首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue sections of periimplantation pig conceptuses (days 9-15 of pregnancy) were incubated with antiserum to the basic protein (BP), a major secretory protein of filamentous pig blastocysts. Bound antibody was detected by the peroxidase-antiperoxidase method. BP was restricted to trophectoderm in conceptuses which had made the transition from a spherical to an ovoid shape having a diameter of greater than 5 mm (day 11). Tubular (day 11, 10-20 mm) and filamentous (day 11-15) conceptus trophectoderm contained BP. These results suggest that BP synthesis commences at the time of rapid trophoblast growth.  相似文献   

2.
The organization of the actin cytoskeleton was studied in unfertilized porcine oocytes and preimplantation stage embryos from Day 1 through Day 8 of development. Fixed and detergent-extracted oocytes and embryos were analyzed by fluorescence microscopy after staining with either rhodamine-phalloidin to localize filamentous actin or with affinity-purified anti-actin antibodies to localize the total immunodetectable actin. Whereas unfertilized oocytes contain immunoreactive cytoplasmic actin, rhodamine-phalloidin binding is not detected until fertilization when a prominent cortical staining pattern becomes apparent. In early cleavage stage embryos, filamentous actin is concentrated in the cell cortex of blastomeres especially at sites of cell-cell contact. Compacting morulae exhibit a marked accumulation of actin at the margins of blastomeres where numerous interdigitating cell processes are located. The predominantly pericellular distribution of actin becomes a distinguishing feature of trophectodermal cells in the expanding blastocyst at Day 6 of development; these cells form a prominent actin-limited zone circumscribing the inner cell mass. In Day 8 blastocysts, three cell types are present that are readily distinguishable based upon their actin displays among other cytological features. Trophectodermal cells exhibit continuous actin-rich lateral borders and stress fibers along their basal surface. Inner cell mass cells contain a discontinuous actin boundary and prominent foci of actin along their blastocoelic surface. Lining the blastocoel are patches of endodermal cells in which the actin is exclusively cortical. The data are discussed with respect to differences between species and the chronology of actin rearrangements during preimplantation development of the porcine embryo.  相似文献   

3.
Abstract. The organization of the cytoskeleton during early pig embryogenesis was investigated by using fluorescence and electron microscopy. The early morphogenesis of the pig embryo differed from that of the mouse, the standard model of the early mammalian development. In the pig, both compaction and polarization were gradual, and definitive polarization of cell surface microville occurred first shortly before blastocyst formation; the compaction and polarization of the mouse embryo are completed as early as at the 8 cell stage. Furthermore, the pig morula undergoes cycles of compaction and decompaction throughout its development. Distinct changes in the distribution of actin and the actin-associated proteins α-fodrin, vinculin and E-cadherin coincided with these events. In the pig, all these molecules were evenly distributed at all aspects of the blastomeres during early cleavage and then gradually accumulated in regions of intercellular contacts toward the blastocyst stage; microfilaments in trophectoderm cells formed a cortical meshwork associated with apical microvilli and adherent junctions (zonula adherens). In the mouse, the corresponding changes occur earlier, at the 8 cell stage. Microtubules formed a network-like cortical layer beneath the microvilli at the free outer surfaces of pig blastomeres. Cytokeratin bundles were not observed until the early blastocyst, where they characteristically associated with newly formed desmosomes.
In both species a close correlation between morphologically defined developmental stages and the organization of the cytoskeleton: actin and actin-associated proteins are involved in polarization and compaction, whereas the appearance of intermediate filament bundles coincides with the building of the first epithelium, the trophectoderm; it is in the timing of events that a contrast between species is observed.  相似文献   

