首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Indirect immunofluorescence microscopy has been used to detect cytoskeletal proteins, which allow a distinction between the two cell types present in the mouse blastocyst: i.e. the cells of the inner cell mass (ICM) and the outer trophoblastic cells. Antibodies against three classes of intermediate-sized filaments (cytokeratins, desmin and vimentin), as well as antibodies against actin and tubulin were studied. Antibodies against prekeratin stain the outer trophoblastic cells but not the ICM in agreement with the findings on adult tissues that cytokeratins are a marker for various epithelial cells. Interestingly, vimentin filaments typical of mesenchymal cells as well as of cells growing in culture seem to be absent in both cell types of the blastocyst. Thus, the cytokeratins of the trophoblastic cells seem to be the first intermediate-sized filaments expressed in embryogenesis. Antibodies to tubulin and actin show that microtubules and microfilaments are ubiquitous structures, although microfilaments have a noticeably different organization in the two cell types. In addition, since early embryogenic multipotential cells show close similarities to teratocarcinomic cells, a comparison is made between the cells of the blastocyst, embryonal carcinoma cells (EC cells) and an epithelial endodermal cell line (PYS2 cells) derived from EC cells. EC cells display vimentin filaments whereas PYS2 cells show both vimentin and cytokeratin filaments. The results emphasize the usefulness of antibodies specific for different classes of intermediate filaments in further embryological studies, and suggest that cells of the blastocyst and EC cells differ with respect to vimentin filaments.  相似文献   

2.
Retinol-binding protein (RBP) is a major secretory product of the porcine conceptus. Using an oligonucleotide probe corresponding to a highly conserved region of all known mammalian RBP, we have isolated an apparently full-length cDNA clone for porcine conceptus RBP from a cDNA library constructed from pig conceptuses collected between days 13-17 of pregnancy. The cDNA was 937 base-pairs in length and coded for a protein whose inferred amino-terminal sequence was identical to that reported for both porcine conceptus RBP and porcine serum RBP. Its length was consistent with the size (approximately 1 kilobase) of the RBP message in porcine conceptuses. Porcine conceptus RBP and human serum RBP share 91% amino acid sequence identity. The inferred differences in sequence were evenly distributed throughout the length of the polypeptide. RBP mRNA was detectable within the trophoblast of day 11 porcine conceptuses by in situ hybridization with a 618-basepair 35S-labeled probe corresponding to the 3' end of porcine RBP. Silver grain density was distributed relatively uniformly over the trophoblast and the inner cell mass. Western blot analysis of conceptus culture medium demonstrated that the conceptuses of cattle (on day 19) and sheep (on day 15) as well as pigs secrete RBP during early pregnancy. Secretion of large quantities of RBP by the trophoblast of preimplantation pig conceptuses suggests important roles for vitamin A and RBP near the time of conceptus elongation.  相似文献   

3.
Total cell number as well as differential cell numbers representing the inner cell mass (ICM) and trophectoderm were determined by a differential staining technique for preimplantation pig embryos recovered between 5 and 8 days after the onset of oestrus. Total cell number increased rapidly over this time span and significant effects were found between embryos of the same chronological age from different females. Inner cells could be detected in some but not all embryos of 12-16 cells. The proportion of inner cells was low in morulae but increased during differentiation of ICM and trophectoderm in early blastocysts. The proportion of ICM cells then decreased as blastocysts expanded and hatched. Some embryos were cultured in vitro and others were transferred to the oviducts of immature mice as a surrogate in vivo environment and assessed for morphology and cell number after several days. Although total cell number did not reach in vivo levels, morphological development and cell number increase was sustained better in the immature mice than in vitro. The proportion of ICM cells in blastocysts formed in vitro was in the normal range.  相似文献   

