-footed booby Sula nebouxii chicks show an aggression-submission relationship, aggression is normally moderate and siblicide is facultative. Brown booby Sula leucogaster chicks show an aggression-aggression relationship, aggression of both chicks can be relentless and siblicide is obligate. The parental favoritism hypothesis predicts that egg mass, yolk mass and yolk androgens should decline with laying order less in the blue-footed booby than in the brown booby, to promote the survival of the former's junior chick. The eggs of the blue-footed booby had higher yolk concentrations of 5α-dihydrotestosterone (DHT) and lower concentrations of testosterone (T); both species had similarly high yolk concentrations of androstenedione (A). Intra-clutch variation in yolk DHT, T and A failed to support our predictions. In both species, first and second eggs showed similar concentrations of all three hormones and were of similar size, although in the blue-footed booby (only) yolk masses declined with laying order. Brown booby mothers make junior chicks vulnerable to siblicide by hatching them 5 d after their broodmates, but not by differential allocation of egg androgens or nutrients. Blue-footed booby mothers appear to prepare junior chicks for thriving in a subordinate non-provocative role by hatching them 4 d after their broodmates and providing them with 10% less yolk. To orchestrate agonism within the brood, these boobies may rely more on hatch intervals and yolk provision than on androgens.  相似文献   

4.
Data from great egrets and great blue herons were used to test a fundamental assumption of Lack's brood-reduction hypothesis, that mortality is brood-size dependent. This was confirmed for the largest brood sizes (4 and 3), which, in egrets, also have the highest sib-fighting rates. Broods of one, however, experienced paradoxically high mortality, especially early in the season. The hypothesis is advanced that parents desert unprofitably small broods when sufficient time remains for production of a larger brood. A simple game-theory model shows that this parental desertion may hinge primarily on the overall costs of renesting. Egret brood reduction caused by sibling aggression (siblicide) occurred later than less aggressive forms of brood reduction. The inclusive fitness of senior broodmates is maximized by the successful fledging of all sibs, and the physical superiority of seniors (in food-handling for herons; food-handling and aggression for egrets) usually suffices to guarantee their own welfare in brood competitions. Finally, it is shown that the last chick in asynchronously hatching broods represents two kinds of reproductive value (RV) to the parents—“extra RV” (obtained despite the survival of elder sibs) and “insurance RV” (obtained only when at least one elder sib dies first)—which can be distinguished from field data. This approach can be used in comparisons with other asynchronous species for partitioning the fitness contributions of marginal offspring.  相似文献   

5.
In response to unpredictability of both food availability and core offspring failure, parents of many avian species initially produce more offspring than they commonly rear (overproduction). When parental investment is insufficient to raise the whole brood the handicap of hatching last means ‘marginal’ chicks are less likely to survive if brood reduction occurs. Conversely, if marginal offspring are required as replacements for failed ‘core’ chicks, or parental investment is sufficient to rear the whole brood, the handicap imposed on marginal chicks must be reversible if overproduction is to be a viable strategy. I investigated the ability of marginal offspring to overcome the handicap imposed by hatching asynchrony using a combination of a field experiment, designed to manipulate both the amount of total competition and the relative competitive ability of chicks within a brood, and data on the growth and survival of unmanipulated, three‐chick broods from three consecutive years. The results indicate that, even when resources are abundant, marginal offspring do not begin to overcome the competitive handicap imposed by hatching asynchrony until the period of growth when energetic requirements reach their peak, and subsequent survival to fledging is almost assured. This is apparently a consequence of parents controlling allocation of early parental investment, so that any brood reduction ‘decisions’ can be left as late as possible. Marginal chicks initially channel resources into maintaining mass, relative to skeletal size, as a buffer against starvation. However this also means competitiveness is reduced, so if conditions are poor marginal chicks are rapidly out‐competed, lose condition and die. Conversely, when food availability is good marginal offspring devote more resources to skeletal growth and quickly close the gap on their core siblings, meaning the handicap is reversible. The benefits of overproduction and hatching asynchrony as reproductive strategies to maximise success in Lesser Black‐backed Gulls are discussed in relation to the reproductive alternatives.  相似文献   

