首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palmer  C. E. 《Plant & cell physiology》1985,26(6):1083-1091
Treatment of potato plants grown in nutrient solution with 3.8µM ABA resulted in reduced soluble protein in roots andin leaves at 24 h, but not in stems. This treatment reducedin vivo nitrate reductase activity in all organs for about 48h with the most pronounced reduction occurring in the roots.Excised root and leaf segments from plants treated with ABAfor 24, 48 and 72 h absorbed significantly more 14C leucine,compared to the control but the percent incorporation into proteinwas not altered in roots. In response to ABA total free amino nitrogen in leaves was lowerat 5 and 72 h and in stems at 72 h. Amino nitrogen content ofroots was enhanced by ABA at 5, 24 and 72 h due to generallyhigher levels of aspartate, serine, glutamate, proline and ammonia.There was no consistent relationship between ABA suppressionof nitrate reductase activity and ammonia or specific aminoacid (except proline) levels in leaves and stems. The increasedfree amino nitrogen levels in response to the hormone may bethe result of impaired NO3– reduction rather than thecause. The results of protein synthesis studies and solubleprotein content suggest that ABA inhibition of nitrate reductaseis not due to general inhibition of protein synthesis and mayinvolve specific inhibition of nitrate reductase protein synthesis. 1 Contribution No. 684, Department of Plant Science, Universityof Manitoba.  相似文献   

2.
The effect of salinity on glucose absorption and incorporation by pea roots   总被引:1,自引:0,他引:1  
Osmotic adaptation was observed in pea plants grown in Na2SO4salinized media but no complete adaptation was observed in plantsgrown in NaCl salinized media. The absorption of externally supplied glucose was depressedin pea root tips from plants grown in media salinized with eitherNaCl or Na2SO4. Under NaCl salinity this depression increasedwith increasing salinity. Under Na2SO4 salinity, no significantinhibition of absorption was observed in roots exposed to waterpotentials higher than –5 atmosphere. The amount of 14Creleased as CO2, expressed as the percent of absorbed 14C, increasedwith increasing salinity of both types. In roots grown underNaCl salinity, the incorporation of 14C into ethanol non-soluble,acid hydrolyzable substances was markedly inhibited. This inhibitionwas increased by increasing the external salinity. The effectof Na2SO4 salinity was similar but not so pronounced. The incorporation of 14C from externally supplied glucose intothe alkali-soluble fraction was practically uneffected by salinity.Non-extractable 14C was decreased in roots exposed to NaCl butwas not, apparently, effected by Na2SO4). Because of the smallnessof this fraction no clear cut conclusion can be made. Possiblemechanisms for the events are discussed. (Received October 26, 1972; )  相似文献   

3.
The specific respiration rates of nodulated root systems, ofnodules and of roots were determined during active nitrogenfixation in soya bean, navy bean, pea, lucerne, red clover andwhite clover, by measurements on whole plants before and afterthe removal of nodule populations. Similar measurements weremade on comparable populations of the six legumes, lacking nodulesbut receiving abundant nitrate-nitrogen, to determine the specificrespiration of their roots. All plants were grown in a controlled-environmentclimate which fostered rapid growth. The specific respiration rates of nodulated root systems ofthe three grain and three forage legumes during a 7–14-dayperiod of vegetative growth varied between 10 and 17 mg CO2g–1 (dry weight) h–1. This mean value consistedof two components: a specific root respiration rate of 6–9mg CO2 g–1 h–1 and a specific nodule respirationrate of 22–46 mg CO2 g–1 h–1. Nodule respirationaccounted for 42–70 per cent of nodulated root respiration;nodule weight accounted for 12–40 per cent of nodulatedroot weight. The specific respiration rates of roots lackingnodules and utilizing nitrate nitrogen were generally 20–30per cent greater than the equivalent rates of roots from nodulatedplants. The measured respiratory effluxes are discussed in thecontext of nitrogen nitrogen fixation, nitrate assimilation. Glycine max, Phaseolus vulgaris, Pisum sativum, Medicago sativa, Trifolium pratense, Trifolium repens, soya bean, navy bean, pea, lucerne, red clover, white clover, nodule respiration, root respiration, fixation, nitrate assimilation  相似文献   