4.
Mammalian pre-implantation development culminates in the formation of the blastocyst consisting of two distinct cell lineages, approximately a third of the cells comprise the pluripotent inner cell mass (ICM) and the remainder the differentiated trophectoderm (TE). However, the contribution made by these two cell types to the overall energy metabolism of the intact blastocyst has received relatively little attention. In this study, the metabolism of the intact mouse blastocyst and isolated ICMs were determined in terms of total ATP formation (calculated from oxygen consumption and lactate formation), mitochondrial distribution and amino acid turnover to provide an indication of protein synthesis. The TE consumed significantly more oxygen, produced more ATP and contained a greater number of mitochondria than the ICM. Amino acid turnover was significantly greater (p<0.001) in the TE compared with the ICM. Specifically, there was a significant difference in the utilization of aspartate (p=0.020), glutamate (p=0.024), methionine (p=0.037), and serine (p=0.041) between the cells of the ICM and TE. These data suggest that the TE produces approximately 80% of the ATP generated and is responsible for 90% of amino acid turnover compared with the ICM. The major fate of the energy produced by the TE is likely to be the Na(+), K(+)ATPase (sodium pump enzyme) located on the TE basolateral membrane. In conclusion, the pluripotent cells of the ICM display a relatively quiescent metabolism in comparison with that of the TE.  相似文献   

5.
The proportion of total cells in the blastocyst allocated to the inner cell mass (ICM) and trophectoderm (TE) is important for future development and may be a sensitive indicator to evaluate culture conditions. The number of cells and their distribution within the two primary cell lineages were determined for the rabbit embryo developing in vivo after superovulation or nonsuperovulation or embryo transfer and compared with embryos developing in vitro. Comparisons were made with cultured embryos or embryos grown in vivo until 3.5, 4.0, and 4.5 days of age. Embryos from superovulated rabbits developed in vivo for 3.5, 4.0, and 4.5 days, respectively, had 361, 758, and 902 total cells (P<0.05), and in nonsuperovulated rabbits 130, 414, and 905 total cells (P<0.05), with increasing proportions of ICM cells over time (P<0.05). One-cell embryos recovered from superovulated females and transferred to nonsuperovulated recipients developed more slowly with 70, 299, and 550 total cells after 3.5, 4.0, and 4.5 days of culture (P<0.05), respectively. The proportion of ICM cells increased with age of the embryo. Corresponding values for one-cell embryos cultured in vitro resulted in 70, 299, and 550 total cells (P<0.05). However, in vitro culture of morula-stage embryos in the presence of fetal bovine serum for 24 hr did not delay growth. In addition, the proportions of ICM/total cells were 0.17, 0.25, and 0.29 for embryos developing in vitro at 3.5, 4.0, and 4.5 days, respectively, similar to those for embryos developing in vivo at each of the three recovery times. These data establish for the first time the number and proportion of cells allocated to the ICM of the rabbit embryo developing in vivo or under defined conditions in vitro. © 1995 Wiley-Liss, Inc.  相似文献   

6.
The extent to which trophectoderm (TE) and inner cell mass (ICM) lineages in the mouse blastocyst remain distinct during the period from the commencement of cavitation up until 48 h later in culture was investigated. Fluorescent latex microparticles were used to label exclusively all TE cells in nascent blastocysts and the position of labelled progeny in cultured blastocysts was examined by disaggregation, by serial sectioning and by whole-mount analyses. The results indicate that, in most blastocysts (80-90%), TE and ICM lineages are entirely separate during this period while in the remainder lineage crossing is limited usually to only one or two cells of either tissue.  相似文献   

7.
Hormones affect growth and alter the cytoskeleton suggesting that hormones and the cytoskeleton interact with each other. The cytoskeleton of ancestral algae such as Chara showed similar sensitivity to auxin as higher plants, even in generative structures but the sensitivity differed between IAA and alpha-NAA and presumably other auxins. The ability of cells to elongate depends on microtubule organization during the transition from disorganized to perpendicular to longitudinal organization of the cytoskeleton. Because of the many functions of the cytoskeleton it is possible that its composition is influenced by selective gene expression and adaptation to growth regulators. Co-localization of microtubules and F-actin change at a high temporal and spatial scale. High resolution measurements of mRNA expression indicate rapid turnover that may affect the composition of the cytoskeleton.  相似文献   