6.
A variety of organisms regularly produce more offspring thanthey raise. Despite the apparent energetic waste of such areproductive tactic, overproduction may be favored by naturalselection in some cases. One such case is when surplus offspringcan serve as replacements, or insurance, for failed siblings.We tested the Insurance Egg Hypothesis (IEH) as an explanationfor the overproduction of offspring in an obligately siblicidal seabird, the Nazca booby (Sula grant)i, which fledges a maximumof one nestling regardless of its clutch size. We manipulatedclutch sizes within the range of natural variation encounteredin this species (one-two eggs). The IEH predicts that parentswith two-egg clutches should have higher reproductive successthan those with one-egg clutches because the second egg canprovide a nestling when the first egg fails to hatch, or when the first chick dies young. Consistent with the IEH, naturalone-egg clutches that were enlarged to two eggs produced morehatchlings and fledglings than control one-egg clutches did,and natural two-egg clutches that were reduced to one egg producedfewer hatchlings and fledglings than control two-egg clutchesdid. We also evaluated aspects of the Individual Optimization Hypothesis, which proposes that individual optimal clutch sizesdiffer, as an explanation for clutch size variation in thisspecies. In Nazca boobies, selection driven by replacementvalue appears to favor clutches larger than one even thoughfinal brood size is invariably one. One-egg clutches may be produced by parents experiencing some proximate limitation,such as a lack of food.  相似文献   

7.
Parental food allocation in birds has long been a focal point for life history and parent–offspring conflict theories. In asynchronously hatching species, parents are thought to either adjust brood size through death of marginal offspring (brood reduction), or feed the disadvantaged chicks to reduce the competitive hierarchy (parental compensation). Here, we show that parent American coots (Fulica americana) practice both strategies by switching from brood reduction to compensation across time. Late‐hatching chicks suffer higher mortality only for the first few days after hatching. Later, parents begin to exhibit parental aggression towards older chicks and each parent favours a single chick, both of which are typically the youngest of the surviving offspring. The late‐hatched survivors can equal or exceed their older siblings in size prior to independence. A mixed allocation strategy allows parents to compensate for the costs of competitive hierarchies while gaining the benefits of hatching asynchrony.  相似文献   

8.
Animals and plants routinely produce more offspring than they can afford to rear. Mothers can favour certain young by conferring on them competitive advantages such as a leading position in the birth sequence, more resources or hormones. Avian mothers create hatching asynchrony within a clutch and at the same time bestow the eggs with different concentrations of androgens that may enhance or counteract the competitive advantage experienced by early-hatching “core” young. In siblicidal birds, core young assume a dominant social position in the nest due to their size advantage and when threatened with starvation fatally attack subdominant later-hatching “marginal” young. A role for maternal androgens in siblicidal aggression has frequently been suggested but never tested. We studied this in the facultatively siblicidal black-headed kittiwake. We found that marginal eggs contain higher instead of lower concentrations of androgens than core eggs. Surprisingly, exposure to experimentally elevated yolk androgens increased sibling aggression and dominance, even though in nature marginal eggs never produce dominant chicks. We propose the “adoption facilitation hypothesis” to explain this paradox. This cliff-nesting colonial species has a high adoption rate: ejected marginal kittiwake chicks frequently fall into other nests containing chicks of similar or smaller size and exposure to yolk androgens might help them integrate themselves into a foster nest.  相似文献   

9.
Nazca boobies (Sula granti) show unconditional obligate siblicide immediately after hatching, reducing the typical two-egg clutch size to one. We studied body mass changes and levels of testosterone (T), corticosterone (CORT), and progesterone (P) for A-chicks (dominant, first hatched), B-chicks (subordinate, second hatched), and singletons, during the first 7 days after hatching, when siblicide normally occurs. Mass increase with age was higher for A-chicks than for singletons and B-chicks. This exaggerated the existing developmental advantage of A- over B-chicks that is due to hatching asynchrony. In nests with two chicks, CORT titer was significantly higher in B-chicks than in A-chicks. During ontogenetic development, CORT decreased with age for A-chicks, but did not change for singletons. P showed qualitatively similar ontogenetic changes to CORT, remaining unchanged for A-chicks but increasing for singletons. Thus, both CORT and P levels were lower for A-chicks than for singletons, and both hormones varied inversely with body mass. Overall, T levels did not differ between different categories of chicks. However, one B-chick in the process of reversing the dominance relationship with its older, but weakened, sibling had significantly elevated T. We suggest that CORT and P are regulated to promote exaggerated mass gain in socially challenged A-chicks, facilitating siblicide. Whether T induces aggressiveness during short time intervals of intense sibling rivalry needs further attention.  相似文献   

