首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rap1 GTPase functions as a regulator of morphogenesis in vivo.   总被引:4,自引:0,他引:4       下载免费PDF全文
The Ras-related Rap GTPases are highly conserved across diverse species but their normal biological function is not well understood. Initial studies in mammalian cells suggested a role for Rap as a Ras antagonist. More recent experiments indicate functions in calcium- and cAMP-mediated signaling and it has been proposed that protein kinase A-mediated phosphorylation activates Rap in vivo. We show that Ras1-mediated signaling pathways in Drosophila are not influenced by Rap1 levels, suggesting that Ras1 and Rap1 function via distinct pathways. Moreover, a mutation that abolishes the putative cAMP-dependent kinase phosphorylation site of Drosophila Rap1 can still rescue the Rap1 mutant phenotype. Our experiments show that Rap1 is not needed for cell proliferation and cell-fate specification but demonstrate a critical function for Rap1 in regulating normal morphogenesis in the eye disk, the ovary and the embryo. Rap1 mutations also disrupt cell migrations and cause abnormalities in cell shape. These findings indicate a role for Rap proteins as regulators of morphogenesis in vivo.  相似文献   

2.
3.
The evolutionary conserved transmembrane protein Crumbs (Crb) regulates morphogenesis of photoreceptor cells in the compound eye of Drosophila and prevents light-dependent retinal degeneration. Here we examine the role of Crb in the ocelli, the simple eyes of Drosophila. We show that Crb is expressed in ocellar photoreceptor cells, where it defines a stalk membrane apical to the adherens junctions, similar as in photoreceptor cells of the compound eyes. Loss of function of crb disrupts polarity of ocellar photoreceptor cells, and results in mislocalisation of adherens junction proteins. This phenotype is more severe than that observed in mutant photoreceptor cells of the compound eye, and resembles more that of embryonic epithelia lacking crb. Similar as in compound eyes, crb protects ocellar photoreceptors from light induced degeneration, a function that depends on the extracellular portion of the Crb protein. Our data demonstrate that the function of crb in photoreceptor development and homeostasis is conserved in compound eyes and ocelli and underscores the evolutionarily relationship between these visual sense organs of Drosophila. The data will be discussed with respect to the difference in apico-basal organisation of these two cell types.  相似文献   

4.
C. Ma  H. Liu  Y. Zhou    K. Moses 《Genetics》1996,142(4):1199-1213
The glass gene encodes a zinc finger, DNA-binding protein that is required for photoreceptor cell development in Drosophila melanogaster. In the developing compound eye, glass function is regulated at two points: (1) the protein is expressed in all cells' nuclei posterior to the morphogenetic furrow and (2) the ability of the Glass protein to regulate downstream genes is largely limited to the developing photoreceptor cells. We conducted a series of genetic screens for autosomal dominant second-site modifiers of the weak allele glass(3), to discover genes with products that may regulate glass function at either of these levels. Seventy-six dominant enhancer mutations were recovered (and no dominant suppressors). Most of these dominant mutations are in essential genes and are associated with recessive lethality. We have assigned these mutations to 23 complementation groups that include multiple alleles of Star and hedgehog as well as single alleles of Delta, roughened eye, glass and hairy. Mutations in 18 of the complementation groups are embryonic lethals, and of these, 13 show abnormal adult retinal phenotypes in homozygous clones, usually with altered numbers of photoreceptor cells in some of the ommatidia.  相似文献   

5.
The two fundamental types of photoreceptor cells have evolved unique structures to expand the apical membrane to accommodate the phototransduction machinery, exemplified by the cilia-based outer segment of the vertebrate photoreceptor cell and the microvilli-based rhabdomere of the invertebrate photoreceptor. The morphogenesis of these compartments is integral for photoreceptor cell integrity and function. However, little is known about the elementary cellular and molecular mechanisms required to generate these compartments. Here we investigate whether a conserved cellular mechanism exists to create the phototransduction compartments by examining the functional role of a photoreceptor protein common to both rhabdomeric and ciliated photoreceptor cells, Prominin. First and foremost we demonstrate that the physiological role of Prominin is conserved between rhabdomeric and ciliated photoreceptor cells. Human Prominin1 is not only capable of rescuing the corresponding rhabdomeric Drosophila prominin mutation but also demonstrates a conserved genetic interaction with a second photoreceptor protein Eyes Shut. Furthermore, we demonstrate the Prominin homologs in vertebrate and invertebrate photoreceptors require the same structural features and post-translational modifications for function. Moreover, expression of mutant human Prominin1, associated with autosomal dominant retinal degeneration, in rhabdomeric photoreceptor cells disrupts morphogenesis in ways paralleling retinal degeneration seen in ciliated photoreceptors. Taken together, our results suggest the existence of an ancestral Prominin-directed cellular mechanism to create and model the apical membranes of the two fundamental types of photoreceptor cells into their respective phototransduction compartments.  相似文献   

