首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cotranslational incorporation of the unusual amino acid selenocysteine (Sec) into both prokaryotic and eukaryotic proteins requires the recoding of a UGA stop codon as one specific for Sec. The recognition of UGA as Sec in mammalian selenoproteins requires a Sec insertion sequence (SECIS) element in the 3' untranslated region as well as the SECIS binding protein SBP2. Here we report a detailed analysis of SBP2 structure and function using truncation and site-directed mutagenesis. We have localized the RNA binding domain to a conserved region shared with several ribosomal proteins and eukaryotic translation termination release factor 1. We also identified a separate and novel functional domain N-terminal to the RNA binding domain which was required for Sec insertion but not for SECIS binding. Conversely, we showed that the RNA binding domain was necessary but not sufficient for Sec insertion and that the conserved glycine residue within this domain was required for SECIS binding. Using glycerol gradient sedimentation, we found that SBP2 was stably associated with the ribosomal fraction of cell lysates and that this interaction was not dependent on its SECIS binding activity. This interaction also occurred with purified components in vitro, and we present data which suggest that the SBP2-ribosome interaction occurs via 28S rRNA. SBP2 may, therefore, have a distinct function in selecting the ribosomes to be used for Sec insertion.  相似文献   

2.
3.
Selenocysteine (Sec) is incorporated at UGA codons in mRNAs possessing a Sec insertion sequence (SECIS) element in their 3'-untranslated region. At least three additional factors are necessary for Sec incorporation: SECIS-binding protein 2 (SBP2), Sec-tRNA(Sec), and a Sec-specific translation elongation factor (eEFSec). The C-terminal half of SBP2 is sufficient to promote Sec incorporation in vitro, which is carried out by the concerted action of a novel Sec incorporation domain and an L7Ae RNA-binding domain. Using alanine scanning mutagenesis, we show that two distinct regions of the Sec incorporation domain are required for Sec incorporation. Physical separation of the Sec incorporation and RNA-binding domains revealed that they are able to function in trans and established a novel role of the Sec incorporation domain in promoting SECIS and eEFSec binding to the SBP2 RNA-binding domain. We propose a model in which SECIS binding induces a conformational change in SBP2 that recruits eEFSec, which in concert with the Sec incorporation domain gains access to the ribosomal A site.  相似文献   

4.
Biosynthesis of selenium-containing proteins requires insertion of the unusual amino acid selenocysteine by alternative translation of a UGA codon, which ordinarily serves as a stop codon. In eukaryotes, selenoprotein translation depends upon one or more selenocysteine insertion sequence (SECIS) elements located in the 3'-untranslated region of the mRNA, as well as several SECIS-binding proteins. Our laboratory has previously identified nuclease sensitive element binding protein 1 (NSEP1) as another SECIS-binding protein, but evidence has been presented both for and against its role in SECIS binding in vivo and in selenoprotein translation. Our current studies sought to resolve this controversy, first by investigating whether NSEP1 interacts closely with SECIS elements within intact cells. After reversible in vivo cross-linking and ribonucleoprotein immunoprecipitation, mRNAs encoding two glutathione peroxidase family members co-precipitated with NSEP1 in both human and rat cell lines. Co-immunoprecipitation of an epitope-tagged GPX1 construct depended upon an intact SECIS element in its 3'-untranslated region. To test the functional importance of this interaction on selenoprotein translation, we used small inhibitory RNAs to reduce the NSEP1 content of tissue culture cells and then examined the effect of that reduction on the activity of a SECIS-dependent luciferase reporter gene for which expression depends upon readthrough of a UGA codon. Co-transfection of small inhibitory RNAs directed against NSEP1 decreased its expression by approximately 50% and significantly reduced luciferase activity. These studies demonstrate that NSEP1 is an authentic SECIS binding protein that is structurally associated with the selenoprotein translation complex and functionally involved in the translation of selenoproteins in mammalian cells.  相似文献   