4.
Changes in the distribution of 14C between free and bound aminoacids in wheat grains (Triticum aestivum L. cv. Arkas) at 10and 20 d post-anthesis are described. After 14CO2, labellingof the flag leaf, 14C was initially more rapidly transferredto the grains of 20 d post-anthesis plants than for 10 d post-anthesisplants. However, after a 460 min chase period in the light theamount of 14C in the grains of the younger and older plantswere similar. In the younger, more rapidly growing grains, agreater proportion of the 14C was incorporated into structuraltissue and starch. 14C accumulation in the grains continuedduring the dark in the younger grains but not in the older grains. Although the overall 14C distribution between the free aminoacid and protein pools of the grain was similar for both treatments,the distribution within the albumin, prolamin and globulin fractionsand between the individual non-bound amino acids differed. Ofthe protein fractions, the albumins were initially the mostheavily labelled but after 460 min chase the prolamins containedmore 14C. The majority of the 14C in the albumin and globulinfractions after 280 min chase was in hydrolysable, non-aminoacid compounds. In both tissues, the free amino acid pools lostradioactivity in the dark but the solid residues and proteinscontinued to function as 14C sinks. Daily fluctuations in the radioactivity in free and bound alanineare consistent with the role of free alanine as a diurnal metabolicnitrogen pool. Wheat, Triticum aestivum14CO2, amino acids, proteins, carbon metabolism  相似文献   

5.
In hydroponically grown Lycopersicon esculentum (L.) Mill. cv.F144 the site of NO3 reduction and assimilation withinthe plant was shifted from the shoot to the root by salinity.Uptake of NO3 from the root solution was strongly inhibitedby salinization. Consequently, NO3 concentrations inthe leaf, stem and root tissues as well as the nitrate reductaseactivities of the leaves were lower in salinized than in controlplants. Lower NO3, but higher reduced-N, concentrationswere observed in the xylem sap as a result of the enhanced participationof the root in NO3 reduction in salinized plants. Lowerstem K+ concentrations and leaf malate concentrations were foundin salinized compared to control plants which indicates reducedfunctioning of the K+–shuttle in the salinized plants. Incorporation of inorganic carbon by the root was determinedby supplying a pulse of NaH14CO3 followed by extraction andseparation of the labelled products on ion exchange resins.The rate of H14CO3 incorporation was c. 2-fold higherin control than in salinized plants. In salinized plants theproducts of H14CO3 incorporation within the roots werediverted into amino acids, while the control plants divertedrelatively more 14C into organic acids. Products of inorganiccarbon incorporation in the roots of salinized plants providean anaplerotic source of carbon for assimilation of reducedNO3 into amino acids, while in control plants the productswere predominantly organic acids as part of mechanisms to maintainionic balance in the cells and in the xylem sap. Key words: Tomato, nitrate, PEPc, respiration, salinity  相似文献   

6.
The effects of NO-3 and NH+4 nutrition on hydroponically grownwheat (Triticum aestivum L.) and maize (Zea mays L.) were assessedfrom measurements of growth, gas exchange and xylem sap nitrogencontents. Biomass accumulation and shoot moisture contents ofwheat and maize were lower with NH+4 than with NO-3 nutrition.The shoot:root ratios of wheat plants were increased with NH+4compared to NO-3 nutrition, while those of maize were unaffectedby the nitrogen source. Differences between NO-3 and NH+4-fedplant biomasses were apparent soon after introduction of thenitrogen into the root medium of both wheat and maize, and thesedifferences were compounded during growth. Photosynthetic rates of 4 mM N-fed wheat were unaffected bythe form of nitrogen supplied whereas those of 12 mM NH+4-fedwheat plants were reduced to 85% of those 12 mM NO-3-fed wheatplants. In maize supplied with 4 and 12 mM NH+4 the photosyntheticrates were 87 and 82% respectively of those of NO-3-fed plants.Reduced photosynthetic rates of NH+4 compared to NO-3-fed wheatand maize plants may thus partially explain reduced biomassaccumulation in plants supplied with NH+4 compared to NO-3 nutrition.Differences in the partitioning of biomass between the shootsand roots of NO-3-and NH+4-fed plants may also, however, arisefrom xylem translocation of carbon from the root to the shootin the form of amino compounds. The organic nitrogen contentof xylem sap was found to be considerably higher in NH+4- thanin NO-3-fed plants. This may result in depletion of root carbohydrateresources through translocation of amino compounds to the shootin NH+4-fed wheat plants. The concentration of carbon associatedwith organic nitrogen in the xylem sap of maize was considerablyhigher than that in wheat. This may indicate that the shootand root components of maize share a common carbon pool andthus differences induced by different forms of inorganic nitrogenare manifested as altered overall growth rather than changesin the shoot:root ratios.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize, nitrogen, growth, photosynthesis, amino acids, xylem  相似文献   

