首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过盆栽试验,评价栎属植物在铅锌尾矿中的生长响应及植被恢复前景.分析比较了覆瓦栎、猩红栎、樱皮栎、舒玛栎和白栎5种栎树幼苗在铅锌矿砂中生长30个月后的生物量、根系形态及其对营养元素和重金属的吸收及转移特征.结果表明: 5种栎树在矿砂中均能生长,其中,猩红栎和白栎的生物量较对照有下降趋势,其他3种栎树的生长与对照相比无显著差异;栎树根系生物量均较对照有不同程度增加(猩红栎除外),且仅猩红栎侧根形态学参数较对照有所减少.重金属胁迫下,栎树根系和茎中营养元素浓度较对照无显著变化.5种栎树体内重金属浓度均较低,且其生物富集系数和转移系数均小于1.但樱皮栎叶片和茎中Cd浓度分别为22.4和15.1 mg·kg-1,转移系数为2.3,显著高于其他4种栎树.除猩红栎以外,其他参试栎树均可作为有潜力的污染土壤修复树种.其中舒玛栎的耐性较高、生物富集系数和转移系数较低,是适合在尾矿区造林和生态修复的优选树种.  相似文献   

2.
蚯蚓在植物修复芘污染土壤中的作用   总被引:1,自引:1,他引:0  
潘声旺  魏世强  袁馨  曹生宪 《生态学报》2011,31(5):1349-1355
采用盆栽试验法,研究了蚯蚓(Pheretima hupeiensis)在植物修复芘污染土壤中的作用。结果显示,试验浓度(20.24-321.42 mg/kg) 范围内,蚯蚓活动促进了芘污染土壤中修复植物黑麦草(Lolium multiforum)黑麦草的生长,其根冠比明显增大。添加蚯蚓72 d后,种植黑麦草的土壤中芘的去除率高达60.01%-86.26%,其平均去除率(74.66%)比无蚯蚓活动的土壤-植物系统(64.55%)提高10.11%,比无植物对照组(18.24%)提高56.42%。各种生物、非生物修复因子中,植物-微生物交互作用对芘去除的平均贡献率(51.75%)最为突出,比无蚯蚓活动时(44.94%)提高6.81%。说明蚯蚓活动可强化土壤-植物系统对土壤芘污染的修复作用。  相似文献   

3.
蚯蚓-秸秆及其交互作用对黑麦草修复Cu污染土壤的影响   总被引:3,自引:1,他引:3  
王丹丹  李辉信  胡锋  王霞 《生态学报》2007,27(4):1292-1299
以高沙土为供试土壤,加入Cu^2+以模拟成:0,100,200,400mg/kgCu^2+的Cu污染土壤,设置接种蚯蚓(E)、表施秸秆(M),同时加入蚯蚓和秸秆(ME)及不加蚯蚓和秸秆的对照(CK)4个处理,并种植黑麦草。研究蚯蚓、秸秆相互作用对黑麦草吸收、富集铜的影响。结果表明:加入秸秆显著提高了蚯蚓的生物量,一定程度上缓解了重金属对蚯蚓的毒害,同时蚯蚓显著提高了秸秆的分解率,较无蚯蚓对照提高了58.11%~77.32%。接种蚯蚓(E,ME)还提高了土壤有效态重金属(DTPA-Cu)含量,秸秆处理(M)则降低了土壤有效态重金属含量。研究还发现,E处理促进了黑麦草地上部生长,而M和ME处理均显著提高了黑麦草地下部的生物量。E和ME处理同时提高了植物地上部和地下部的Cu浓度及Cu吸收量,M处理则只对植物的地下部Cu浓度和Cu吸收量有显著促进作用。总体来看,E处理、M处理及ME处理分别使黑麦草地上部Cu富集系数提高了31.22%~121.07%.2.12%~61.28%和25.56%~132.64%。  相似文献   