5.
Lescure A  Allmang C  Yamada K  Carbon P  Krol A 《Gene》2002,291(1-2):279-285
Selenocysteine and selenoprotein synthesis require a complex molecular machinery in mammals. Among the key players is the RNA-protein complex formed by the selenocysteine insertion sequence (SECIS) binding protein (SBP2) and the SECIS element, an RNA hairpin in the 3' untranslated regions of selenoprotein messenger RNAs (mRNAs). We have isolated the DNA complementary to mRNA of the human SBP2, enabling us to establish that it differs from a previously reported human SBP2-like protein. Examination of the expression pattern revealed that the human SBP2 protein is encoded by a 4 kb long mRNA that is over-expressed in testis. Compared to the rat SBP2 sequence, the human SBP2 protein displays two highly conserved domains with 92 and 95% amino acid identity, the latter one containing the RNA binding domain. The inter-domain section carries 55% sequence identity, the remainder of the SBP2 sequences showing about 65% identity, values lower than expected for two mammalian proteins. Interestingly, we could show that the binding of human SBP2 to the SECIS RNA is stimulated by the selenoprotein-specialized elongation translation factor mSelB/eEFsec.  相似文献   

6.
In mammalian selenoprotein mRNAs, the recognition of UGA as selenocysteine requires selenocysteine insertion sequence (SECIS) elements that are contained in a stable stem-loop structure in the 3' untranslated region (UTR). In this study, we investigated the SECIS elements and cellular proteins required for selenocysteine insertion in rat phospholipid hydroperoxide glutathione peroxidase (PhGPx). We developed a translational readthrough assay for selenoprotein biosynthesis by using the gene for luciferase as a reporter. Insertion of a UGA or UAA codon into the coding region of luciferase abolished luciferase activity. However, activity was restored to the UGA mutant, but not to the UAA mutant, upon insertion of the PhGPx 3' UTR. The 3' UTR of rat glutathione peroxidase (GPx) also allowed translational readthrough, whereas the PhGPx and GPx antisense 3' UTRs did not. Deletion of two conserved SECIS elements in the PhGPx 3' UTR (AUGA in the 5' stem or AAAAC in the terminal loop) abolished readthrough activity. UV cross-linking studies identified a 120-kDa protein in rat testis that binds specifically to the sense strands of the PhGPx and GPx 3' UTRs. Direct cross-linking and competition experiments with deletion mutant RNAs demonstrated that binding of the 120-kDa protein requires the AUGA SECIS element but not AAAAC. Point mutations in the AUGA motif that abolished protein binding also prevented readthrough of the UGA codon. Our results suggest that the 120-kDa protein is a significant component of the mechanism of selenocysteine incorporation in mammalian cells.  相似文献   

7.
The decoding of UGA as a selenocysteine (Sec) codon in mammalian selenoprotein mRNAs requires a selenocysteine insertion sequence (SECIS) element in the 3' untranslated region. The SECIS is a hairpin structure that contains a non-Watson-Crick base-pair quartet with a conserved G.A/A.G tandem in the core of the upper helix. Another essential component of the Sec insertion machinery is SECIS-binding protein 2 (SBP2). In this study, we define the binding site of SBP2 on six different SECIS RNAs using enzymatic and hydroxyl radical footprinting, gel mobility shift analysis, and phosphate-ethylation binding interference. We show that SBP2 binds to a variety of mammalian SECIS elements with similar affinity and that the SBP2 binding site is conserved across species. Based on footprinting studies, SBP2 protects the proximal part of the hairpin and both strands of the lower half of the upper helix that contains the non-Watson-Crick base pair quartet. Gel mobility shift assays showed that the G.A/A.G tandem and internal loop are critical for the binding of SBP2. Modification of phosphates by ethylnitrosourea along both strands of the non-Watson-Crick base pair quartet, on the 5' strand of the lower helix and part of the 5' strand of the internal loop, prevented binding of SBP2. We propose a model in which SBP2 covers the central part of the SECIS RNA, binding to the non-Watson-Crick base pair quartet and to the 5' strands of the lower helix and internal loop. Our results suggest that the affinity of SBP2 for different SECIS elements is not responsible for the hierarchy of selenoprotein expression that is observed in vivo.  相似文献   