7.
Proline Metabolism and Transport in Maize Seedlings at Low Water Potential   总被引:7,自引:0,他引:7  
The growing zone of maize seedling primary roots accumulatesproline at low water potential. Endosperm removal and excisionof root tips rapidly decreased the proline pool and greatlyreduced proline accumulation in root tips at low water potential.Proline accumulation was not restored by exogenous amino acids.Labelling root tips with [14C]glutamate and [14C]proline showedthat the rate of proline utilization (oxidation and proteinsynthesis) exceeded the rate of biosynthesis by five-fold athigh and low water potentials. This explains the reduction inthe proline pool following root and endosperm excision and theinability to accumulate proline at low water potential. Theendosperm is therefore the source of the proline that accumulatesin the root tips of intact seedlings. Proline constituted 10% of the amino acids released from the endosperm. [14C]Prolinewas transported from the scutellum to other parts of the seedlingand reached the highest concentration in the root tip. Less[14C]proline was transported at low water potential but becauseof the lower rate of protein synthesis and oxidation, more accumulatedas proline in the root tip. Despite the low biosynthesis capacityof the roots, the extent of proline accumulation in relationto water potential is precisely controlled by transport andutilization rate.  相似文献   

8.
The single-gene mutation afila in pea (Pisum sativum L.) resultsin the replacement of proximal leaflets with branched tendrils,thereby reducing leaf area. This study investigated whethertheafila line could adjust biomass partitioning when exposedto varying nutrient regimes, to compensate for reduced leafarea, compared with wild-type plants. Wild-type and afila near-isogeniclines were grown in solution culture with nitrate-N added toinitially N-starved seedlings at relative addition rates (RN)of 0.06, 0.12, 0.15 and 0.50 d-1. The relative growth rate (RW)of the whole plants closely matched RNat 0.06 and 0.12 d-1,but higher RNresulted in a slightly higher growth rate. At agiven RN, the wild-type line had lower plant nitrogen statusthan the afila line. RWof the roots of the afila line was lessthan RWof the roots of the wild-type at the three higher ratesof N supply despite a greater accumulation of N in the rootsof the afila plants. Consequently, plant nitrogen productivity(growth rate per unit nitrogen) was lower for afila. Dry matterallocation was strongly influenced by nitrogen status, but nodifferences in shoot–root dry matter allocation were foundbetween wild-type and afila with the same plant N status. Theseresults imply that decreased leaf area as a result of the single-genemutation afila affects dry matter allocation, but only accordingto its effect on the nitrogen status. Copyright 2000 Annalsof Botany Company Pisum sativum, pea, nitrogen limitation, growth, shoot–root allocation, relative growth rate, nitrogen productivity, isolines  相似文献   

9.
Metabolism of Inorganic Carbon Taken Up by Roots in Salix Plants   总被引:1,自引:0,他引:1  
The metabolic products of inorganic carbon taken up throughthe roots from nutrient solution were studied in willow plants.Willow cuttings (Salix cv. Aquatica gigantea) were suppliedwith unlabelled or 14C-labelled NaHC03 for 1, 5, 10, and 24h in light or in darkness. After feeding, the plants were dividedinto six samples (upper and lower leaves and corresponding stems,cuttings and roots), which were frozen in liquid N2. Freeze-driedground samples were extracted into water-soluble, chloroform-solubleand insoluble fractions. The water-soluble fraction was furtherseparated into basic, acidic, and neutral fractions by ion-exchangechromatography. In the light experiment pronase treatment wasused to separate the insoluble fraction into proteins and insolublecarbohydrates. After I h feeding time, most of the 14C was fixed into organicacids and amino acids both in light and in darkness in all partsof the plants. In the roots a large part of the l4C-carbon wasincorporated into the protein and insoluble fractions alreadyduring short feeding times, and the amounts incorporated increasedwith time. In the leaves, after 1 and 5 h the main labelledcompounds were the organic acids and amino acids, but after10 h about half of the total 14C was in protein and in the insolublefraction. A further analysis of amino acids and organic acidswith HPLC showed that C-4 acids were labelled initially andthat over time the proportion of different acids changed. These results indicate that the metabolism of carbon in rootsmight take place via ß-carboxylation of PEP. Partof the fixed 14C is transported from the roots, probably asamino acids and organic acids, to the shoot. In roots the C-4acids are metabolized further into structural compounds (proteinsand insoluble carbohydrates). Key words: DIC, Salix, roots, metabolism, HPLC  相似文献   