4.
通过设置保留茎瘤和去除茎瘤处理 ,研究长喙田菁 (Sesbaniarostrata)在铅锌尾矿、客土和纯土环境中的生长发育情况。结果表明 :保留茎瘤使长喙田菁的株高、地上部生物量、地下部生物量、全株生物量和叶绿素含量分别比去除茎瘤处理提高了 2 4 %~ 4 8%、2 7 4 %~ 6 7 9%、2 8 5 %~ 99 3%、2 7 6 %~ 72 3%和 17 0 %~ 2 3 4 %,这种作用在纯尾矿处理组最为显著 ,客土处理组次之 ,即环境愈恶劣 ,茎瘤这种作用愈显著 ,证明了茎瘤对长喙田菁适应铅锌尾矿环境有积极的贡献。  相似文献   

5.
Wang D D  Li H X  Hu F  Wang X 《农业工程》2007,27(4):1292-1298
It is well known that the earthworm's activities can increase the availability of soil nutrients, improve soil structure, and enhance the biomass of plants in uncontaminated soil. Recently, many researchers found that some metal-tolerant earthworms can survive and even change the fractional distribution of heavy metals in contaminated soil. Furthermore, it has been revealed that earthworms are able to increase metal availability, and therefore, accumulate more metals in plants through their burrowing and casting activity. It is clear that the influence of soil animals is an important factor for phyto-remedation that must be taken into account. ~In this article, the authors studied some effects of addition of earthworms (Metaphire guillelmi), corn straw, and in combinations of earthworms and corn straw on the growth and Cu uptake by ryegrass in Cu contaminated pot soils. The experiment consisted of four levels of Cu addition (0, 100, 200, 400 mg·kg?1) and four treatments. The treatments were 1. control (CK); 2.straw mulching only (M); 3. earthworm additions to soil only (E); and 4.straw mulching plus earthworm additions (ME). Each treatment had three replicates. 10 seeds of ryegrass (Lolium multiflorum) were sowed in each pot and harvested after 30 days. After 30 days of incubation, all earthworms were found to be alive and the pot soils were burrowed through by earthworms. Results showed that the biomass of earthworm declined with the increase of the dosage of Cu additions. The biomass of earthworm increased significantly in treatment 4 (ME) as compared with treatment 3 (E). Not only the earthworms could get more food from the straw, but also could counteract some negative effects of Cu on the earthworms. The rates of straw decomposition in ME treatment increased by about 58.11% ?77.32%. The earthworm activities increased root biomass of ryegrass significantly, but did not show the effect on plant root growth. On the contrary, straw enhanced roots biomass significantly instead of shoots biomass. It was also found that the concentration of Cu in the plant shoot and the plant root, as well as plant Cu uptake were enhanced by earthworm's activities and straw mulching. The increased amount by straw mulching was lower than that of earthworms (E). The treatment of the earthworm–straw mulching combinations enhanced plant Cu concentration, and the amount increased by it was lower than that of the earthworm treatment (E) but higher than that of straw mulching treatment (M). The accumulation factors of copper in the shoots of ryegrass were increased by 31.22% ?121.07%, 2.12% ?61.28% and 25.56% ?132.64%, respectively, in treatment 3(E), 2(M), and 4(ME), respectively. In conclusion, the earthworm activities, straw-mulching and their interactions may have potential roles in elevating phyto-extraction efficiency in low to medium level Cu contaminated soil.  相似文献   

6.
Cu contamination soil (547 mg kg–1) was mixed separately with the surface-modified nano-scale carbon black (MCB) and placed in the ratios (w/w) of 0, 1%, 3%, and 5% in pots, together with 0.33 g KH2PO4and 0.35 g urea/pot. Each pot contained 20 ryegrass seedlings (Lolium multiflorum). Greenhouse cultivation experiments were conducted to examine the effect of the MCB on Cu and Zn fractionations in soil, accumulation in shoot and growth of ryegrass. The results showed that the biomass of ryegrass shoot and root increased with the increasing of MCB adding amount (p < 0.05). The Cu and Zn accumulation in ryegrass shoot and the concentrations of DTPA extractable Cu and Zn in soil were significantly decreased with the increasing of MCB adding amount (p < 0.05). The metal contents of exchangeable and bound to carbonates (EC-Cu or EC-Zn) in the treatments with MCB were generally lower than those without MCB, and decreased with the increasing of MCB adding amount (p < 0.05). There was a positive linear correlation between the Cu and Zn accumulation in ryegrass shoot and the EC-Cu and EC-Zn in soil. The present results indicated the MCB could be applied for the remediation the soils polluted by Cu and Zn.  相似文献   