8.
Selenocysteine is incorporated into at least 25 human proteins by a complex mechanism that is a unique modification of canonical translation elongation. Selenocysteine incorporation requires the concerted action of a kink-turn structural RNA (SECIS) element in the 3′ untranslated region of each selenoprotein mRNA, a selenocysteine-specific translation elongation factor (eEFSec) and a SECIS binding protein (SBP2). Here, we analyze the molecular context in which SBP2 functions. Contrary to previous findings, a combination of gel filtration chromatography and co-purification studies demonstrates that SBP2 does not self-associate. However, SBP2 is found to be quantitatively associated with ribosomes. Interestingly, a wild-type but not mutant SECIS element is able to effectively compete with the SBP2 ribosome interaction, indicating that SBP2 cannot simultaneously interact with the ribosome and the SECIS element. This data also supports the hypothesis that SBP2 interacts with one or more kink turns on 28S rRNA. Based on these results, we propose a revised model for selenocysteine incorporation where SBP2 remains ribosome bound except during selenocysteine delivery to the ribosomal A-site.  相似文献   

9.
In mammals, most of the selenium contained in their body is present as an unusual amino acid, selenocysteine (Sec), whose codon is UGA. Because the UGA codon is normally recognized as a translational stop signal, it is intriguing how cells recognize and distinguish the UGA Sec codon from the UGA stop codon. In eukaryotic selenoprotein mRNAs, it has been proposed that a conserved stem-loop structure designated Sec insertion sequence (SECIS) located in the 3'-untranslated regions is required for recognition of UGA as a Sec codon. Although some proteins (SBPs) have been reported to bind to SECIS, it is not clear how the SECIS element can mediate Sec insertion at UGA. Eukaryotic Sec-tRNA(Sec) is not recognized by elongation factor EF-1alpha, but is recognized specifically by a Sec-tRNA(Sec) protecting factor, SePF, in bovine liver extracts. In this study, we provide evidence that SePF is distinct from SBP by chromatography. Upon UV irradiation, the SECIS RNA was cross-linked to a 47.5 kDa protein, a likely candidate of SBP, that is contained in the complex with a molecular mass of 150 kDa. These results suggest that SBP and SePF play different roles for the Sec incorporation. To our knowledge, this is the first demonstration that SBP is discriminated from the factor which directly recognizes Sec-tRNA(Sec), providing a novel clue to the mechanism of selenocysteine decoding in eukaryotes.  相似文献   

10.
Selenocysteine (Sec) incorporation requires the TGA opal codon and a downstream Sec insertion sequence (SECIS), which can be partially randomized and cloned into M13 pIII fusion constructs for phage display. This combinatorial approach provides a convenient non-radioactive assay that couples phage production to opal suppression. Two SECIS libraries were prepared, with the immediate downstream nucleotide either randomized (TGAN) or fixed as thymidine (TGAT). The TGAN library resulted in a majority of clones with a downstream purine and selenium-independent phage production, implicating the endogenous tryptophan-inserting opal suppression pathway. Although the addition of sodium selenite to the growth medium did not affect phage production, it did increase the level of Sec insertion, as shown by the chemical reactivity of the resulting phage. The TGAT phage library yielded clones with strictly selenium-dependent phage production and reactivity consistent with the presence of Sec. These clones were prone to spontaneous mutation upon further propagation, however, resulting in loss of the selenium-dependent phenotype. We conclude that the immediate downstream nucleotide determines whether the endogenous opal suppression pathway competes with co-translational Sec insertion.  相似文献   

11.
The decoding of specific UGA codons as selenocysteine is specified by the Sec insertion sequence (SECIS) element. Additionally, Sec-tRNA([Ser]Sec) and the dedicated Sec-specific elongation factor eEFSec are required but not sufficient for nonsense suppression. SECIS binding protein 2 (SBP2) is also essential for Sec incorporation, but its precise role is unknown. In addition to binding the SECIS element, SBP2 binds stably and quantitatively to ribosomes. To determine the function of the SBP2-ribosome interaction, conserved amino acids throughout the SBP2 L7Ae RNA binding motif were mutated to alanine in clusters of five. Mutant proteins were analyzed for ribosome binding, SECIS element binding, and Sec incorporation activity, allowing us to identify two distinct but interdependent sites within the L7Ae motif: (i) a core L7Ae motif required for SECIS binding and ribosome binding and (ii) an auxiliary motif involved in physical and functional interactions with the ribosome. Structural modeling of SBP2 based on the 15.5-kDa protein-U4 snRNA complex strongly supports a two-site model for L7Ae domain function within SBP2. These results provide evidence that the SBP2-ribosome interaction is essential for Sec incorporation.  相似文献   