4.
Abstract. The organization of the cytoskeleton during early pig embryogenesis was investigated by using fluorescence and electron microscopy. The early morphogenesis of the pig embryo differed from that of the mouse, the standard model of the early mammalian development. In the pig, both compaction and polarization were gradual, and definitive polarization of cell surface microville occurred first shortly before blastocyst formation; the compaction and polarization of the mouse embryo are completed as early as at the 8 cell stage. Furthermore, the pig morula undergoes cycles of compaction and de-compaction throughout its development. Distinct changes in the distribution of actin and the actin-associated proteins α-fodrin, vinculin and E-cadherin coincided with these events. In the pig, all these molecules were evenly distributed at all aspects of the blastomeres during early cleavage and then gradually accumulated in regions of intercellular contacts toward the blastocyst stage; microfilaments in trophectoderm cells formed a cortical meshwork associated with apical microvilli and adherent junctions (zonula adherens). In the mouse, the corresponding changes occur earlier, at the 8 cell stage. Microtubules formed a network-like cortical layer beneath the microvilli at the free outer surfaces of pig blastomeres. Cytokeratin bundles were not observed until the early blastocyst, where they characteristically associated with newly formed desmosomes.
In both species a close correlation between morphologically defined developmental stages and the organization of the cytoskeleton: actin and actin-associated proteins are involved in polarization and compaction, whereas the appearance of intermediate filament bundles coincides with the building of the first epithelium, the trophectoderm; it is in the timing of events that a contrast between species is observed.  相似文献   

5.
The major basic protein (BP) synthesized and secreted by elongating pig blastocysts was purified from medium of Day 14-17 conceptus cultures. Sequential ion-exchange and gel-filtration chromatographies resulted in isolation of BP as a single polypeptide of Mr = 43,100 or 42,800 under denaturing or native conditions, respectively. BP was found to be a glycoprotein by incorporation of [3H] glucosamine and susceptibility to N-glycopeptidase F. Two BP polypeptides were produced by N-glycopeptidase F (Mr = 39,800 and 36,300). Antiserum to BP immunoprecipitated radiolabeled BP from blastocyst culture medium. BP was not detected in medium from 1-2 mm diameter spherical (Day 10) blastocysts but was found in medium from 3-5 mm spherical (Day 10) and filamentous (less than 50 cm, Day 12) conceptuses, suggesting that BP synthesis and secretion began at the initiation of trophoblast expansion. With immunocytochemical procedures, BP was located in the apical cytoplasm of trophectoderm cells of Day 11 expanding (5-7 and 10-20 mm) blastocysts. These results suggest that trophoblast epithelium secrete BP apically toward the uterine lumen and that BP may play a role in maternal-fetal interactions during the peri-implantation period.  相似文献   

6.
Late morulae and early blastocysts consist of two main cell subpopulations which occupy different positions within the embryos. The cells of the outer layer have a polar surface phenotype. The outward-facing surface of this cell type has a discrete dense pole of short microvilli, whilst the inward-facing surface has a relatively sparse distribution of longer, thick microvilli. The inner cells lack short, dense microvilli but exhibit thick microvilli of variable density. After short-term isolation in medium low in Ca2+, the individual polar and apolar cells remain distinguishable. The expanded blastocyst also has two major cell subpopulations, but within each of these, heterogeneity is observed. The mural trophectodermal cells have a larger, more regular outward-facing area of sparse, short microvilli than do polar trophectodermal cells. The ICM consists of some cells that show extensive blebbing in medium low in Ca2+ and others that do not.  相似文献   

7.
The distribution of the cytokeratin network in the intact preimplantation mouse embryo and the role of cytokeratin filaments in trophectoderm differentiation were investigated by means of whole-mount indirect immunofluorescence microscopy and microinjection of anti-cytokeratin antibody. Assembled cytokeratin filaments were detected in some blastomeres as early as the compacted 8-cell stage. The incidence and organization of cytokeratin filaments increased during the morula stage, although individual blastomeres varied in their content of assembled filaments. At the blastocyst stage, each trophectoderm cell contained an intricate network of cytokeratin filaments, and examination of sectioned blastocysts confirmed that extensive arrays of cytokeratin filaments were restricted to cells of the trophectoderm. Microinjection of anticytokeratin antibody into individual mural trophectoderm cells of expanded blastocysts resulted in a dramatic rearrangement of the cytokeratin network in these cells. Moreover, antibody injection into 2-cell embryos inhibited assembly of the cytokeratin network during the next two days of development. Despite this disruption of cytokeratin assembly, the injected embryos compacted and developed into blastocysts with normal morphology and nuclear numbers. These results suggest that formation of an elaborate cytokeratin network in preimplantation mouse embryos is unnecessary for the initial stages of trophectoderm differentiation resulting in blastocyst formation.  相似文献   

