首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Egg production and egg quality are complex sex-limited traits that may benefit from the implementation of marker-assisted selection. The primary objective of the current study was to identify quantitative trait loci (QTL) associated with egg traits, egg production, and body weight in a chicken resource population. Layer (White Leghorn hens) and broiler (Cobb-Cobb roosters) lines were crossed to generate an F2 population of 508 hens over seven hatches. Phenotypes for 29 traits (weekly body weight from hatch to 6 weeks, egg traits including egg, albumen, yolk, and shell weight, shell thickness, shell puncture score, percentage of shell, and egg shell colour at 35 and 55 weeks of age, as well as egg production between 16 and 55 weeks of age) were measured in hens of the resource population. Genotypes of 120 microsatellite markers on 28 autosomal groups were determined, and interval mapping was conducted to identify putative QTL. Eleven QTL tests representing two regions on chromosomes 2 and 4 surpassed the 5% genome-wise significance threshold. These QTL influenced egg colour, egg and albumen weight, percent shell, body weight, and egg production. The chromosome 4 QTL region is consistent with multiple QTL studies that define chromosome 4 as a critical region significantly associated with a variety of traits across multiple resource populations. An additional 64 QTL tests surpassed the 5% chromosome-wise significance threshold.  相似文献   

2.
Egg and production traits are of considerable economic importance in chickens. Using a White Leghorn x red junglefowl F(2) intercross, standard production measures of liver weight and colour, egg size, eggshell thickness, egg taste and meat quality were taken. A total of 160 markers covering 29 autosomes and the Z chromosome were genotyped on 175-243 individuals, depending on the trait under consideration. A total of nine significant quantitative trait loci (QTL) and three suggestive QTL were found on chicken chromosomes 1, 2, 4, 5, 7, 8, 10, 12, E47W24 and E22C19W28.  相似文献   

3.
A genome scan was performed to detect chromosomal regions that affect egg production traits in reciprocal crosses between two genetically and phenotypically extreme chicken lines: the partially inbred line New Hampshire (NHI) and the inbred line White Leghorn (WL77). The NHI line had been selected for high growth and WL77 for low egg weight before inbreeding. The result showed a highly significant region on chromosome 4 with multiple QTL for egg production traits between 19.2 and 82.1 Mb. This QTL region explained 4.3 and 16.1% of the phenotypic variance for number of eggs and egg weight in the F2 population, respectively. The egg weight QTL effects are dependent on the direction of the cross. In addition, genome‐wide suggestive QTL for egg weight were found on chromosomes 1, 5, and 9, and for number of eggs on chromosomes 5 and 7. A genome‐wide significant QTL affecting age at first egg was mapped on chromosome 1. The difference between the parental lines and the highly significant QTL effects on chromosome 4 will further support fine mapping and candidate gene identification for egg production traits in chicken.  相似文献   

4.
We describe the results from genetic dissection of a QTL region on chicken chromosome 2, shown to affect egg weight and quality in an earlier genome scan of an F2 intercross between two divergent egg layer lines. As the 90% confidence intervals for the detected QTL covered tens of centiMorgans, new analyses were needed. The datasets were reanalysed with denser marker intervals to characterise the QTL region. Analysis of a candidate gene from the original QTL region, vimentin, did not support its role in controlling egg white thinning. Even after reanalysis with additional seven markers in the QTL area, the 90% confidence intervals remained large or even increased, suggesting the presence of multiple linked QTL for the traits. A grid search fitting two QTL on chromosome 2 for each trait suggested that there are two distinct QTL areas affecting egg white thinning in both production periods and egg weight in the late production period. The results indicate possible pleiotropic effects of some of the QTL on egg quality and egg weight. However, it was not possible to make a distinction between close linkage versus pleiotropic effects.  相似文献   