10.
The loss of organic material from the roots of forage rape (Brassicanapus L.,) was studied by pulse-labelling 25-d-old non-sterilesand-grown plants with 14CO2. The distribution of 14C withinthe plant was measured at 0, 6 and 13 d after labelling whilst14 C accumulating in the root-zone was measured at more frequentintervals. The rates of 14C release into the rhizosphere, andloss of 14CO2 from the rhizosphere were also determined. Thesedata were used to estimate the accumulative loss of 14C fromroots and loss respiratory 14CO2 from both roots and associatedmicro-organisms. Approximately 17-19% of fixed 14CO2 was translocatedto the roots over 2 weeks, of which 30-34% was released intothe rhizosphere, and 23-24% was respired by the roots as 14CO2. Of the 14C released into the rhizosphere, between 35-51%was assimilated and respired by rhizosphere micro-organisms.Copyright1993, 1999 Academic Press Brassica napus L., carbon loss, carbon partitioning, microbial nutrition, microbial respiration, forage rape, pulse-labelling, rhizodeposition, root respiration, sand culture  相似文献   

11.
Ricinus communis L. (castor bean) plants were grown in the absence(control) and in the presence of 100molm–3NaCl with areciprocal split-root system, in which K+ was supplied to oneand NO3 to the other part of the root system. In theseplants shoot and, to a lesser extent, total root growth wereinhibited compared to plants with non-split roots. Without andwith NaCl, growth of roots receiving NO3 but noK+ (‘minusK/plus N-roots’) was substantially more vigorous thanunder the reverse conditions (‘plus K/minus N-roots1).100mol m–3 NaCl inhibited growth of minus K/plus N-roots1to the same extent as that of non-split roots, indicating thatexternally supplied K+ was not required for root growth undersaline conditions. In growth media without added K+ the rootdepleted the external low K + levels resulting from chemicalsdown to a minimum value Cmln (1.0 to 1.4 mmol m–3); inthe presence of 100 mol m–3 NaCl, Cmin, was higher (10–18mmol m–3) and resulted from an initial net loss of K +.Cmin, was pH-dependent The distribution of K+, Na+ and Mg2+along the root was measured. In meristematic root tissues, K+ concentrations were scarcely affected by external K+ or byNaCl, where Na + concentrations were low, but somewhat elevatedat low external K+ and/or high NaCl. In differentiated, vacuolatedtissues K + concentrations were low and Na+ concentrations high,if K + was not supplied externally and/or NaCl was present.The longitudinal distribution of ions within the root was usedto estimate cytoplasmic and vacuolar ion concentrations. Thesedata showed a narrow homoeostasis of cytoplasmic K+ concentrations(100–140 mol m–3) independent of external K + supplyeven in the presence of 100 mol m –3 NaCl. CytoplasmicNa + concentrations were maintained at remarkably low levels.Hence, external K+ concentrations above Cmin, were not requiredfor maintaining K/Na selectivity, i.e. for controlling Na+ entry.The results are discussed with regard to mechanisms of K/Naselectivity and to the importance of phloem import of K+ forsalt tolerance of roots and for cytoplasmic K+ homoeostasis. Key words: Ricinus communis, nitrate, potassium, root (split-root), salt tolerance, phloem transport  相似文献   