8.
Mouse morulae and blastocysts express cell surface antigens that fortuitously cross-react with antisera to human chorionic gonadotropin (hCG). In the present study, the cell surface and cytoplasmic expression of these antigens was followed in mouse unfertilized oocytes, different stages of preimplantation embryos and in early post-implantation embryos cultured from blastocysts. In addition to their known stage-dependent cell surface expression on morulae and blastocysts, these antigens (1) were already present in the cytoplasm of mature unfertilized oocytes and pre-morula stages of embryos; (2) remained expressed as cell surface antigens on cells of the inner cell mass (ICM), but not on the surface of trophectodermal cells with further blastocyst development although (3) they persisted as cytoplasmic antigens in trophectodermal cells. In addition, these antigens were also detectable by antiserum to the alpha subunit of hCG.  相似文献   

9.
The present study examined the ultrastructural appearance of porcine embryos from the four-cell stage to the blastocyst grown either in vivo or in vitro. Embryos were collected at slaughter from superovulated gilts and were fixed for transmission electron microscopy either immediately or after various periods of in vitro culture. In general, the morphology of in vivo and in vitro grown embryos was similar. In vivo grown four-cell stages contained dense fibrillar nucleoli. At the eight-cell stage the nucleoli possessed increasing amounts of chromatin and granules. In both stages the mitochondria were spherical or ovoid in shape and had only few cristae. In morulae and blastocysts the nucleoli were mainly of the fibrillogranular type, and the mitochondria were filamentous and possessed more cristae, of which many were tubular. Two major ultrastructural deviations were observed in about half of the in vitro cultured embryos. First, nucleolus-like structures were found outside the nuclei in the cytoplasm of blastomeres. These structures were spherical and composed of chromatin-like material containing characteristically a single large and several small vacuoles. The structures were frequently associated with profiles of smooth endoplasmic reticulum (SER). A second type of deviation was aggregates of SER appearing as spiral coils or multiangular complexes. Some embryos displayed both types of deviations. The physiological significance of these deviations remains speculative. They may be involved in the considerably reduced capability of porcine embryos to develop to piglets following in vitro culture.  相似文献   

10.
Horseradish peroxidase (HRP), together with Fast Green or rhodamine-conjugated dextran (RDX), was used as an intracellular lineage tracer to determine cell fate in the polar trophectoderm of 3.5-day-old mouse embryos. In HRP-injected midstage (approximately 39-cell) and expanded (approximately 65-cell) blastocysts incubated for 24 hr, the central polar trophectoderm cell was displaced from the embryonic pole an average of 20 micron (5% of blastocyst circumference) and 29 micron (6% of blastocyst circumference), respectively. Expanded blastocysts injected with HRP + Fast Green and incubated for 24 hr or with HRP + RDX and incubated for 48 hr showed a displacement of 24 micron (4% of blastocyst circumference) and 88 micron (14% of blastocyst circumference), respectively. Up to 10 HRP-positive trophectoderm cells were observed among embryos incubated for 48 hr, indicating that in those cases, the labeled progenitor cells had divided at least three times. Our observations show that the central polar trophectoderm cell divides in the plane of the trophectoderm in expanded blastocysts and, along with its descendants, is displaced toward the mural trophectoderm. The systematic tandem displacement of labeled cells and their descendants toward the abembryonic pole suggests the presence of a proliferative area at the embryonic pole of the blastocyst. Large shifts in inner cell mass (ICM) position in relation to the trophectoderm do not occur during blastocyst expansion. Furthermore, random movements within the polar trophectoderm population do not account for the replacement of labeled cells by unlabeled polar trophectoderm cells. Rather, we propose the hypothesis that the ICM contributes these replacement cells to the polar trophectoderm during blastocyst expansion.  相似文献   