5.
A detailed linkage map is necessary for efficient detection of quantitative trait loci (QTL) in chicken resource populations. In this study, microsatellite markers isolated from a (CA)n-enriched library (designated as ABR Markers) were mapped using a population developed from a cross between Japanese Game and White Leghorn chickens. In total, 296 markers including 193 ABR, 43 MCW, 31 ADL, 22 LEI, 3 HUJ, 2 GCT, 1 UMA and 1 ROS were mapped by linkage to chicken chromosomes 1-14, 17-21, 23, 24, 26-28 and Z. In addition, five markers were assigned to the map based on the chicken draft genomic sequence, bringing the total number of markers on the map to 301. The resulting linkage map will contribute to QTL mapping in chicken.  相似文献   

6.
We performed quantitative trait locus (QTL) analyses for egg production traits, including age at first egg (AFE) and egg production rates (EPR) measured every 4 weeks from 22 to 62 weeks of hen age, in a population of 421 F2 hens derived from an intercross between the Oh‐Shamo (Japanese Large Game) and White Leghorn breeds of chickens. Simple interval mapping revealed a main‐effect QTL for AFE on chromosome 1 and four main‐effect QTL for EPR on chromosomes 1 and 11 (three on chromosome 1 and one on chromosome 11) at the genome‐wide 5% levels. Among the three EPR QTL on chromosome 1, two were identified at the early stage of egg laying (26–34 weeks of hen age) and the remaining one was discovered at the late stage (54–58 weeks). The alleles at the two EPR QTL derived from the Oh‐Shamo breed unexpectedly increased the trait values, irrespective of the Oh‐Shamo being inferior to the White Leghorn in the trait. This suggests that the Oh‐Shamo, one of the indigenous Japanese breeds, is an untapped resource that is important for further improvement of current elite commercial laying chickens. In addition, six epistatic QTL were identified on chromosomes 2, 4, 7, 8, 17 and 19, where none of the above main‐effect QTL were located. This is the first example of detection of epistatic QTL affecting egg production traits. The main and epistatic QTL identified accounted for 4–8% of the phenotypic variance. The total contribution of all QTL detected for each trait to the phenotypic and genetic variances ranged from 4.1% to 16.9% and from 11.5% to 58.5%, respectively.  相似文献   

7.
Good eggshell quality is important for both table egg quality and chicken reproductive performance. Weak eggshells cause economic losses in all production steps. Poor eggshell quality also poses increased risk for Salmonella infections. Eggshell quality has been a difficult trait to improve by traditional breeding, as it can be measured only for females and it is difficult and expensive to measure. Breeding for improved shell quality may therefore benefit from the use of marker-assisted selection. In an effort to find markers linked to eggshell quality, we have used an F(2) population of 668 females to map quantitative trait loci (QTL) affecting eggshell traits (eggshell deformation, breaking force, weight). By using 160 microsatellite markers on 27 chromosomes, we found 11 genome-wide and 15 suggestive QTL for shell traits measured at different times during production. Loci affecting the deformation were found on chromosomes 1, 2, 6, 10, 14 and Z. Loci affecting the breaking force were detected on chromosomes 2, 3, 10, 12 and Z. Loci affecting the shell weight were detected on chromosomes 6, 12, 24 and Z. Each QTL explains between 1.5% and 4.6% of the phenotypic variance, adding up to 10-15% of total phenotypic variance explained for the different traits. No epistatic effects were observed between loci affecting eggshell traits. Because the effects for quality are mainly additive, these results provide a basis for further characterization of the loci to identify closely linked markers to be used in marker-assisted selection.  相似文献   

8.

Background

A fresh, good quality egg has a firm and gelatinous albumen that anchors the yolk and restricts growth of microbiological pathogens. As the egg ages, the gel-like structure collapses, resulting in thin and runny albumen. Occasionally thin albumen is found in a fresh egg, giving the impression of a low quality product. A mapping population consisting of 1599 F2 hens from a cross between White Rock and Rhode Island Red lines was set up, to identify loci controlling albumen quality. The phenotype for albumen quality was evaluated by albumen height and in Haugh units (HU) measured on three consecutive eggs from each F2 hen at the age of 40 weeks. For the fine-mapping analysis, albumen height and HU were used simultaneously to eliminate contribution of the egg size to the phenotype.