12.
Cultivated Agave mapisaga and A. salmiana can have an extremelyhigh above-ground dry-weight productivity of 40 Mg ha–1yr–1. To help understand the below-ground capabilitiesthat support the high above-ground productivity of these Crassulaceanacid metabolism plants, roots were studied in the laboratoryand in plantations near Mexico City. For approximately 15-year-oldplants, the lateral spread of roots from the plant base averaged1.3 m and the maximal root depth was 0.8 m, both considerablygreater than for desert succulents of the same age. Root andshoot growth occurred all year, although the increase in shootgrowth at the beginning of the wet season preceded the increasein growth of main roots. New lateral roots branching from themain roots were more common at the beginning of the wet season,which favoured water uptake with a minimal biomass investment,whereas growth of new main roots occurred later in the growingseason. The root: shoot dry weight ratio was extremely low,less than 0.07 for 6-year-old plants of both species, and decreasedwith plant age. The elongation rates of main roots and lateralroots were 10 to 17 mm d–1, higher than for various desertsucculents but similar to elongation rates for roots of highlyproductive C3 and C4 agronomic species. The respiration rateof attached main roots was 32 µmol CO2 evolved kg–1dry weight s–1 at 4 weeks of age, that of lateral rootswas about 70% higher, and both rates decreased with root age.Such respiration rates are 4- to 5-fold higher than for Agavedeserti, but similar to rates for C3 and C4 agronomic species.The root hydraulic conductivity had a maximal value of 3 x 10–7ms–1 MPa–1 at 4 weeks of age, similar to A. deserti.The radial hydraulic conductivity from the root surface to thexylem decreased and the axial conductivity along the xylem increasedwith root age, again similar to A. deserti. Thus, although rootsof A. mapisaga and A. salmiana had hydraulic properties perunit length similar to those of a desert agave, their highergrowth rates, their higher respiration rates, and the greatersoil volume explored by their roots than for various desertsucculents apparently helped support their high above-groundbiomass productivity Key words: Crassulacean acid metabolism, productivity, root elongation rate, root system, water uptake  相似文献   

13.
Respiratory oxygen consumption by roots was 1·4- and1·6-fold larger in NH+4-fed than in NO-3-fed wheat (Triticumaestivum L.) and maize (Zea mays L.) plants respectively. Higherroot oxygen consumption in NH+4-fed plants than in NO-3-fedplants was associated with higher total nitrogen contents inNH+4-fed plants. Root oxygen consumption was, however, not correlatedwith growth rates or shoot:root ratios. Carbon dioxide releasewas 1·4- and 1·2-fold larger in NO+3-fed thanin NH+4-fed wheat and maize plants respectively. Differencesin oxygen and carbon dioxide gas exchange rates resulted inthe gas exchange quotients of NH-4-fed plants (wheat, 0·5;maize, 0·6) being greatly reduced compared with thoseof NO-3-fed plants (wheat, 1·0; maize, 1·1). Measuredrates of HCO-3 assimilation by PEPc in roots were considerablylarger in 4 mM NH+4-fed than in 4 NO-3 plants (wheat, 2·6-fold;maize, 8·3-fold). These differences were, however, insufficientto account for the observed differences in root carbon dioxideflux and it is probable that HCO-3 uptake is also importantin determining carbon dioxide fluxes. Thus reduced root extension in NH+4-fed compared with NO-3-fedwheat plants could not be ascribed to differences in carbondioxide losses from roots.Copyright 1993, 1999 Academic Press Triticum aestivum, wheat, Zea mays, maize assimilation, ammonium assimilation, root respiration  相似文献   

14.
The effects of excess salinity and oxygen deficiency on growthand solute relations in Zea mays L. cv. Pioneer 3906 were examinedin greenhouse experiments. The roots of plants 14 d old growingin nutrient solution containing additions of NaCl in the range1.0–200 mol m–3 were either exposed to a severedeficiency of O2 by bubbling with nitrogen gas (N2 treatment),or maintained with a supply of air (controls), for a periodof 1–7 d. The threshold NaCl concentration resulting inappreciable inhibition of leaf extension, and shoot f. wt gainin controls was between 10 and 25 mol m–3. At 25 mol m–3NaCl the ratio of Na+/K+ transported to shoots was about 20times greater than in plants in 1.0 mol m–3 NaCl. Theeffect of addition of NaCl to the nutrient solution was to enhanceNa+ movement but simultaneously depress the rate of K+ transportto shoots (per g f. wt roots). Interactions between NaCl levels and aeration treatment wereshown by analyses of variance to be statistically significantfor leaf extension, shoot and root f. wt gains, Na+ and K+ concentrationsin shoots and roots. When roots were N2-treated, shoot and rootgrowth were depressed, the effect of aeration treatment beinggreatest at NaCl concentrations of 50 mol m–3 or less.Additionally, N2-treatment greatly accelerated Na- transportto shoots while depressing K+ transport still further, so thatat 10 mol m–3 NaCl the ratio Na+/K+ acquired by the shootswas 230 times greater than in controls. Over the concentrationrange 1.0 to 50 mol m–3 NaCl, the ratio Na+/K+ transportedto shoots by anoxic roots increased by a factor of 860. Mechanisms controlling changes in solute flux to the shoot,and the significance in relation to plant tolerance of excesssalts or oxygen deficiency are discussed. Anaerobic, corn, flooding, maize, oxygen-deficiency, salinity  相似文献   