11.
During Caenorhabditis elegans development, the embryo acquires its vermiform shape due to changes in the shape of epithelial cells, a process that requires an apically localized actin cytoskeleton. We show that SMA-1, an ortholog of beta(H)-spectrin required for normal morphogenesis, localizes to the apical membrane of epithelial cells when these cells are rapidly elongating. In spc-1 alpha-spectrin mutants, SMA-1 localizes to the apical membrane but its organization is altered, consistent with the hypothesis these proteins act together to form an apically localized spectrin-based membrane skeleton (SBMS). SMA-1 is required to maintain the association between actin and the apical membrane; sma-1 mutant embryos fail to elongate because actin, which provides the driving force for cell shape change, dissociates from the apical membrane skeleton during morphogenesis. Analysis of sma-1 expression constructs and mutant strains indicates SMA-1 maintains the association between actin and the apical membrane via interactions at its N-terminus and this activity is independent of alpha-spectrin. SMA-1 also preserves dynamic changes in the organization of the apical membrane skeleton. Taken together, our results show the SMA-1 SBMS plays a dynamic role in converting changes in actin organization into changes in epithelial cell shape during C. elegans embryogenesis.  相似文献   

12.
Porcine embryos produced in vitro have a small number of cells and low viability. The present study was conducted to examine the morphological characteristics and the relationship between actin filament organization and morphology of porcine embryos produced in vitro and in vivo. In vitro-derived embryos were produced by in vitro maturation, in vitro fertilization (IVF), and in vitro development. In vivo-derived embryos were collected from inseminated gilts on Days 2-6 after estrus. In experiment 1, in vitro-derived embryos (相似文献   

13.
Hatching has been suggested to occur as a result of protease-mediated lysis and the blastocoele tension. However, even if rupturing is initiated at multiple sites, interestingly only a single site is used for escape. This implies that there are several mechanisms involved in hatching. In this study, the involvement of actin filaments in mouse embryo hatching was examined. We treated mouse embryos with cytochalasin B for 12 h or 24 h at the morula, middle blastocyst, expanded blastocyst, lobe-formed blastocyst and hatching blastocyst stages, and measured the amount and distribution of actin filaments using a confocal microscope. At morula, middle blastocyst, lobe-formed blastocyst and hatching blastocyst stages embryonic development was completely arrested by cytochalasin B. However, when transferred to cytochalasin-B-free medium, the embryos resumed development and escaped the zona pellucida. In the expanded blastocysts development was almost completely inhibited by cytochalasin B, but rupturing occurred in some embryos. However, development stopped completely at the ruptured stage. Distribution of actin filaments was prominent at rupturing and hatching sites regardless of cytochalasin B treatment. The amount of actin filaments was prominent at hatching embryos compared with other developmental stages of embryos. These actin filaments were distributed intensively between the trophectodermal cells, and formed locomotion patterns. Taken together, these results suggest that not only tension and lytic enzymes are required to rupture, but the activity of actin filaments may have a crucial role in the process of hatching.  相似文献   

14.
We have examined the synthesis and distribution of the cell adhesion molecule uvomorulin in mouse preimplantation embryos. Uvomorulin can already be detected on the cell surface of unfertilized and fertilized eggs but is not synthesized in these cells. Uvomorulin synthesis starts in late two-cell embryos and seems not to be correlated with the onset of compaction. The first signs of compaction are accompanied by a redistribution of uvomorulin on the surface of blastomeres. During compaction uvomorulin is progressively removed from the apical membrane domains of peripheral blastomeres. In compact morulae uvomorulin is no longer present on the outer surface of the embryo but is localized predominantly in membrane domains involved in cell-cell contacts of adjacent outer blastomeres. On inner blastomeres of compact morulae uvomorulin remains evenly distributed. This uvomorulin distribution once established during compaction is maintained and also found in the blastocyst: on trophectodermal cells uvomorulin localization is very similar to that in adult intestinal epithelial cells while uvomorulin remains evenly distributed on the surface of inner cell mass cells. The possible role of the redistribution of uvomorulin for the generation of trophectoderm and inner cell mass in early mouse embryos is discussed.  相似文献   