7.
A pot experiment was conducted to investigate the potential for phytoextraction of heavy metals and rhizoremediation of polycyclic aromatic hydrocarbons (PAHs) in co-contaminated soil by co-planting a cadmium/zinc (Cd/Zn) hyperaccumulator and lead (Pb) accumulator Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Co-planting with castor decreased the shoot biomass of S. alfredii as compared to that in monoculture. Cadmium concentration in S. alfredii shoot significantly decreased when grown with ryegrass or castor as compared to that in monoculture. However, no reduction of Zn or Pb concentration in S. alfredii shoot was detected in co-planting treatments. Total removal of either Cd, Zn, or Pb by plants was similar across S. alfredii monoculture or co-planting with ryegrass or castor, except enhanced Pb removal in S. alfredii and ryegrass co-planting treatment. Co-planting of S. alfredii with ryegrass or castor significantly enhanced the pyrene and anthracene dissipation as compared to that in the bare soil or S. alfredii monoculture. This appears to be due to the increased soil microbial population and activities in both co-planting treatments. Co-planting of S. alfredii with ryegrass or castor provides a promising strategy to mitigate both metal and PAH contaminants from co-contaminated soils.  相似文献   

8.
A pot experiment was conducted on a low-fertility calcareous soil in order to evaluate the effect on ryegrass growth and nutrient uptake of an organic fertiliser obtained by composting "alperujo" and cotton gin waste. Compost, alone and combined with nitrogen fertilisation, was added to the soil at three rates and three harvests were obtained. The compost application enhanced plant growth in the first and third harvest. However, the additional nitrogen fertilisation clearly improved soil productivity due to the scarce availability of this nutrient in the compost. Also, a general increase in the plant contents of phosphorus and potassium in the first two harvests was recorded, whereas treatments with the maximum compost rate showed the highest plant content of copper in the last two harvests. Decreases in calcium in the last two harvests, in magnesium in all of them and in iron and manganese in the last harvest were also observed.  相似文献   

9.
伴矿景天Sedum plumbizincicola是我国发现和报道的镉/锌(Cd/Zn)超积累植物,在土壤Cd污染修复方面已开展实际应用。由于超积累植物伴矿景天在不同类型土壤下的生长能力以及对镉锌的去除效果存在较大差异,因此需引入强化修复技术为植物修复提供辅助作用。作为大型土壤动物,蚯蚓对植物生长的促进作用已有较多研究,但其对伴矿景天生长和重金属吸取效率的影响则鲜有报道,为探究赤子爱胜蚓对不同类型土壤种植下的伴矿景天是否具有强化修复效应,以及不同类型土壤下的强化修复效应差异,设计以下盆栽试验。通过在常湿淋溶土(Perudic Luvisols)、水耕人为土(Stagnic Anthrosols)、湿润雏形土(Udic Cambisols)3种土壤上种植伴矿景天、引入赤子爱胜蚓Eisenia foetida,探究赤子爱胜蚓对伴矿景天生长及Cd/Zn吸收性的影响。选取Cd有效性较高、修复潜力较大的水耕人为土(Stagnic Anthrosols)进行第二季盆栽修复试验。第一季修复结果显示,在酸性的常湿淋溶土中,添加赤子爱胜蚓使伴矿景天地上部生物量较对照处理增加了106%,Cd和Zn吸收量分别提高了72.0%和36.0%,且蚯蚓结合伴矿景天的处理修复后土壤Cd有效性进一步降低,其余两种土壤仅添加蚯蚓无强化修复效应;第二季结果显示,同时添加秸秆和蚯蚓,可强化中性的水耕人为土上种植的伴矿景天生长,增大植物地上部生物量和Cd/Zn吸收量。结果表明,添加蚯蚓可增强伴矿景天在常湿淋溶土中的养分吸收,提高生物量,以此强化其修复效应。在水耕人为土中,外加秸秆可作为蚯蚓强化伴矿景天修复的配套技术。  相似文献   