15.
Nucleotide metabolism was studied in apical 5.0 mm root tipsof corn plants (Zea mays L., cv. Pioneer 3906) hydroponicallycultured for 7 d and then salinized for 19 d at a rate calculatedto reduce the osmotic potential (o) of the solutions by O.1MPad–1 to a final o = -0.4 MPa. Saline treatments withtwo different molar ratios of Ca2+/Na+ were employed, viz.,0–03 (2.5 mol m–3 CaCl2 + 86.5 mol m–3 NaCl)for the NaCl treatment and 0.73 (31.5 mol m–3 CaCl2 +43.1 mol m–3 NaCl) for the NaCl + CaCl2 treatment. Bothsalt treatments reduced root growth by more than 30%. The capacityof roots to provide purine nucleotides either by de novo synthesisor by re-utilization of existing bases, e.g. salvage of hypoxanthineto adenine nucleotides, was not affected by either salt treatment.However, catabolism of hypoxanthine was accelerated more than3.5-fold by both salt treatments, demonstrating an increasedcapacity for purine catabolism which would shift the normal1: 1 ratio of synthesis: degradation of purine nucleotides observedfor the roots of healthy control plants to less than 0.2 duringsalt stress. The ratio of pyrimidine nucleotide synthesis: degradationwas also reduced. In this case, the unfavourable shift towardnucleotide degradation resulted because both salt treatmentsreduced salvage capacity by more than 25%, but had no compensatingeffect on de novo synthesis or catabolism of pyrimidines. Key words: Salinity, osmotic potential, nucleotide metabolism  相似文献   

16.
The growth of garden orache, A triplex hortensis was studiedunder conditions of mild NaCl or Na2SO4 salinity. Growth, drymatter production and leaf size were substantially stimulatedat 10 mM and 50 mM Na+ salts. Increased growth, however, appearedto be due to a K+-sparing effect of Na+ rather than to salinityper se. The distribution of K+ and Na+ in the plant revealeda remarkable preference for K+ in the roots and the hypocotyl.In the shoot the K/Na ratio decreased strongly with leaf age.However, the inverse changes in K+ and Na+ content with leafage were dependent on the presence of bladder hairs, which removedalmost all of the Na+ from the young leaf lamina. Measurementsof net fluxes of K+ and Na+ into roots and shoots of growingAtriplex plants showed a higher K/Na selectivity of the netion flux to the root compared to the shoot. With increasingsalinity the selectivity ratio SK, Na* of net ion fluxes tothe roots and to the shoots was increased. The data suggestthat recirculation of K+ from leaves to roots is an importantlink in establishing the K/Na selectivity in A. hortensis plants.The importance of K+ recirculation and phloem transport forsalt tolerance is discussed. Key words: Atriplex hortensis, Salinity, Potassium, Sodium, K+ retranslocation, Bladder hairs, Growth stimulation  相似文献   

17.
HESTNES  A. 《Annals of botany》1979,44(5):567-573
The distribution of exogenously-supplied radioactive labelledindol-3-yl-acetic acid (IAA) and gibberellin A1 (GA1) in geotropicallystimulated roots of Norway spruce (Picea abies (L.) Karst.)has been demonstrated. Seedlings were positioned with theirroot tips in 2.1 x 10–6 M [14C]IAA or 1.3 x 10–8m 3H-GA1 for 4 and 20 h, respectively. After geotropic stimulationfor 90 min in the horizontal position the root tips were cutlongitudinally in 50 µm thick sections, using a freeze-microtome.The radioactivity in the 14C-IAA treated roots occurred in higherconcentration in the lower than in the upper halves (ratio 1.25:1). A similar trend was observed in the [3H]GA1-treated rootswhere the ratio lower: upper halves was 2.04: 1. The ratio ofradioactivity in right and left halves of vertical roots wasapproximately the same in roots supplied with [14C]IAA and [3H]GA1(1.09: 1). The supplied radioactive compounds were analysed chromatographicallyafter extraction in methanol of 6 mm apical root segments. Onlya small fraction (7–8 per cent) of the supplied [14C]IAAwas revealed unchanged in the segments. The major part of thechromatographed, labelled compound has not been identified,but on basis of its RF value it is suggested that it may beindol-3-acetyl-aspartic acid (IAAasp). The chromatographic analysis of the [3H]GA,-treated segmentsshowed that only small fractions of this gibberellin has beenconverted to other compounds. These results have been discussed and correlated with knowledgeof plant growth regulators and their participation in root geotropism. Picea abies, spruce, geotropism, gibberellin A1, indol-3-yl-acetic acid, growth regulators, redistribution in roots  相似文献   