15.
The degree of fragmentation during early cleavage is universally used as an indicator of embryo quality during human in vitro fertilization treatment. Extensive fragmentation has been associated with reduced blastocyst formation and implantation. We examined the relationship between early fragmentation and subsequent allocation of cells to the trophectoderm and inner cell mass in the human blastocyst. We retrospectively analyzed data from 363 monospermic human embryos that exhibited varying degrees of fragmentation on Day 2. Embryos were cultured from Day 2 to Day 6 in Earle balanced salt solution with 1 mM glucose and human serum albumin. Rates of development and blastocyst formation were measured. The number of cells in the trophectoderm and inner cell mass and the incidence of apoptosis were assessed following differential labeling with polynucleotide-specific fluorochromes. Increasing fragmentation resulted in reduced blastocyst formation and lower blastocyst cell numbers. For minimal and moderate levels of fragmentation, the reduction in cell numbers was confined largely to the trophectoderm and a steady number of inner cell mass cells was maintained. However, with extensive fragmentation of more than 25%, cell numbers in both lineages were reduced in the few embryos that formed blastocysts. Apoptotic nuclei were present in both the trophectoderm and inner cell mass, with the lowest incidence in blastocysts that had developed from embryos with minor (5-10%) fragmentation. Paradoxically, higher levels of apoptosis were seen in embryos of excellent morphology, suggesting a possible role in regulation of cell number.  相似文献   

16.
Tissue mechanically dissociated from blastocysts of the pig around the time of implantation were found to produce, in culture, free-floating multicellular spheroids (trophospheres) and adherent monolayer cells. Ultrastructurally the two cellular layers of the trophospheres were very similar to those of the blastocyst but the trophosphere outer layer characteristically contained very large mitochondria with a vastly expanded matrix and few cristae. Similar mitochondria were also found in the monolayer cells. Using a monoclonal antibody specific for pig trophectoderm, it was found that about 20% of the monolayer cells, and some of the spheroids expressed this trophectodermal antigen. In the latter case the antigen was present only on the surface facing the medium. The spheroids were fluid-filled and occasionally grew inside each other. The monolayer cells were predominantly uninuclear but did form a number of binucleate cells and in older cultures the occasional cell with many nuclei could be seen. The spheroids and the monolayer cells had similar glycoprotein profiles indicating that they were composed of similar cell populations. A glycoprotein of apparent molecular weight 68,000 observed in both spheres and monolayers may represent pig placental alkaline phosphatase. Both trophospheres and monolayer cells were observed to interconvert steroid precursors. It is apparent that the trophospheres share many features of the blastocyst and may thus represent a valuable model system similar to those described in other species for the investigation of their biochemical physiological and immunological properties.  相似文献   

17.
In a previous study of mouse tetraploid<-->diploid chimaeric blastocysts, tetraploid cells were found to be more abundant in the trophectoderm than the inner cell mass (ICM) and more abundant in the mural trophectoderm than the polar trophectoderm. This non-random allocation of tetraploid cells to different regions of the chimaeric blastocyst may contribute to the restricted tissue distribution seen in post-implantation stage tetraploid<-->diploid chimaeras. However, the tetraploid and diploid embryos that were aggregated together differed in several respects: the tetraploid embryos had fewer cells and these cells were bigger and differed in ploidy. Each of these factors might underlie a non-random allocation of tetraploid cells to the chimaeric blastocyst. A combination of micromanipulation and electrofusion was used to produce two series of chimaeras that distinguished between the effects of cell size and ploidy on the allocation of cells to different tissues in chimaeric blastocysts. When aggregated cells differed in cell size but not ploidy, the derivatives of the larger cell contributed significantly more to the mural trophectoderm and polar trophectoderm than the ICM. When aggregated cells differed in ploidy but not cell size, the tetraploid cells contributed significantly more to the mural trophectoderm than the ICM. In both experiments the contributions to the polar trophectoderm tended to be intermediate between those of the mural trophectoderm and ICM. These experiments show that both the larger size and increased ploidy of tetraploid cells could have contributed to the non-random cell distribution that was observed in a previous study of tetraploid<-->diploid chimaeric blastocysts.  相似文献   