12.
13.
Donovan J  Copeland PR 《PloS one》2012,7(4):e35581
The amino acid selenocysteine (Sec) is encoded by UGA codons. Recoding of UGA from stop to Sec requires a Sec insertion sequence (SECIS) element in the 3' UTR of selenoprotein mRNAs. SECIS binding protein 2 (SBP2) binds the SECIS element and is essential for Sec incorporation into the nascent peptide. SBP2-like (SBP2L) is a paralogue of SBP2 in vertebrates and is the only SECIS binding protein in some invertebrates where it likely directs Sec incorporation. However, vertebrate SBP2L does not promote Sec incorporation in in vitro assays. Here we present a comparative analysis of SBP2 and SBP2L SECIS binding properties and demonstrate that its inability to promote Sec incorporation is not due to lower SECIS affinity but likely due to lack of a SECIS dependent domain association that is found in SBP2. Interestingly, however, we find that an invertebrate version of SBP2L is fully competent for Sec incorporation in vitro. Additionally, we present the first evidence that SBP2L interacts with selenoprotein mRNAs in mammalian cells, thereby implying a role in selenoprotein expression.  相似文献   

14.
Thioredoxin reductases (TRR) serve critical roles in maintaining cellular redox states. Two isoforms of TRR have been identified in mammals: both contain a penultimate selenocysteine residue that is essential for catalytic activity. A search of the genome of the invertebrate, Caenorhabditis elegans, reveals a gene highly homologous to mammalian TRR, with a TGA selenocysteine codon at the corresponding position. A selenocysteyl-tRNA was identified in this organism several years ago, but no selenoproteins have been identified experimentally. Herein we report the first identification of a C. elegans selenoprotein. By (75)Se labeling of C. elegans, one major band was identified, which migrated with the predicted mobility of the C. elegans TRR homologue. Western analysis with an antibody against human TRR provides strong evidence for identification of the C. elegans selenoprotein as a member of the TRR family. The 3'-untranslated region of this gene contains a selenocysteine insertion sequence (SECIS) element that deviates at one position from the previously invariant consensus "AUGA." Nonetheless, this element functions to direct selenocysteine incorporation in mammalian cells, suggesting conservation of the factors recognizing SECIS elements from worm to man.  相似文献   

15.
MOTIVATION: Incorporation of selenocysteine (Sec) into proteins in response to UGA codons requires a cis-acting RNA structure, Sec insertion sequence (SECIS) element. Whereas SECIS elements in Escherichia coli are well characterized, a bacterial SECIS consensus structure is lacking. RESULTS: We developed a bacterial SECIS consensus model, the key feature of which is a conserved guanosine in a small apical loop of the properly positioned structure. This consensus was used to build a computational tool, bSECISearch, for detection of bacterial SECIS elements and selenoprotein genes in sequence databases. The program identified 96.5% of known selenoprotein genes in completely sequenced bacterial genomes and predicted several new selenoprotein genes. Further analysis revealed that the size of bacterial selenoproteomes varied from 1 to 11 selenoproteins. Formate dehydrogenase was present in most selenoproteomes, often as the only selenoprotein family, whereas the occurrence of other selenoproteins was limited. The availability of the bacterial SECIS consensus and the tool for identification of these structures should help in correct annotation of selenoprotein genes and characterization of bacterial selenoproteomes.  相似文献   

16.
A selenocysteine insertion sequence (SECIS) element in the 3'-untranslated region and an in-frame UGA codon are the requisite cis-acting elements for the incorporation of selenocysteine into selenoproteins. Equally important are the trans-acting factors SBP2, Sec-tRNA[Ser]Sec, and eEFSec. Multiple in-frame UGAs and two SECIS elements make the mRNA encoding selenoprotein P (Sel P) unique. To study the role of codon context in determining the efficiency of UGA readthrough at each of the 10 rat Sel P Sec codons, we individually cloned 27-nucleotide-long fragments representing each UGA codon context into a luciferase reporter construct harboring both Sel P SECIS elements. Significant differences, spanning an 8-fold range of UGA readthrough efficiency, were observed, but these differences were dramatically reduced in the presence of excess SBP2. Mutational analysis of the "fourth base" of contexts 1 and 5 revealed that only the latter followed the established rules for hierarchy of translation termination. In addition, mutations in either or both of the Sel P SECIS elements resulted in differential effects on UGA readthrough. Interestingly, even when both SECIS elements harbored a mutation of the core region required for Sec incorporation, context 5 retained a significantly higher level of readthrough than context 1. We also show that SBP2-dependent Sec incorporation is able to repress G418-induced UGA readthrough as well as eRF1-induced stimulation of termination. We conclude that a large codon context forms a cis-element that works together with Sec incorporation factors to determine readthrough efficiency.  相似文献   