6.
The Drosophila sponge (spg)/CG31048 gene belongs to the dedicator of cytokinesis (DOCK) family genes that are conserved in a wide variety of species. DOCK family members are known as DOCK1–DOCK11 in mammals. Although DOCK1 and DOCK2 involve neurite elongation and immunocyte differentiation, respectively, the functions of other DOCK family members are not fully understood. Spg is a Drosophila homolog of mammalian DOCK3 and DOCK4. Specific knockdown of spg by the GMR-GAL4 driver in eye imaginal discs induced abnormal eye morphology in adults. To mark the photoreceptor cells in eye imaginal discs, we used a set of enhancer trap strains that express lacZ in various sets of photoreceptor cells. Immunostaining with anti-Spg antibodies and anti-lacZ antibodies revealed that Spg is localized mainly in R7 photoreceptor cells. Knockdown of spg by the GMR-GAL4 driver reduced signals of R7 photoreceptor cells, suggesting involvement of Spg in R7 cell differentiation. Furthermore, immunostaining with anti-dpERK antibodies showed the level of activated ERK signal was reduced extensively by knockdown of spg in eye discs, and both the defects in eye morphology and dpERK signals were rescued by over-expression of the Drosophila raf gene, a component of the ERK signaling pathway. Furthermore, the Duolink in situ Proximity Ligation Assay method detected interaction signals between Spg and Rap1 in and around the plasma membrane of the eye disc cells. Together, these results indicate Spg positively regulates the ERK pathway that is required for R7 photoreceptor cell differentiation and the regulation is mediated by interaction with Rap1 during development of the compound eye.  相似文献   

7.
The compound eye of Drosophila develops from a uniform layer of epithelial cells in the eye imaginal disc. One intriguing aspect of eye development is the establishment of the correct number and spacing of the photoreceptor clusters which give rise to the mature ommatidia. Ellipse (Elp) has been implicated as playing a role in this process because the Elp dominant gain of function mutation dramatically reduces the number of photoreceptor clusters in the compound eye without affecting the morphology of individual clusters that are formed (Baker and Rubin, 1989). Since Elp represents an allele of the Drosophila EGF receptor (DER) locus, it encodes a protein which is structurally capable of mediating inductive cell-cell interactions. In an effort to better understand the role of the DER locus in ommatidial patterning, we compared the localization of DER protein in eye imaginal discs of wild-type and Elp larvae. The distribution of this receptor is consistent with the notion of its mediating interactions between cells at the initial stages of photoreceptor precluster positioning and differentiation. However, the basis of the Elp gain of function mutation is not ectopic or increased expression of the DER protein. Rather, expression of the Elp form of the EGF receptor homolog in the normal localization leads to changes in the proliferative pattern of cells dividing posterior to the morphogenetic furrow.  相似文献   

8.
Drosophila Jun (D-Jun) is a nuclear component of the receptor tyrosine kinase/Ras signal transduction pathway which triggers photoreceptor differentiation during eye development. Here we show that D-Jun is a substrate for the ERK-related Drosophila MAP kinase Rolled, which has previously been shown to be a part of this pathway. A D-Jun mutant that carries alanines in place of the Rolled phosphorylation sites acts as a dominant suppressor of photoreceptor cell fate if expressed in the eye imaginal disc. In contrast, a mutant in which the phosphorylation sites are replaced by phosphate-mimetic Asp residues, as well as a VP16-D-Jun fusion protein, can promote photoreceptor differentiation. These data implicate Jun phosphorylation in the choice between neuronal and non-neuronal fate during Drosophila eye development.  相似文献   