Results

Linkage analysis in a small population of seven half-sib families (668 F2) with 162 microsatellite markers spread across 27 chromosomes revealed two genome-wide significant regions with additive effects for HU on chromosomes 7 and Z. In addition, two putative genome-wide quantitative trait loci (QTL) regions were identified on chromosomes 4 and 26. The QTL effects ranged from 2 to 4% of the phenotypic variance. The genome-wide significant QTL regions on chromosomes 7 and Z were selected for fine-mapping in the full set composed of 16 half-sib families. In addition, their existence was confirmed by an association analysis in an independent commercial Hy-Line pure line.

Conclusions

We identified four chicken genomic regions that affect albumen quality. Our results also suggest that genes that affect albumen quality act both directly and indirectly through several different mechanisms. For instance, the QTL regions on both fine-mapped chromosomes 7 and Z overlapped with a previously reported QTL for eggshell quality, indicating that eggshell membranes may play a role in albumen quality.  相似文献   

9.
The association of SNP2-1 with egg quality traits in domestic chickens was analyzed. SNP2-1 alleles were significantly associated with the thickness of eggshells in chickens of the UK-72 line. The substitution of the SNP2-1 allele T for the C allele had an effect of 35 ± 15 μm, which corresponds to one standard deviation. For this trait, the effect of the T allele was dominant. SNP2-1 was also associated with other traits, including shell weight, egg-laying capacity in 60-week-old chickens (line UK-72), and egg weight in 60-week-old chickens (line cross CD). Thus, the QTL marked with SNP2-1 has a pleiotropic effect that depends on the chicken strain. Candidate genes located on chromosome 4 in close vicinity of SNP2-1 are discussed.  相似文献   

10.
The pioneering work by Professor Soller et al., among others, on the use of genetic markers to analyze quantitative traits has provided opportunities to discover their genetic architecture in livestock by identifying quantitative trait loci (QTL). The recent availability of high-density single nucleotide polymorphism (SNP) panels has advanced such studies by capitalizing on population-wide linkage disequilibrium at positions across the genome. In this study, genomic prediction model Bayes-B was used to identify genomic regions associated with the mean and standard deviation of egg weight at three ages in a commercial brown egg layer line. A total of 24,425 segregating SNPs were evaluated simultaneously using over 2900 genotyped individuals or families. The corresponding phenotypic records were represented as individual measurements or family means from full-sib progeny. A novel approach using the posterior distribution of window variances from the Monte Carlo Markov Chain samples was used to describe genetic architecture and to make statistical inferences about regions with the largest effects. A QTL region on chromosome 4 was found to explain a large proportion of the genetic variance for the mean (30%) and standard deviation (up to 16%) of the weight of eggs laid at specific ages. Additional regions with smaller effects on chromosomes 2, 5, 6, 8, 20, 23, 28 and Z showed suggestive associations with mean egg weight and a region on chromosome 13 with the standard deviation of egg weight at 26-28 weeks of age. The genetic architecture of the analyzed traits was characterized by a limited number of genes or genomic regions with large effects and many regions with small polygenic effects. The region on chromosome 4 can be used to improve both the mean and standard deviation of egg weight by marker-assisted selection.  相似文献   

11.
In this report we describe the analysis of an advanced intercross line (AIL) to confirm the quantitative trait locus (QTL) regions found for fatness traits in a previous study. QTL analysis was performed on chromosomes 1, 3, 4, 15, 18, and 27. The AIL was created by random intercrossing in each generation from generation 2 (G2) onwards until generation 9 (G9) was reached. QTL for abdominal fat weight (AFW) and/or percentage abdominal fat (AF%) on chromosomes 1, 3 and 27 were confirmed in the G9 population. In addition, evidence for QTL for body weight at the age of 5 (BW5) and 7 (BW7) weeks and for the percentage of intramuscular fat (IF%) were found on chromosomes 1, 3, 15, and 27. Significant evidence for QTL was detected on chromosome 1 for BW5 and BW7. Suggestive evidence was found on chromosome 1 for AFW, AF% and IF%, on chromosome 15 for BW5, and on chromosome 27 for AF% and IF%. Furthermore, evidence on the chromosome-wise level was found on chromosome 3 for AFW, AF%, and BW7 and on chromosome 27 for BW5. For chromosomes 4 and 18, test statistics did not exceed the significance threshold.  相似文献   