10.
ROBERT SIMMONS 《Ibis》1988,130(3):339-357
Obligate siblicide, known as ‘cainism’ in large raptors, is a taxonomically widespread avian phenomenon that remains inexplicable as a simple consequence of food stress: two young can be raised to independence in experimentally manipulated nests, and food supplements do not decrease sibling aggression. A review of the Falconiformes identified 23 species in which obligate and facultative cainism is regular. All species have small clutches and deferred acquisition of adult plumage. Obligate cainists in particular are large, long-lived species characterized by extreme subadult mortality and intense competition for breeding sites. Hence, it can be suggested that early sibling conflict, in the absence of food stress, is the end result of selection for quality (survival) and competitive ability. Cain's domination or killing of Abel insures (1) an increase in Cain's chances of survival through the high-risk, pre-breeding period via improved nestling weight gain, and/or (2) domination of surviving sibs, enhancing Cain's competitive abilities and thereby increasing the probability of achieving breeding status. Only among long-lived species can the benefits of enhanced survival and competitive ability outweigh the major costs of sibling loss. Facultative cainists, which in more than 10% of cases raise more than one young (despite aggression and sibling hierarchies), not only lay larger, more variable clutches, but on average attain adult plumage earlier than obligate cainists. Their shorter lives and higher population turnovers are consistent with their less extreme siblicidal tendencies. Similar life-history traits and cainistic habits in other avian orders parallel those in the Falconiformes, indicating several independent evolutionary pathways to cainism. Retention of the second egg by obligate cainists, usually explained as insurance against failure, may instead allow parents adaptively to track population stability. Thus when breeding places are numerous (habitat saturation and competition low), parents laying two eggs and rearing two young may achieve greater fitness than single-young parents. When populations become saturated (competition high), selection should favour high-quality, competitive young and levels of siblicide should increase. A proximate mechanism is proposed linking population saturation with the incidence of cainism, based on demonstrable population characteristics found in several long-lived species.  相似文献   

11.
Offspring quality and the evolution of cainism   总被引:5,自引:0,他引:5  
ROBERT SIMMONS 《Ibis》1988,130(4):339-357
Obligate siblicide, known as ‘cainism’ in large raptors, is a taxonomically widespread avian phenomenon that remains inexplicable as a simple consequence of food stress: two young can be raised to independence in experimentally manipulated nests, and food supplements do not decrease sibling aggression. A review of the Falconiformes identified 23 species in which obligate and facultative cainism is regular. All species have small clutches and deferred acquisition of adult plumage. Obligate cainists in particular are large, long-lived species characterized by extreme subadult mortality and intense competition for breeding sites. Hence, it can be suggested that early sibling conflict, in the absence of food stress, is the end result of selection for quality (survival) and competitive ability. Cain's domination or killing of Abel insures (1) an increase in Cain's chances of survival through the high-risk, pre-breeding period via improved nestling weight gain, and/or (2) domination of surviving sibs, enhancing Cain/s competitive abilities and thereby increasing the probability of achieving breeding status. Only among long-lived species can the benefits of enhanced survival and competitive ability outweigh the major costs of sibling loss. Facultative cainists. which in more than 10% of cases raise more than one young (despite aggression and sibling hierarchies), not only lay larger, more variable clutches, but on average attain adult plumage earlier than obligate cainists. Their shorter lives and higher population turnovers are consistent with their less extreme siblicidal tendencies. Similar life-history traits and cainistic habits in other avian orders parallel those in the Falconiformes, indicating several independent evolutionary pathways to cainism. Retention of the second egg by obligate cainists, usually explained as insurance against failure, may instead allow parents adaptively to track population stability. Thus when breeding places are numerous (habitat saturation and competition low), parents laying two eggs and rearing two young may achieve greater fitness than single-young parents. When populations become saturated (competition high), selection should favour high-quality, competitive young and levels of siblicide should increase. Aproximate mechanism is proposed linking population saturation with the incidence of cainism, based on demonstrable population characteristics found in several long-lived species.  相似文献   

12.
CAMELIA SYKES LAMEY 《Ibis》1995,137(2):231-236
Data on reproductive success of 110 Falkland Skua Catharacta skua antarctica pairs were gathered during the austral summers of 1988–1989 and 1990–1991 on New Island, Falkland Islands. Adults laid two eggs 2–3 days apart and began incubation with the first egg. For the years combined, 1.39 chicks per nest hatched and 0.84 chicks per nest fledged (fledging was defined as surviving to 16 days of age). Brood reduction was common; 43% of the two-chick broods were reduced to one, and mortality was concentrated on the younger chick. Although asynchronous hatching and differential death are consistent with Lack's brood reduction hypothesis, application of O'Connor's quantitative criterion revealed that sibling competition may not be responsible for the observed chick mortality. Furthermore, because no aggressive interactions between chicks were observed or detected indirectly, siblicide may be absent in this population. Instead, predation modified by a variety of factors may have led to the greater mortality of the second-hatched chick.  相似文献   