9.
10.
The shattered1 (shtd1) mutation disrupts Drosophila compound eye structure. In this report, we show that the shtd1 eye defects are due to a failure to establish and maintain G1 arrest in the morphogenetic furrow (MF) and a defect in progression through mitosis. The observed cell cycle defects were correlated with an accumulation of cyclin A (CycA) and String (Stg) proteins near the MF. Interestingly, the failure to maintain G1 arrest in the MF led to the specification of R8 photoreceptor cells that undergo mitosis, generating R8 doublets in shtd1 mutant eye discs. We demonstrate that shtd encodes Apc1, the largest subunit of the anaphase-promoting complex/cyclosome (APC/C). Furthermore, we show that reducing the dosage of either CycA or stg suppressed the shtd1 phenotype. While reducing the dosage of CycA is more effective in suppressing the premature S phase entry in the MF, reducing the dosage of stg is more effective in suppressing the progression through mitosis defect. These results indicate the importance of not only G1 arrest in the MF but also appropriate progression through mitosis for normal eye development during photoreceptor differentiation.  相似文献   

11.
eql (equatorial-less) is a recessive lethal mutation on the second chromosome of Drosophila melanogasfer. J. Campos-Ortega found that eql clones in somatic mosaic flies have reduced numbers of photoreceptor cells, and he suggested that only the R1, R6, and R7 photoreceptor cells were missing in this mutant. These photoreceptor cells help to define the inverted orientation of ommatidial facets along the equatorial midline of the fly eye, hence the mutation was named “equatorial-less”. We have conducted a detailed analysis of the eql mutation, by serial section reconstruction of eql clones marked with bw or w? in somatic mosaic flies. We found that all photoreceptor cell types (Rl–R8) could be deleted by the eql mutation, and in rare cases the number of photoreceptor cells was increased. The apparent lack of photoreceptor cell type specificity was confirmed by our analysis of genetically mosaic facets, which indicated that no single photoreceptor cell, or subset of photoreceptor cells, was uniquely required to express eql Rather, eql appears to function in all photoreceptor cells, and possibly in all eye precursor cells. The distribution of photoreceptor cell numbers in w eql facets was consistent with the hypothesis that each photoreceptor cell was deleted independently of the others. The eql gene is located on the right arm of chromosome 2 at map location 2 ? 104.5 ± 0.7 and lies between the polytene chromosome bands 59D8 and 60A7. © 1995 Wiley-Liss, Inc.  相似文献   

12.
13.
14.
C Montell  G M Rubin 《Neuron》1989,2(4):1313-1323
Recent studies suggest that the fly uses the inositol lipid signaling system for visual excitation and that the Drosophila transient receptor potential (trp) mutation disrupts this process subsequent to the production of IP3. In this paper, we show that trp encodes a novel 1275 amino acid protein with eight putative transmembrane segments. Immunolocalization indicates that the trp protein is expressed predominantly in the rhabdomeric membranes of the photoreceptor cells.  相似文献   

15.
The small GTPase Rap1 affects cell adhesion and cell motility in numerous developmental contexts. Loss of Rap1 in the Drosophila wing epithelium disrupts adherens junction localization, causing mutant cells to disperse, and dramatically alters epithelial cell shape. While the adhesive consequences of Rap1 inactivation have been well described in this system, the effects on cell signaling, cell fate specification, and tissue differentiation are not known. Here we demonstrate that Egfr-dependent cell types are lost from Rap1 mutant tissue as an indirect consequence of DE-cadherin mislocalization. Cells lacking Rap1 in the developing wing and eye are capable of responding to an Egfr signal, indicating that Rap1 is not required for Egfr/Ras/MAPK signal transduction. Instead, Rap1 regulates adhesive contacts necessary for maintenance of Egfr signaling between cells, and differentiation of wing veins and photoreceptors. Rap1 is also necessary for planar cell polarity in these tissues. Wing hair alignment and ommatidial rotation, functional readouts of planar cell polarity in the wing and eye respectively, are both affected in Rap1 mutant tissue. Finally, we show that Rap1 acts through the effector Canoe to regulate these developmental processes.  相似文献   

16.
Ras proteins associate with cellular membranes as a consequence of a series of posttranslational modifications of a C-terminal CAAX sequence that include prenylation and are thought to be required for biological activity. In Drosophila melanogaster, Ras1 is required for eye development. We found that Drosophila Ras1 is inefficiently prenylated as a consequence of a lysine in the A(1) position of its CAAX sequence such that a significant pool remains soluble in the cytosol. We used mosaic analysis with a repressible cell marker (MARCM) to assess if various Ras1 transgenes could restore photoreceptor fate to eye disc cells that are null for Ras1. Surprisingly, we found that whereas Ras1 with an enhanced efficiency of membrane targeting could not rescue the Ras1 null phenotype, Ras1 that was not at all membrane targeted by virtue of a mutation of the CAAX cysteine was able to fully rescue eye development. In addition, constitutively active Ras1(12V,C186S) not targeted to membranes produced a hypermorphic phenotype and stimulated mitogen-activated protein kinase (MAPK) signaling in S2 cells. We conclude that the membrane association of Drosophila Ras1 is not required for eye development.  相似文献   