12.
This study aimed to identify regions of the genome affecting resistance to gastrointestinal nematodes in a Creole goat population naturally exposed to a mixed nematode infection (Haemonchus contortus, Trichostrongylus colubriformis and Oesophagostomum columbianum) by grazing on irrigated pasture. A genome‐wide quantitative trait loci (QTL) scan was performed on 383 offspring from 12 half‐sib families. A total of 101 microsatellite markers were genotyped. Traits analysed were faecal egg count (FEC), packed cell volume (PCV), eosinophil count and bodyweight (BW) at 7 and 11 months of age. Levels of activity of immunoglobulin A (IgA) and activity of immunoglobulin E (IgE) anti‐Haemonchus contortus L3 crude extracts and adult excretion/secretion products (ESPs) were also analysed. Using interval mapping, this study identified 13 QTL for parasite resistance. Two QTL linked with FEC were found on chromosomes 22 and 26. Three QTL were detected on chromosomes 7, 8 and 14 for eosinophil counts. Three QTL linked with PCV were identified on chromosomes 5, 9 and 21. A QTL for BW at 7 months of age was found on chromosome 6. Lastly, two QTL detected on chromosomes 3 and 10 were associated with IgE anti‐L3, and IgE anti‐ESP was linked with two QTL on chromosomes 1 and 26. This study is the first to have identified regions of the genome linked with nematode resistance in a goat population using a genome scan. These results provide useful tools for the understanding of parasite resistance in small ruminants.  相似文献   

13.
Quantitative trait loci affecting fatness in the chicken   总被引:13,自引:0,他引:13  
An F2 chicken population of 442 individuals from 30 families, obtained by crossing a broiler line with a layer line, was used for detecting and mapping Quantitative Trait Loci (QTL) affecting abdominal fat weight, skin fat weight and fat distribution. Within-family regression analyses using 102 microsatellite markers in 27 linkage groups were carried out with genome-wide significance thresholds. The QTL for abdominal fat weight were found on chromosomes 3, 7, 15 and 28; abdominal fat weight adjusted for carcass weight on chromosomes 1, 5, 7 and 28; skin and subcutaneous fat on chromosomes 3, 7 and 13; skin fat weight adjusted for carcass weight on chromosomes 3 and 28; and skin fat weight adjusted for abdominal fat weight on chromosomes 5, 7 and 15. Interactions of the QTL with sex or family were unimportant and, for each trait, there was no evidence for imprinting or of multiple QTL on any chromosome. Significant dominance effects were obtained for all but one of the significant locations for QTL affecting the weight of abdominal fat, none for skin fat and one of the three QTL affecting fat distribution. The magnitude of each QTL ranged from 3.0 to 5.2% of the residual phenotypic variation or 0.2-0.8 phenotypic standard deviations. The largest additive QTL (on chromosome 7) accounted for more than 20% of the mean weight of abdominal fat. Significant positive and negative QTL were identified from both lines.  相似文献   