13.
Studies of sibling competition within brood hierarchies have rarely assessed simultaneously the effects of sex and rank in the brood hierarchy on traits other than offspring mortality and differential growth. We studied the expression of heat-shock proteins (Hsps) to assess the physiological stress response to different combinations of sex and position within competitive brood hierarchies in the black kite Milvus migrans (Bodd.), a sexually dimorphic raptor showing facultative siblicide. Senior males showed higher stress levels than did senior females and younger siblings of each sex as revealed by Hsp60 values. The analysis of Hsp70 levels indicated that nestlings from broods in which the senior chick was a male showed higher stress levels than did nestlings from broods in which the senior chick was a female. In addition, levels of Hsp60 were related negatively to nutritional condition expressed as levels of plasmatic albumin. This suggests that the sex of senior chicks may be key in determining their stress level and that of their siblings, which is probably associated with sibling competition by fighting within brood hierarchies. The comparatively higher stress levels of senior males (and their siblings) may be a consequence of their ability to exploit their potential advantage from being the head start while avoiding a possible competitive disadvantage from being the smaller sex, independent of environmental conditions determining the probability of brood reduction. Differential stress levels depending on sex and rank in the brood hierarchy may be a consequence of parental control of offspring behaviour through differential resource allocation (e.g. yolk androgens) or it may reflect adaptations of particular chicks (senior males) to enhance their competitive ability within brood hierarchies.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 383–390.  相似文献   

14.
P. SHAW 《Ibis》1985,127(4):476-494
Brood reduction is common in a population of Blue-eyed Shags on Signy Island, South Orkney Islands. This paper describes possible adaptations which may reduce the brood. In clutches of three, the last egg was smaller, and hatched 2.4 days later than its siblings. Whilst 78–84% of first and second ('A' & 'B') chicks fledged, only 11 % of 'C' chicks did. In a sample of artificially synchronized broods chick survival was as high as in normal asynchronously hatching broods, but there were more cases of total brood loss. The age at which the C chick died was related inversely to the length of the A-C hatching interval. Relative differences in sibling weights were highest during the first 12 days, when most of the C chick deaths occurred. At this age the daily food requirements of each brood of three was one-tenth that of each brood of two just prior to fledging. It is suggested that C chicks were unable to compete effectively for a food supply which was limited by the parents, rather than by the environment. The asymptotic weight attained by A chicks was inversely related to brood size, and was greater than that of B or C chicks. Normal asynchronous broods produced at least one heavy (A) chick and one medium weight (B) chick, whilst in synchronized broods the asymptotic weight attained was similar to that of B chicks in normal broods.  相似文献   

15.
Summary We present a model for sexually-reproducing diploids in which a female can produce a variable (generally large) clutch size, where the sibs then compete over some fixed resource, and where certain offspring use siblicide to reduce the primary clutch/brood size created by the mother. Where siblicide involves neither direct energy loss (e.g. fighting cost) nor gain (e.g. cannibalism) to an offspring, the optimal clutch size for an offspring can differ from the optimum for the mother, i.e. there can be parent-offspring conflict over clutch size. The magnitude of this evolutionary conflict (measured in terms of difference between clutch size optima) increases with multipaternity of the brood and with the steepness of the initial decline in offspring survivorship (through sib-competition as further offspring are added to the brood). However, the disparity in clutch size optima may not be great. Where the integer clutch size optima are the same, there will clearly be no conflict. Where this differs, resolution of the evolutionary conflict could involve much apparent behavioral conflict, commonly manifest as siblicidal aggression.The ESS (evolutionarily stable strategy) for such a game will depend upon the direct costs and benefits of siblicide, as well as on the indirect costs to sibs via relatedness. If the only costs of siblicide arise through relatedness, then offspring will win in the sense that the eventual clutch size will match the offspring optimum. Whether or not the mother will produce this clutch size depends on the mechanism controlling siblicide. A siblicidal ESS will occur when offspring are programmed to kill a fixed number/proportion of a brood (victim-based siblicide), but not if programmed to reduce the sibship to the offspring optimum (survivor-based siblicide). With survivor-based siblicide, the mother can do no better than to lay the offsprings' optimal clutch size.  相似文献   

16.
The evolutionary stability of honest signalling by offspring is thought to require that begging displays be costly, so the costs and benefits of begging--and whether they are experienced individually or by the whole brood--are crucial to understanding the evolution of begging behaviour. Begging is known to have immediate individual benefits (parents distribute more food to intensely begging individuals) and delayed brood benefits (parents increase provisioning rate to the brood), but the possibility of delayed individual benefits (previous begging affects the current distribution of food) has rarely, if ever, been researched. We did this using playback of great tit Parus major chick begging and a control sound from either side of the nest. Male parents fed chicks close to the speaker more when great tit chick begging, but not other stimuli, was played back. In contrast, there was no effect of playback at the previous visit on the chicks that male parents fed. We have thus demonstrated an immediate individual benefit to begging, but found no evidence of a delayed individual benefit in this species.  相似文献   