10.
The Rakha Cu mines are located at East Singhbhum, Jharkhand, India and their activities ceased in 2001. The tailings (residue) were permanently stored in tailings ponds that require vegetation to reduce their impact on the environment. A pot scale study was conducted to evaluate the suitability of Cymbopogon citratus (DC.) Ex Nees and Vetiveria zizanioides (L.) Nash for the reclamation of Cu tailings and to evaluate the effects of chicken manure and soil-manure mixtures on the revegetation of such tailings. Application of manure and soil-manure mixtures resulted in significant increase in pH, EC, OC, CEC and nutritional status of Cu tailings. The environmentally available and DTPA extractable Cu and Ni concentration reduced in amended tailings, while Mn and Zn content increased significantly. Plants grown on amended tailings accumulated lesser Cu and Ni but higher Mn and Zn. Plant biomass increased proportionally to manure and soil-manure mixtures application rates. Lemon grass produced more biomass than vetiver grass in either of the amended tailings. From the pot experiment, it can be suggested that application of chicken manure @ 5% (w/w) and in combination with lemon grass, could be a viable option for reclamation (phytostabilization) of toxic tailings.  相似文献   

11.
Several species of the Noccaea genus are known for their hyperaccumulation ability especially in the case of Cd, Ni, and Zn. However, ambiguous observations were previously published concerning their accumulation properties for Pb. The Pb accumulation properties of Noccaea rotundifolia, Noccaea montana, and Noccaea jankae hungarica plants were tested in field and pot experiments in soils differing in the mobile pool of Pb, as well as in soilless hydroponic culture. The Pb content in the dry biomass of plant shoots reached up to 54 mg/kg in field conditions and 84 mg/kg in pots regardless of the bioavailable pool of Pb in the pots. The hydroponic experiment showed a stepwise increase in Pb content in plant biomass with increasing Pb concentration in the solution, but the predominant proportion of plant Pb was retained in the roots. Although the hyperaccumulation ability of some of the Noccaea species is widely discussed in the literature, our results are in agreement with those suggesting no Pb hyperaccumulation potential in these plants.  相似文献   

12.
Selecting plant species that can overcome unfavorable conditions and increase the recovery of degraded mined lands remains a challenge. A pot experiment was conducted to evaluate the feasibility of using transplanted tree seedlings for the phytoremediation of lead/zinc and copper mine tailings. One-year-old bare-root of woody species (Rhus chinensis Mill, Quercus acutissima Carruth, Liquidambar formosana Hance, Vitex trifolia Linn. var. simplicifolia Cham, Lespedeza cuneata and Amorpha fruticosa Linn) were transplanted into pots with mine tailings and tested as potential metal-tolerant plants. Seedling survival, plant growth, root trait, nutrient uptake, and metal accumulation and translocation were assessed. The six species grew in both tailings and showed different tolerance level. A. fruticosa was highly tolerant of Zn, Pb and Cu, and grew normally in both tailings. Metal concentrations were higher in the roots than in the shoots of the six species. All of the species had low bioconcentration and translocation factor values. However, R. chinensis and L. formosana had significantly higher translocation factor values for Pb (0.88) and Zn (1.78) than the other species. The nitrogen-fixing species, A. fruticosa, had the highest tolerance and biomass production, implying that it has great potential in the phytoremediation of tailing areas in southern China.  相似文献   

13.
A greenhouse experiment was conducted to investigate the effects of the arbuscular mycorrhizal fungus Funneliformis mosseae on three parameters: Pb, Zn, Cu and Cd accumulation, translocation and plant growth in perennial ryegrass (Lolium perenne), tall fescue (Festuca arundinacea), showy stonecrop (Hylotelephium spectabile) and Purple Heart (Tradescantia pallida). The purpose of this work is to enhance site-specific phytostabilization of lead/zinc mine tailings using native plant species. The results showed that mycorrhizal fungi inoculation significantly increased plant biomass of F. arundinacea, H. spectabile and T. pallida. The Pb, Zn, Cu and Cd concentrations in roots were higher than those in shoots both with and without mycorrhizae, with the exception of the Zn concentration in H. spectabile. Mycorrhizae generally increased metal concentrations in roots and decreased metal concentrations in shoots of L. perenne and F. arundinacea. In addition, it was found that the majority of the bioconcentration and translocation factors were lower than 1 and mycorrhizal fungi inoculation further reduced these values. These results suggest that appropriate plant species inoculated with mycorrhiza might be a potential approach to revegetating mine tailing sites and that H. spectabile is an appropriate plant for phytostabilization of Pb/Zn tailings in northern China due to its higher biomass production and lower metal accumulation in shoots.  相似文献   