18.
A scoring scheme was devised to characterize visually the morphological differentiation of whole-mount, unfixed mouse blastocysts. Embryos were recovered from groups of intact mice (implanting embryos) and mice ovariectomized on Day 3 of pregnancy (implantation-delayed embryos) every 3 h from 18:00 h on Day 4 until 12:00 h on Day 5. Blastocyst differentiation was assessed according to the presence of a zona pellucida, the appearance of the outer margin of trophectoderm cells, the visibility of the blastocoele and the relative size of the inner cell mass. The results obtained indicate that, during this period, implanting and implantation-delayed mouse blastocysts lose the zona as well as exhibit rounded trophectoderm cells, an enlarged inner cell mass and an increasing opacity of the blastocoele. In contrast, the trophectoderm cells of implanting blastocysts only exhibit extensive cytoplasmic projections, probably due to remodelling of the intracellular cytoskeleton. Growth of the inner cell mass appeared to precede the other morphological changes in the majority of blastocysts, and thus might be a prerequisite for further differentiation. The rate of blastocyst differentiation and the survival of embryos were adversely affected by the condition of delayed implantation, induced by ovariectomy. This study suggests that the appearance of cytoplasmic projections from trophectoderm cells is central to the control of blastocyst implantation.  相似文献   

19.
The identification of growth factors and/or receptors produced by mammalian embryos or present in the maternal reproductive tract is of basic interest, as well as having practical application. Early studies established that receptors binding insulin and the insulin-like growth factors (IGFs) are expressed by preimplantation mouse embryos. These studies have been confirmed at the molecular level using RT-PCR techniques. In addition, high resolution electron microscopy has shown that insulin is internalized by the cells of the blastocyst stage mouse embryo, and that immunologically intact insulin is detectable in the cells of the trophectoderm and inner cell mass. Similar studies with gold labelled IGF-I have shown that this ligand is also bound and internalized by mouse blastocysts. However, although all blastocysts express receptors that bind IGF-I on the basolateral cell surface of the trophectoderm, only 30% exhibit apically located receptors. In order to elucidate the functions of IGFs in early mouse development, we are in the process of constructing protein databases for embryos at the eight-cell and blastocyst stage. By the use of the database, it should prove possible to elucidate targets of growth factor action. © 1993 Wiley-Liss, Inc.  相似文献   

20.
A bovine trophectoderm cell line was established from a parthenogenetic in vitro-produced blastocyst. To initiate the cell line, 8-day parthenogenetic blastocysts were attached to a feeder layer of STO fibroblasts and primary outgrowths occurred that consisted of trophectoderm, endoderm, and very occasionally epiblast tissue. Any endoderm and epiblast outgrowths were removed from the primary cultures within the first 10 days of culture by dissection. One of the primary trophectoderm cell cultures was chosen for further propagation and was passaged by physical dissociation and replating on STO feeder cells. The cell culture, designated BPT-1, was maintained in T25 flasks and passaged at a 1:3 split ratio for the first 15 passages approximately once every 2 weeks. Thereafter, the cell culture was passaged at 1:10-1:40 split ratios. Transmission electron microscopic examination showed the cells to be a polarized epithelium with apical microvilli, a thin basal lamina, and lateral junctions consisting of tight junctions and desmosomes. Lipid vacuoles and digestive vacuoles were also prominent features of the BPT-1 cells. Metaphase spread analysis at passage 59 indicated a near diploid cell population (2n = 60) with a mode and median of 60 and a mean of 64. BPT-1 cells secreted interferon-tau into the medium as measured by anti-viral assay and Western blot analysis. The cell line provides an in vitro model of parthenogenote trophectoderm whose biological characteristics can be compared to trophectoderm cell lines derived from bovine embryos produced by normal fertilization or nuclear transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号