17.
18.
The kinetics of the interaction of GTP and GDP with SelB, the specific translation factor for the incorporation of selenocysteine into proteins, have been investigated using the stopped-flow method. Useful signals were obtained using intrinsic (i.e. tryptophan) fluorescence, the fluorescence of methylanthraniloyl derivatives of nucleotides, or fluorescence resonance energy transfer from tryptophan to the methylanthraniloyl group. The affinities of SelB for GTP (K(d) = 0.74 micrometer) and GDP (K(d) = 13.4 micrometer) were considerably lower than those of other translation factors. Of functional significance is the fact that the rate constant for GDP release from its complex with SelB (15 s(-)(1)) is many orders of magnitude larger than for elongation factor Tu, explaining why a GDP/GTP exchange factor is not required for the action of SelB. In contrast, the rate of release of GTP is 2 orders of magnitude slower and not significantly faster than for elongation factor Tu. Using a fluorescently labeled 17-nucleotide RNA minihelix that represents a binding site for the protein and that is part of the fdhF selenocysteine insertion sequence element positioned immediately downstream of the UGA triplet coding for selenocysteine incorporation, the kinetics of the interaction were studied. The high affinity of the interaction (K(d) approximately 1 nm) appeared to be increased even further when selenocysteyl-tRNA(Sec) was bound to SelB, but to be independent of the presence or nature of the guanosine nucleotide at the active site. These results suggest that the affinity of SelB for its RNA binding site is maximized when charged tRNA is bound and decreases to allow dissociation and reading of codons downstream of the selenocysteine codon after selenocysteine peptide bond formation.  相似文献   

19.
The expression of selenoproteins requires the translational recoding of the UGA stop codon to selenocysteine. In eukaryotes, this requires an RNA stem loop structure in the 3'-untranslated region, termed a selenocysteine insertion sequence (SECIS), and SECIS-binding protein 2 (SBP2). This study implicates SBP2 in dictating the hierarchy of selenoprotein expression, because it is the first to show that SBP2 distinguishes between SECIS elements in vitro. Using RNA electrophoretic mobility shift assays, we demonstrate that a naturally occurring mutation in SBP2, which correlates with abnormal thyroid hormone function in humans, lies within a novel, bipartite RNA-binding domain. This mutation alters the RNA binding affinity of SBP2 such that it no longer stably interacts with a subset of SECIS elements. Assays performed under competitive conditions to mimic intracellular conditions suggest that the differential affinity of SBP2 for various SECIS elements will determine the expression pattern of the selenoproteome. We hypothesize that the selective loss of a subset of selenoproteins, including some involved in thyroid hormone homeostasis, is responsible for the abnormal thyroid hormone metabolism previously observed in the affected individuals.  相似文献   

20.
Selenocysteine (Sec), the 21st amino acid in protein, is encoded by UGA. The Sec insertion sequence (SECIS) element, which is the stem-loop structure present in 3' untranslated regions (UTRs) of eukaryotic selenoprotein-encoding genes, is essential for recognition of UGA as a codon for Sec rather than as a stop signal. We now report the identification of a new eukaryotic selenoprotein, designated selenoprotein M (SelM). The 3-kb human SelM-encoding gene has five exons and is located on chromosome 22 but has not been correctly identified by either Celera or the public Human Genome Project. We characterized human and mouse SelM cDNA sequences and expressed the selenoprotein in various mammalian cell lines. The 3" UTR of the human, mouse, and rat SelM-encoding genes lacks a canonical SECIS element. Instead, Sec is incorporated in response to a conserved mRNA structure, in which cytidines are present in place of the adenosines previously considered invariant. Substitution of adenosines for cytidines did not alter Sec incorporation; however, other mutant structures did not support selenoprotein synthesis, demonstrating that this new form of SECIS element is functional. SelM is expressed in a variety of tissues, with increased levels in the brain. It is localized to the perinuclear structures, and its N-terminal signal peptide is necessary for protein translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号