8.
9.
Oct-4, the marker of pluripotent cells, is crucial for murine preimplantation development. During the formation of the blastocyst Oct-4 is downregulated in the trophectoderm (TE) and its expression becomes restricted to the inner cell mass (ICM). In order to determine the exact timing of the disappearance of Oct-4 protein from TE we analyzed the localization and level of Oct-4 at different stages of blastocyst development. The presence of Oct-4 protein was determined by immunohistochemistry using confocal microscopy. We found that the downregulation of Oct-4 protein in TE of mouse blastocysts progresses gradually during development, and Oct-4 protein persists in some of the TE cells at least until the expanded blastocyst (120-140 cells) stage. Our findings indicate that the switching-off of the Oct-4 expression is not necessary for the trophectoderm formation. The complete elimination of Oct-4 protein from TE occurs at the period of blastocyst implantation, when lack of Oct-4 is required for the proper functioning of the trophectoderm.  相似文献   

10.
A gene (VRP1) encoding a novel proline-rich protein (verprolin) has been isolated from the yeast Saccharomyces cerevisiae as a result of its hybridization to a chick vinculin cDNA probe. The deduced protein sequence contains 24% proline residues present as proline-rich motifs throughout the verprolin sequence. Several of these motifs resemble recently identified sequences shown to bind Src homology 3 (SH3) domains in vitro. Replacement of the wild-type VRP1 allele with a mutant allele results in strains that grow slower than wild-type strains and are temperature sensitive. The vrp1 mutants are impaired in both cell shape and size and display aberrant chitin and actin localization. We propose that verprolin is involved in the maintenance of the yeast actin cytoskeleton, through interactions with other proteins, possibly containing SH3 domains.  相似文献   

11.
The physiological significance of estradiol-17beta for the early embryonic development in the pig was investigated in vitro by four different experimental designs. A total of 1635 morphologically intact morulae were cultured in vitro in Krebs-Ringer bicarbonate solution supplemented with 10% heat-inactivated lamb serum, and the blastocyst formation rate (BFR) was recorded after 24 or 48 h. The addition of estradiol-17 beta (0.1 nM, 1 nM, 100 nM), progesterone (100 nM, 500 nM) or cortisol (100 nM) to the culture medium did not affect BFR (95 to 100%, Experiment 1). Similarly, adding charcoal-stripped lamb serum to the medium instead of normal lamb serum in the absence or presence of 1 nM estradiol-17 beta had no effect (93 to 95% BFR, Experiment 2). The antiestrogen Nafoxidine, however, at a concentration of 15 micrograms/ml, significantly (p less than 0.01) reduced BFR to 13.3 +/- 5.8% compared to controls (93.3 +/- 4.2%, Experiment 3). Supplementation with estradiol-17 beta (1 nM) in the presence of 15 micrograms/ml Nafoxidine significantly (p less than 0.01) improved BFR to 57.2 +/- 8.9%. Higher concentrations of estradiol-17 beta (100 nM, 100 microM) did not further enhance BFR. The stimulatory effects of estradiol-17 beta were specific since the BFR remained low in the presence of 100 nM progesterone (10.0 +/- 4.5%) or 100 nM cortisol (3.3 +/- 3.3%). Addition of 5% estradiol-17 beta-antiserum to the culture medium (Experiment 4) significantly (p less than 0.01) reduced BRF to 51.9 +/- 6.7% compared to controls (93.1 +/- 2.2%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
At the late blastocyst stage, the epithelial trophectoderm cells of the mammalian embryo undergo a phenotypic change that allows them to invade into the uterine stroma and make contact with the maternal circulation. This step can be regulated in vitro by the availability of amino acids. Embryos cultured in defined medium lacking amino acids cannot form trophoblast cell outgrowths on fibronectin, an in vitro model of implantation, but remain viable for up to 3 days in culture and will form outgrowths when transferred into complete medium. The amino acid requirement is a developmentally regulated permissive event that occurs during a 4- to 8-h period at the early blastocyst stage. Amino acids affect spreading competence specifically by regulating the onset of protrusive activity and not the onset of integrin activation. Rapamycin, a specific inhibitor of the kinase mTOR/FRAP/RAFT1, blocks amino acid stimulation of embryo outgrowth, demonstrating that mTOR is required for the initiation of trophectoderm protrusive activity. Inhibition of global protein translation with cycloheximide also inhibits amino acid-dependent signals, suggesting that mTOR regulates the translation of proteins required for trophoblast differentiation. Our data suggest that mTOR activity has a developmental regulatory function in trophectoderm differentiation that may serve to coordinate embryo and uterus at the time of implantation.  相似文献   