14.
Pulmonary hypertension syndrome (PHS), also referred to as ascites syndrome, is a growth-related disorder of chickens frequently observed in fast-growing broilers with insufficient pulmonary vascular capacity at low temperature and/or at high altitude. A cross between two genetically different broiler dam lines that originated from the White Plymouth Rock breed was used to produce a three-generation population. This population was used for the detection and localization of quantitative trait loci (QTL) affecting PHS-related traits. Ten full-sib families consisting of 456 G2 birds were typed with 420 microsatellite markers covering 24 autosomal chromosomes. Phenotypic observations were collected on 4202 G3 birds and a full-sib across family regression interval mapping approach was used to identify QTL. There was statistical evidence for QTL on chicken chromosome 2 (GGA2), GGA4 and GGA6. Suggestive QTL were found on chromosomes 5, 8, 10, 27 and 28. The most significant QTL were located on GGA2 for right and total ventricular weight as percentage of body weight (%RV and %TV respectively). A related trait, the ratio of right ventricular weight as percentage to total ventricular weight (RATIO), reached the suggestive threshold on this chromosome. All three QTL effects identified on GGA2 had their maximum test statistic in the region flanked by markers MCW0185 and MCW0245 (335-421 cM).  相似文献   

15.
Interval mapping (IM) implemented in QTL Express or GridQTL is widely used, but presents some limitations, such as restriction to a fixed model, risk of mapping two QTL when there may be only one and no discrimination of two or more QTL using both cofactors located on the same and other chromosomes. These limitations were overcome with composite interval mapping (CIM). We reported QTL associated with performance and carcass traits on chicken chromosomes 1, 3, and 4 through implementation of CIM and analysis of phenotypic data using mixed models. Thirty-four microsatellite markers were used to genotype 360 F2 chickens from crosses between males from a layer line and females from a broiler line. Sixteen QTL were mapped using CIM and 14 QTL with IM. Furthermore, of those 30 QTL, six were mapped only when CIM was used: for body weight at 35 days (first and third peaks on GGA4), body weight at 41 days (GGA1B and second peak on GGA4), and weights of back and legs (both on GGA4). Three new regions had evidence for QTL presence: one on GGA1B associated with feed intake 35–41 d at 404 cM (LEI0107-ADL0183) and two on GGA4 associated with weight of back at 163 cM (LEI0076-MCW0240) and weight gain 35–41 d, feed efficiency 35–41 d and weight of legs at 241 cM (LEI0085-MCW0174). We dissected one more linked QTL on GGA4, where three QTL for BW35 and two QTL for BW41 were mapped. Therefore, these new regions mapped here need further investigations using high-density SNP to confirm these QTL and identify candidate genes associated with those traits.  相似文献   

16.
Representational difference analysis (RDA) was performed using pig genomic DNA from a Landrace non-selected control population and a Landrace population selected for increased loin muscle area (LMA) for five generations. Pigs used for the analysis differed phenotypically for various carcass traits and were divergent in genotype at the skeletal muscle ryanodine receptor 1 locus. Two RDA experiments were performed using BamHI and BglII. Fourteen BamHI and 37 BglII difference products were cloned and sequenced. Oligonucleotide primers were designed to amplify RDA difference products and sequence-tagged sites (STS) were developed for 16 RDA fragments (two BamHI and 14 BglII). These 16 STS were mapped using the INRA-Minnesota porcine Radiation Hybrid panel. Polymorphisms identified in nine of the STS were used to place these markers on the PiGMaP genetic linkage map. Sequence-tagged sites were localized to 11 different chromosomes including three markers on chromosome 11 and four markers on chromosome 14. Development of RDA markers increases the resolution of the pig genome maps and markers located within putative quantitative trait locus (QTL) regions can be used to refine QTL positions.  相似文献   

17.
A QTL affecting clinical mastitis and/or somatic cell score (SCS) has been reported previously on chromosome 9 from studies in 16 families from the Swedish Red and White (SRB), Finnish Ayrshire (FA) and Danish Red (DR) breeds. In order to refine the QTL location, 67 markers were genotyped over the whole chromosome in the 16 original families and 18 additional half-sib families. This enabled linkage disequilibrium information to be used in the analysis. Data were analysed by an approach that combines information from linkage and linkage disequilibrium, which allowed the QTL affecting clinical mastitis to be mapped to a small interval (<1 cM) between the markers BM4208 and INRA084 . This QTL showed a pleiotropic effect on SCS in the DR and SRB breeds. Haplotypes associated with variations in mastitis resistance were identified. The haplotypes were predictive in the general population and can be used in marker-assisted selection. Pleiotropic effects of the mastitis QTL were studied for three milk production traits and eight udder conformation traits. This QTL was also associated with yield traits in DR but not in FA or SRB. No QTL were found for udder conformation traits on chromosome 9.  相似文献   