18.
Bryce, J. H. and ap Rees, T. 1985. Comparison of the respiratorymetabolism of Plantago lanceolata L. and Plantago major L.—J.exp. Bot. 36 1559–1565. The aim of this work was to discover if the respiratory metabolismof the roots of Plantago lanceolata L. differed from that ofthe roots of Plantago major L. Measurements of oxygen uptakeand dry weight of excised root systems during growth of seedlingsprovided evidence that the two species differed in the amountof respiration needed to support a given increase in dry weight.Excised root systems were given a 6-h pulse in [U-14C]sucrosefollowed by a 16.5-h chase in sucrose. The detailed distributionof 14C amongst the major components of the roots at the endof the pulse and the chase revealed no significant differencebetween the two species. Patterns of 14CO2 production from [1-14C],[2-14C], [3,4-14C], and [6-14C]glucose of excised root systemsfrom plants of three ages were similar for the two species.It is suggested that there is no conclusive evidence for anysignificant inherent difference in the respiratory metabolismof the roots of the two species. Key words: 14C sugar metabolism, respiration, roots, Plantago  相似文献   

19.
Maize (Zea mays L., hybrid Cargill 147) seedlings, grown inaseptic conditions, were inoculated with three strains of Azospirillumlipoferum (Al op 33, Al iaa 320, and ATCC 29708) or culturedin different concentrations of indol-3-acetic acid (IAA) orgibberellin A3 (GA3). After 48 h, root length, root surfacearea, root dry weight, and shoot dry weight were measured inall treatments. Gibberellin content was evaluated in selectedroots of control and Azospirillum inoculated seedlings by gaschromatography-mass spectrometry-selected ion monitoring withthe use of deuterated gibberellins as internal standards. Thethree strains of A. lipoferum, IAA (2 ng ml–1), and GA3(40 to 400 pg ml–1) significantly enhanced root growth.Improvement of root hair growth and density was obtained mainlywith A. lipoferum strain Al op 33 and GA3 40 pg ml–1.GA3 was identified by gas chromatography-mass spectrometry (byboth, full scan and selected ion monitoring) in a free acidfraction from roots of the seedlings inoculated with A. lipoferum.In the roots of the non inoculated seedlings GA3 was found afterhydrolysis of a fraction expected to contain glucosyl conjugates. (Received April 26, 1993; Accepted September 27, 1993)  相似文献   

20.
Phosphate Regulation of Nitrate Assimilation in Soybean   总被引:24,自引:1,他引:23  
It is known that phosphorus deficiency results in alterationsin the assimilation of nitrogen. An experiment was conductedto investigate mechanisms involved in altered 15NO3 uptake,endogenous 15N translocation, and amino acid accumulation insoybean (Glycine max L. Merrill, cv. Ransom) plants deprivedof an external phosphorus supply for 20 d in solution culture.Phosphorus deprivation led to decreased rates of 15NO3uptake and increased accumulation of absorbed 15N in the root.Both effects became more pronounced with time. Asparagine, theprimary transport amino acid in soybean, accumulated in largeexcess in roots and stems. In roots of phosphorus-deprived plants,concentrations of ATP and inorganic phosphate declined rapidly,but dry weight accumulation was similar to or above that ofthe control even after 20 d of treatment. Arginine accumulationin leaves was greatly enhanced, even though 15N partitioninginto the insoluble reduced-N fraction of leaves was unaffected.The results suggest that decreases in NO3 uptake in lowphosphorus plants could be caused by feedback control factorsand by limited ATP availability. The decline in endogenous Ntransport from the root to the shoot may be associated withchanges in membrane properties, which also result in paralleleffects on hydraulic conductance and the upward flow of waterthrough the plant. Key words: Phosphorus stress, nitrate uptake, nitrate translocation, arginine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号