13.
The allocation of cells to the trophectoderm and inner cell mass (ICM) in the mouse blastocyst has been examined by labelling early morulae (16-cell stage) with the short-term cell lineage marker yellow-green fluorescent latex (FL) microparticles. FL is endocytosed exclusively into the outside polar cell population and remains autonomous to the progeny of these blastomeres. Rhodamine-concanavalin A was used as a contemporary marker for outside cells in FL-labelled control (16-cell stage) and cultured (approximately 32- to 64-cell stage) embryos, immediately prior to the disaggregation and analysis of cell labelling patterns. By this technique, the ratio of outside to inside cell numbers in 16-cell embryos was shown to vary considerably between embryos (mean 10.8:5.2; range 9:7 to 14:2). In cultured embryos, the trophectoderm was derived almost exclusively (over 99% cells) from outside polar 16-cell blastomeres. The origin of the ICM varied between embryos; on average, most cells (75%) were descended from inside nonpolar blastomeres with the remainder derived from the outside polar lineage, presumably by differentiative cleavage. In blastocysts examined by serial sectioning, polar-derived ICM cells were localised mainly in association with trophectoderm and were absent from the ICM core. In nascent blastocysts with exactly 32 cells an inverse relationship was found between the proportion of the ICM descended from the polar lineage and the deduced size of the inside 16-cell population. From these results, it is concluded that interembryonic variation in the outside to inside cell number ratio in 16-cell morulae is compensated by the extent of polar 16-cell allocation to the ICM at the next division, thereby regulating the trophectoderm to ICM cell number ratio in early blastocysts.  相似文献   

14.
The onset of aggregation of bacterially-grown Dictyostelium discoideum amoebae is accompanied by the accumulation of the discoidin proteins. An immunofluorescent analysis demonstrates that discoidin is distributed throughout the cytoplasm, but is excluded from vesicles and nucleoli. There is no indication of either extracellular or membrane localization. Translocating amoebae of mutants lacking discoidin form more dispersed pseudopodial regions at the cell periphery, possess an abnormally centered microtubule organizing center, are blunt rather than elongate, and lack the tapered posterior uropod characteristic of translocating wild-type cells. However, in spite of the loss of the normal elongate morphology, discoidinless mutants translocate with instantaneous velocities and directional persistence comparable to wild-type cells, and they respond normally to the rapid addition of cAMP. These results demonstrate that the discoidin proteins are cytoplasmic components essential for the maintenance of the elongate cell morphology, cytoskeletal organization and the ability to align with other cells during aggregation. However, the elongate morphology is not a requisite for rapid and persistent single cell translocation.  相似文献   

15.
We investigated whether the shape of astroglial derived cells influences the expression of cytoskeletal proteins. In reaggregating cultures GFAP, vimentin and actin synthesis was approximately 52%, 50% and 37% the level found in monolayer cultures, respectively. Monolayer cultures consisted of polygonal shaped cells adhering to plastic, while reaggregating cultures were comprised of round cells growing in a suspension like culture. Additionally, human glioma cells induced to grow as round cells on poly-2-hydroxyethyl methacrylate (polyhema) coated plastic exhibited a level of GFAP synthesis that was approximately 20% the level displayed by polygonal shaped cells grown on uncoated plastic. Glioma cells initially grown on a polyhema surface and replated onto uncoated plastic were capable of reinitiating GFAP synthesis. Thus, aterations in the synthesis of GFAP and other cytoskeletal proteins can occur when astrocytes change their shape.  相似文献   