14.
A laboratory experiment was carried out to determine the effect of earthworm (Lampito mauritii) activity on mobility of Pb2+ and Zn2+ in the soil (DTPA-extractable) and its composting potential in presence of these metals. Well clitellate earthworms collected from an uncontaminated site were exposed to different concentrations (75, 150, 300mgkg(-1)) of Pb2+ and Zn2+ separately for 30 days. It was observed that the metal burden in the earthworm tissue increased with the increase in metal treatment. L. mauritii elevated the soil pH of all the metal treated beds and lowered the soil C/N ratio in the cast by reducing the organic carbon and fixing additional nitrogen. Earthworm activity significantly increased the availability of phosphorous, potassium and decreased the amount of DTPA-extractable Pb2+ and Zn2+ in the cast, which implies the immobilization of metals in soils. These findings suggest the use of L. mauritii in amelioration of metal contaminated soil.  相似文献   

15.
多花黑麦草在酸化铅锌尾矿上的定植和生长   总被引:6,自引:0,他引:6  
铅锌矿尾矿上设置长喙田菁压青和不压青处理,在此基础上研究多花黑麦草的萌发、生长和重金属积累情况.结果表明,种植长喙田菁改善了尾矿理化性状,尤其是提高了有机质、全N、有效态磷和K的含量.尾矿的强酸性环境(pH<3)是影响黑麦草在其上定植的主要因素.施用石灰可暂时改善尾矿酸度,但实验结束时尾矿酸度几乎完全恢复原状.因此,施用石灰可能只对种子发芽产生作用.大多数情况下多花黑麦草能在尾矿上萌发、生长和定植,并产生较大的生物量(DM1.4~3.2t·km^-2),表现出对酸性尾矿环境的一定的适应性.与未栽培长喙田菁的对照相比,栽培长喙田菁处理以及栽培长喙田菁并压青处理分别使多花黑麦草的生物量提高了4.8%~39.5%和7.7%~139.5%,其中压青处理又比不压青处理提高了2.7%~75.8%.“长喙田菁-多花黑麦草”植被系列是一个成功的铅锌矿尾矿废弃地复垦的先锋阶段  相似文献   

16.
Earthworms increase growth of most plant species through a number of poorly investigated mechanisms. We tested the hypothesis that earthworm modifications of soil structure and the resulting changes in water availability to plants explain this positive effect. Addition of endogeic earthworms Millsonia anomala induced a 40% increase in shoot biomass production and a 13% increase in CO2 assimilation rate of well watered rice plants grown in pots. Conversely, when plants were subjected to water deficit, presence of earthworms had no effect on shoot biomass production and a negative impact on CO2 assimilation rate (−21%). Early stomatal closure in presence of earthworms indicated lower water availability. The hypothesis that earthworms improve plant biomass production through soil physical structure modification was thus rejected. Three hypotheses were tested to explain this decrease in water availability: (i) a decrease in soil water retention capacity, (ii) an increase in evaporation from the soil or/and (iii) an increase in plant transpiration. Results showed that earthworms significantly reduced soil water retention capacity by more than 6%, but had no effect on evaporation rate. Water losses through transpiration were greater in the presence of earthworms when the soil was maintained at field capacity, but this was not the case under drought conditions. This experiment showed that the endogeic compacting earthworm M. anomala significantly increased plant photosynthesis by an undetermined mechanism under well-watered conditions. However, photosynthesis was reduced under drought conditions due to reduced soil water retention capacity.  相似文献   