17.
PDZ-GEF is a novel guanine nucleotide exchange factor for Rap1 GTPase. Here we isolated Drosophila melanogaster PDZ-GEF (dPDZ-GEF), which contains the all-conserved domains of mammalian and nematode PDZ-GEF including cyclic nucleotide monophosphate-binding, Ras exchange motif, PDZ, RA, and GEF domains. dPDZ-GEF loss-of-function mutants were defective in the development of various organs including eye, wing, and ovary. Many of these phenotypes are strikingly similar to the phenotype of the rolled mutant, implying that dPDZ-GEF functions upstream of the mitogen-activated protein (MAP) kinase pathway. Indeed, we found that dPDZ-GEF is specifically involved in photoreceptor cell differentiation, facilitating its neuronal fate via activation of the MAP kinase pathway. Rap1 was found to link dPDZ-GEF to the MAP kinase pathway; however, Ras was not involved in the regulation of the MAP kinase pathway by dPDZ-GEF and actually had an inhibitory function. The analyses of ovary development in dPDZ-GEF-deficient mutants also demonstrated another role of dPDZ-GEF independent of the MAP kinase signaling pathway. Collectively, our findings identify dPDZ-GEF as a novel upstream regulator of various morphogenetic pathways and demonstrate the presence of a novel, Ras-independent mechanism for activating the MAP kinase signaling pathway.  相似文献   

18.
Cell-fate specification of the R7 photoreceptor cell is controlled by the sevenless receptor tyrosine kinase (SevRTK) and Ras1, the Drosophila homologue of mammalian H-ras, K-ras and N-ras oncogenes. An activated form of Ras1 expressed under control of the sevenless enhancer/promoter (sev-Ras1(V12)) induces production of supernumerary R7 photoreceptor cells, which causes the eye to become rough in appearance. To isolate mutations in genes functioning downstream of Ras1, we carried out a screen for dominant suppressors and enhancers of this rough eye phenotype. Approximately 850,000 mutagenized flies were screened, and 282 dominant suppressors and 577 dominant enhancers were isolated. Mutations in the Drosophila homologues of Raf, MEK, MAPK, type I Geranylgeranyl Transferase and Protein Phosphatase 2A were isolated, as were mutations in several novel signaling genes. Some of these mutant genes appear to be general signaling factors that function in other Ras1 pathways, while one seems to be more specific for photoreceptor development. At least two suppressors appear to function either between Ras1 and Raf or in parallele to Raf.  相似文献   

19.
In the sevenless (sev) mutants of Drosophila, a single cell type, photoreceptor R7, does not develop. We made monoclonal antibody against a sev+-beta-galactosidase fusion protein, and used it to determine the ultrastructural localization of the sev+ protein in the larval eye disc. The protein is expressed on the apical surface of the developing retina. It is not restricted to cell R7; it is expressed in all the presumptive photoreceptor cells, cone cells, and possibly others. The protein localizes to the cell membranes of the apical tips and their microvilli, away from the bulk of the cell-cell contacts. Possible mechanisms for generating the specificity of the sev phenotype are discussed in light of these results.  相似文献   

20.
UCH-L1 (ubiquitin carboxyl terminal hydrolase L1) is well known as an enzyme that hydrolyzes polyubiquitin at its C-terminal to release ubiquitin monomers. Although the overexpression of UCH-L1 inhibits proteasome activity in cultured cells, its biological significance in living organisms has not been clarified in detail. Here, we utilized Drosophila as a model system to examine the effects of the overexpression of dUCH, a Drosophila homologue of UCH-L1, on development. Overexpression in the eye imaginal discs induced a rough eye phenotype in the adult, at least partly resulting from the induction of caspase-dependent apoptosis followed by compensatory proliferation. Genetic crosses with enhancer trap lines marking the photoreceptor cells also revealed that the overexpression of dUCH specifically impaired R7 photoreceptor cell differentiation with a reduction in activated extracellular-signal-regulated kinase signals. Furthermore, the dUCH-induced rough eye phenotype was rescued by co-expression of the sevenless gene or the Draf gene, a downstream component of the mitogen-activated protein kinase (MAPK) cascade. These results indicate that the overexpression of dUCH impairs R7 photoreceptor cell differentiation by down-regulating the MAPK pathway. Interestingly, this process appears to be independent of its pro-apoptotic function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号