18.
A. Zhan  J. Hu  X. Hu  M. Hui  M. Wang  W. Peng  X. Huang  S. Wang  W. Lu  C. Sun  Z. Bao 《Animal genetics》2009,40(6):821-831
We constructed the microsatellite-based linkage maps using 318 markers typed in two F1 outbred families of Zhikong scallop ( Chlamys farreri ). The results showed an extremely high proportion (56.2%) of non-amplifying null alleles and a high ratio (30%) of segregation distortion. By aligning different individual-based linkage maps, 19 linkage groups were identified, which are consistent with the haploid chromosome number of Zhikong scallop. The integrated linkage map contains 154 markers covering 1561.8 cM with an average intermarker spacing of 12.3 cM and 77.0% of genome coverage. We found that the heterogeneity in recombination rate was not determined by sexes but by different individuals on 18 linkage regions. The phenotypic marker of general shell colour was placed on LG4, which was flanked by microsatellite markers CFLD064 and CFBD055 . Four size-related traits including shell length (SL), shell width (SW), shell height (SH) and gross weight (GW) were analysed to identify the putative quantitative trait loci (QTL). Under the half-sib model, using dam as common parent, three, two, two and one QTL affecting SL, SW, SH and GW exceeded the genome-wide thresholds respectively. While using sir as common parent, a larger number of QTL were detected for these four traits: four, five, three and two for SL, SW, SH and GW respectively. The single QTL explained 3.7–19.2% of the phenotypic variation. The linkage map and the QTL associated with economic traits will provide useful information for marker-assisted selection of Zhikong scallop.  相似文献   

19.
This study investigated whether quantitative trait loci (QTL) identified in experimental crosses of chickens provide a short cut to the identification of QTL in commercial populations. A commercial population of broilers was targeted for chromosomal regions in which QTL for traits associated with meat production have previously been detected in extreme crosses. A three-generation design, consisting of 15 grandsires, 608 half-sib hens and over 15 000 third-generation offspring, was implemented within the existing breeding scheme of a broiler breeding company. The first two generations were typed for 52 microsatellite markers spanning regions of nine chicken chromosomes and covering a total of 730 cM, approximately one-fifth of the chicken genome. Using half-sib analyses with a multiple QTL model, linkage was studied between these regions and 17 growth and carcass traits. Out of 153 trait x region comparisons, 53 QTL exceeded the threshold for genome-wide significance while an additional 23 QTL were significant at the nominal 1% level. Many of the QTL affect the carcass proportions and feed intake, for which there are few published studies. Given intensive selection for efficient growth in broilers for more than 50 generations it is surprising that many QTL affecting these traits are still segregating. Future fine-mapping efforts could elucidate whether ancestral mutations are still segregating as a result of pleiotropic effects on fitness traits or whether this variation is due to new mutations.  相似文献   

20.
A large intercross between the domestic White Leghorn chicken and the wild ancestor, the red junglefowl, has been used in a Quantitative Trait Loci (QTL) study of growth and egg production. The linkage map based on 105 marker loci was in good agreement with the chicken consensus map. The growth of the 851 F2 individuals was lower than both parental lines prior to 46 days of age and intermediate to the two parental lines thereafter. The QTL analysis of growth traits revealed 13 loci that showed genome-wide significance. The four major growth QTLs explained 50 and 80% of the difference in adult body weight between the founder populations for females and males, respectively. A major QTL for growth, located on chromosome 1 appears to have pleiotropic effects on feed consumption, egg production and behaviour. There was a strong positive correlation between adult body weight and average egg weight. However, three QTLs affecting average egg weight but not body weight were identified. An interesting observation was that the estimated effects for the four major growth QTLs all indicated a codominant inheritance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号