17.
B. Cadiou  J.-Y. Monnat 《Bird Study》2013,60(2):164-171
Parental attendance was studied in 1991 in the Cap Sizun Kittiwake colonies (Brittany, France). After a period of continuous guarding lasting on average 22 days, parents left their chicks unattended. Thereafter, parental attendance decreased regularly until fledging. The chick age when first left alone was on average 3 days lower for large broods than for single-chick broods. Moreover, whatever the brood size, chicks from late nests were younger when left unattended. Parental age affected the initiation of first absence. Younger parents reduced their attendance sooner than older parents. About 80% of the nests with chicks were visited by other adults at least once during the absence of the parents, and 50% were visited in the 3 days following the first absence of the breeders. These squatters were mainly failed breeders and prebreeders looking for a future breeding site. The results are discussed in terms of costs and benefits of chick neglect and comparisons were made with data from other studies in North Atlantic and Alaskan colonies. This reflected the flexibility of adult behaviour in relation to brood size and food availability.  相似文献   

18.
Janusz Kloskowski 《Ibis》2003,145(2):233-243
Brood reduction in Red-necked Grebes Podiceps grisegena breeding on fish ponds in south-eastern Poland occurred either through the desertion of the last-laid eggs after partial hatching of the clutch and/or the selective starvation of the smallest chicks. Abandonment of unhatched eggs was not influenced by the number of young already hatched or by the breeding date, but it was more likely in larger clutches and in families suffering chick starvation. Chicks from the largest broods had a higher probability of survival until fledging than those from single-chick broods. Larger chicks obtained food more successfully through better positioning during food delivery. In families that did not suffer brood reduction, chicks were better provisioned with food than in reduced broods. Although allocation of food among chicks in reduced broods was more skewed to the disadvantage of the younger siblings, dominant chicks obtained less food prior to brood reduction than dominant siblings in unreduced broods. Sibling aggression did not differ between unreduced and reduced broods before death of the weakest chicks. Post-laying adjustment of the number of offspring to prevailing feeding conditions occurred at two stages: by parental manipulation of the number of hatched eggs at the time when parents and chicks leave the nest and by competition between chicks. It is suggested that late egg desertion may be an adaptive mechanism of brood-size adjustment, when elimination of the weakest chicks through sibling competition is not very efficient.  相似文献   

19.
In broods of great egrets Ardea alba and other birds with siblicidal nestlings, the first-hatched brood members generally secure far more food than do their juniors. This feeding advantage could be caused by parental favoritism, or by seniors attacking and thereby dominating their juniors. We investigated these possibilities by comparing how fathers and mothers allocated food among their offspring when chicks were free to fight versus when they were physically separated by a Plexiglas barrier. When free to fight, dominant nestlings received significantly more food than did their subordinates. When nestlings were separated, mothers, but not fathers, delivered significantly more food per meal to the β (second-ranked) chick than to other nestlings. This is the first experimental evidence of differential feeding by parents in a species with aggressive nestlings.  相似文献   

20.
We hypothesized that increasing chick plasma testosterone concentrations, transmitted from the mothers via their eggs, enhances survival of their offspring and that the fitness of the young, depending on the maternal hormones, is influenced by parental quality. To test our hypotheses we distinguished the broods of white storks Ciconia ciconia L. where chicks died and those where all chicks survived. We analysed the plasma testosterone concentrations in the chicks, the ability of the chicks to be first to receive food and the mass of chicks before fledging in relation to their hatching order and recorded the body mass of parents and food mass delivered by them.
Female storks used the asymmetries in testosterone concentrations within a brood to control brood size and adjusted the number of young hatched to match the parental ability to rear offspring. Females of poor condition altered the testosterone concentrations to produce large differences between the chicks: The first-hatched chicks, which had high plasma testosterone levels, responded faster to the feeding parent and received more food than did their younger siblings. One or two later-hatched chicks, which had lower testosterone levels, died in these broods. Females in good condition produced small differences in testosterone concentrations between the chicks and all chicks survived in their brood. Chicks that were raised by the females of poor condition in reduced broods were heavier than chicks that were raised by females of good condition in broods where all chicks survived.
We suggest that the control of brood size by testosterone concentration, transmitted by the mother to the chicks, is a hormonal means of condition-dependent reproductive strategy in the white stork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号