17.
The effects of chitosan, a fishery waste-based material, and its derivative glutaraldehyde cross-linked chitosan (chitosan-GLA) on metal uptake by Lolium perenne (perennial ryegrass) and Brassica napus (rapeseed) were studied in a greenhouse pot experiment. Metal uptake by perennial ryegrass was highly dependent on the rate of addition of the chitosans. Low application rate (1% w/w) enhanced metal uptake, whereas 10% (w/w) addition decreased metal uptake. It was estimated that chitosan 1% (w/w) treatment could assist perennial ryegrass to remove approximately 3.2 kg Zn/ha and 0.29 kg Pb/ha. For rapeseed, metal uptake was decreased at all rates of application of chitosans. The ammonium acetate extractable metals in soil decreased following application of chitosans and plant growth.  相似文献   

18.
Ants (Hymenoptera: Formicidae) and earthworms (Oligochaeta) are considered ecosystem engineers because they form biogenic structures in the soil that influence resource supply. The objectives of this study were to quantify recovery dynamics of these invertebrate groups across a chronosequence of restored prairies and elucidate whether changes in the abundance and biomass of ants and earthworms were related to key plant and ecosystem properties. We sampled ants and earthworms from cultivated fields, grasslands restored from 1 to 21 years, and native prairie. Ant abundance and biomass peaked between 5 and 8 years of restoration and abundance was 198 times greater than cultivated fields. Earthworm abundance increased linearly across the chronosequence and became representative of native prairie, but all earthworm populations were dominated by European species. Ant abundance and biomass were positively correlated with plant diversity and plant richness, whereas earthworm abundance biomass was only related to surface litter. These results demonstrate that earthworm abundance increases with time since cessation of cultivation and concomitant with prairie establishment, whereas the abundance and biomass of ants are more related to the structure of restored plant communities than time. The dominance of exotic earthworms in these restorations, coupled with their capacity to alter soil properties and processes may represent novel conditions for grassland development.  相似文献   

19.
铅锌矿尾矿上设置长喙田菁压青和不压青处理,在此基础上研究多花黑麦草的萌发、生长和重金属积累情况.结果表明,种植长喙田菁改善了尾矿理化性状,尤其是提高了有机质、全N、有效态磷和K的含量.尾矿的强酸性环境(pH<3)是影响黑麦草在其上定植的主要因素.施用石灰可暂时改善尾矿酸度,但实验结束时尾矿酸度几乎完全恢复原状.因此,施用石灰可能只对种子发芽产生作用.大多数情况下多花黑麦草能在尾矿上萌发、生长和定植,并产生较大的生物量(DM1.4~3.2t·km-2),表现出对酸性尾矿环境的一定的适应性.与未栽培长喙田菁的对照相比,栽培长喙田菁处理以及栽培长喙田菁并压青处理分别使多花黑麦草的生物量提高了4.8%~39.5%和7.7%~139.5%,其中压青处理又比不压青处理提高了2.7%~75.8%.“长喙田菁多花黑麦草”植被系列是一个成功的铅锌矿尾矿废弃地复垦的先锋阶段.  相似文献   

20.
This study assessed the distribution and availability of plant uptake of Zn, Pb, and Cd present in an abandoned mine at Ingurtosu, Sardinia (Italy). Geological matrix samples (sediments, tailings, and soil from a nearby pasture site) and samples of the predominant plant species growing on sediments and tailings were collected. Mean values of total Zn, Pb and Cd were respectively (mg kg(-1)) 7400, 1800, and 56 in tailings, 31000, 2900, and 100 in sediments, and 400, 200, and 8 in the pasture soil. The metal concentration values were high even in the mobile fractions evaluated by simplified sequential extraction (Zn 7485-103, Pb 1015-101, Cd 47-4 mg kg(-1)). Predominant native species were identified and analyzed for heavy metal content in various tissues. Among the plant species investigated Inula viscosa, Euphorbia dendroides, and Poa annua showed the highest metal concentration in aboveground biomass (mean average of Zn: 1680, 1020, 1400; Pb: 420, 240, 80; Cd: 28, 7, 19 mg kg(-1), respectively). The above mentioned species and A. donax could be good candidates for a phytoextraction procedure. Cistus salvifolius and Helichrysum italicus generally showed behavior more suitable for a phytostabilizer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号