16.
17.
18.
Summary Pig epiblast cells that had been separated from other early embryonic cells were cultured in vitro. A three-step dissection protocol was used to isolate the epiblast from trophectoderm and primitive endoderm before culturing. Blastocysts collected at 7 to 8 days postestrus were immunodissected to obtain the inner cell mass (ICM) and destroy trophectodermal cells. The ICM was cultured for 2 to 3 days on STO feeder cells. The epiblast was then physically dissected free of associated primitive endoderm. Epiblast-derived cells, grown on STO feeders, produced colonies of small cells resembling mouse embryonic stem cells. This primary cell morphology changed as the colonies grew and evolved into three distinct colony types (endodermlike, neural rosette, or complex). Cell cultures derived from these three colony types spontaneously differentiated into numerous specialized cell types in STO co-culture. These included fibroblasts, endodermlike cells, neuronlike cells, pigmented cells, adipogenic cells, contracting muscle cells, dome-forming epithelium, ciliated epithelium, tubule-forming epithelium, and a round amoeboid cell type resembling a plasmacyte after Wright staining. The neuronlike cells, contracting muscle cells, and tubule-forming epithelium had normal karyotypes and displayed finite or undefined life spans upon long-term STO co-culture. The dome-forming epithelium had an indefinite life span in STO co-culture and also retained a normal karyotype. These results demonstrate the in vitro pluripotency of pig epiblast cells and indicate the epiblast can be a source for deriving various specialized cell cultures or cell lines.  相似文献   

19.
A bovine trophectoderm cell line was established from a parthenogenetic in vitro-produced blastocyst. To initiate the cell line, 8-day parthenogenetic blastocysts were attached to a feeder layer of STO fibroblasts and primary outgrowths occurred that consisted of trophectoderm, endoderm, and very occasionally epiblast tissue. Any endoderm and epiblast outgrowths were removed from the primary cultures within the first 10 days of culture by dissection. One of the primary trophectoderm cell cultures was chosen for further propagation and was passaged by physical dissociation and replating on STO feeder cells. The cell culture, designated BPT-1, was maintained in T25 flasks and passaged at a 1:3 split ratio for the first 15 passages approximately once every 2 weeks. Thereafter, the cell culture was passaged at 1:10-1:40 split ratios. Transmission electron microscopic examination showed the cells to be a polarized epithelium with apical microvilli, a thin basal lamina, and lateral junctions consisting of tight junctions and desmosomes. Lipid vacuoles and digestive vacuoles were also prominent features of the BPT-1 cells. Metaphase spread analysis at passage 59 indicated a near diploid cell population (2n = 60) with a mode and median of 60 and a mean of 64. BPT-1 cells secreted interferon-tau into the medium as measured by anti-viral assay and Western blot analysis. The cell line provides an in vitro model of parthenogenote trophectoderm whose biological characteristics can be compared to trophectoderm cell lines derived from bovine embryos produced by normal fertilization or nuclear transfer.  相似文献   

20.
The embryonic ectoderm of the pig differentiated and became part of the outer barrier of the blastocyst (earlier formed by the trophectoderm alone) before shedding of the overlying polar trophectoderm around Day 10, thus securing the integrity of the rapidly expanding blastocyst. Ferritin, added to the medium of the blastocyst, was taken up rapidly by trophectoderm cells, but did not reach the blastocoele, and consequently no tracer was found within hypoblast cells. Embryonic ectoderm cells did not absorb the macromolecule, before or after loss of the polar trophectoderm. When ferritin was injected into the blastocoele, trophectoderm, hypoblast and embryoblast cells all absorbed the tracer. At Day 11, blastocyst diameter and embryoblast cell number varied widely and were hardly correlated. We suggest that embryoblast development may be a more reliable indicator for the developmental stage of a blastocyst than its diameter, which may merely be an indication of the viability of the trophoblast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号