首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Long-term pattern of alternative stable states in two shallow eutrophic lakes   总被引:36,自引:1,他引:35  
  • 1 Lake Tåkern and Lake Krankesjön, two moderately eutrophic, shallow lakes in southern Sweden, have during the past few decades shifted several times between a clear-water state with abundant submerged vegetation and a turbid state with high phytoplankton densities.
  • 2 Between 1985 and 1991, Lake Takern was in a clear state, whereas Lake Krankesjon shifted from a turbid to a clear state. During this shift, the area covered by submerged macrophytes expanded, followed by an increase in water transparency, plant-associated macroinvertebrates, and piscivorous fish. Nutrient concentrations, phytoplankton biomass and abundance of planktonic cladocerans decreased.
  • 3 In both lakes, water level fluctuations were the most common factor causing shifts, affecting submerged macrophytes either through changes in light availability or through catastrophic events such as dry-out or mechanical damage by ice movement.
  • 4 Our data give further support for the existence of two alternative stable states in shallow lakes maintained by self-stabilizing feedback mechanisms.
  相似文献   

2.
Jeppesen  E.  Jensen  J. P.  Kristensen  P.  Søndergaard  M.  Mortensen  E.  Sortkjær  O.  Olrik  K. 《Hydrobiologia》1990,(1):219-227
In order to evaluate short-term and long-term effects of fish manipulation in shallow, eutrophic lakes, empirical studies on relationships between lake water concentration of total phosphorus (P) and the occurrence of phytoplankton, submerged macrophytes and fish in Danish lakes are combined with results from three whole-lake fish manipulation experiments. After removal of less than 80 per cent of the planktivorous fish stock a short-term trophic cascade was obtained in the nutrient regimes, where large cyanobacteria were not strongly dominant and persistent. In shallow Danish lakes cyanobacteria were the most often dominating phytoplankton class in the P-range between 200 and 1 000μg P l−1. Long-term effects are suggested to be closely related to the ability of the lake to establish a permanent and wide distribution of submerged macrophytes and to create self-perpetuating increases in the ratio of piscivorous to planktivorous fish. The maximum depth at which submerged macrophytes occurred, decreased exponentially with increasing P concentration. Submerged macrophytes were absent in lakes>10 ha and with P levels above 250–300μg P l−1, but still abundant in some lakes<3 ha at 650μg P l−1. Lakes with high cover of submerged macrophytes showed higher transparencies than lakes with low cover aboveca. 50μg P l−1. These results support the alternative stable state hypothesis (clear or turbid water stages). Planktivorous fish>10 cm numerically contributed more than 80 per cent of the total planktivorous and piscivorous fish (>10 cm) in the pelagical of lakes with concentrations above 100μg P l−1. Below this threshold level the proportion of planktivores decreased markedly toca. 50 per cent at 22μg P l−1. The extent of the shift in depth colonization of submerged macrophytes and fish stock composition in the three whole-lake fish manipulations follows closely the predictions from the relationships derived from the empirical study. We conclude that a long-term effect of a reduction in the density of planktivorous fish can be expected only when the external phosphorus loading is reduced to below 0.5–2.0 g m−2 y−1. This loading is equivalent to an in-lake summer concentration below 80–150μg P l−1. Furthermore, fish manipulation as a restoration tool seems most efficient in shallow lakes.  相似文献   

3.
Synopsis Koaro, Galaxias brevipinnis, were once the only fish present in Lake Rotopounamu but, after a comprehensive survey in 1990, none were found in the lake or its tributary streams. Introduced native fish, specifically smelt, Retropinna retropinna, and the common bully, Gobiomorphus cotidianus, now occur in this lake. As koaro co-exist with bullies in other lakes, but have declined in landlocked lakes containing smelt, the disappearance of koaro in Lake Rotopounamu is attributed to the introduction of smelt alone. Interspecific competition for food between 0 + year old koaro and smelt, combined with predation by 2 + year old smelt on koaro larvae, are thought to be responsible. Such a mechanism would be consistent with theoretical predictions of predator-prey regulation systems within same chain food webs. Rainbow trout, Oncorhynchus mykiss, which were introduced into a number of local lakes before smelt, and which preyed on the koaro, have been blamed for the decline of the koaro populations. However, the disappearance of koaro in Lake Rotopounamu shows that smelt can reduce koaro populations independently of trout predation.  相似文献   

4.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

5.
Responses to food web manipulation in a shallow waterfowl lake   总被引:4,自引:4,他引:0  
Hanson  Mark A.  Butler  Malcolm G. 《Hydrobiologia》1994,275(1):457-466
The effects of fish stock reduction have been studies in 3 Dutch lakes (Lake Zwemlust, Lake Bleiswijkse Zoom and Lake Noorddiep) and 1 Danish lake (Lake Væng) during 4–5 years. A general response id described. The fish stock reduction led in general to a low fish stock, low chlorophyii-a, high transparency and high abunuance of macrophytes. Large Daphnia became abundant, but their density decreased, due to food limitation and predation by fish. The total nitrogen concentration became low due to N-uptake by macrophytes and enhanced denitrification. In Lake Bleiswijkse Zoom the water transparency deteriorated and the clear water state was not stable. The fish stock increased and the production of young fish in summer was high. lear water occurred only in spring. Large daphnids were absent in summer and the macrophytes decreased.In Lake Zwemlust, Lake Væng and Lake Noorddiep the water remained clear during the first five years. In summer of the sixth year (1992) transparency decreased in Lake Zwemlust (with high P-concentration of 1.0 mg P l-1). Also in Lake Væng (with a low nutrient concentration of 0.15 mg P.-1) a short term turbid stage (1.5 month) occurred in summer 1992 after a sudden collapse of the macrophytes. Deterioration of the water quality seems to start in summer and seems related to a collapse in macrophytes. At a low planktivorous fishstock (e.g. Lake Væng)thhe duration of the turbid state is shorter. than in presence of a high planktivorous fish biomass (e.g. Lake Zwemlust, and later years of Lake Bleiswijkse Zoom).  相似文献   

6.
1. Periods with clear water and abundant submerged vegetation have alternated with periods of turbid water and sparse vegetation during recent decades in Lake Tåkern and Lake Krankesjön, two shallow, calcium-rich, moderately eutrophic lakes in southern Sweden, Between 1983 and 1991, submerged vegetation (predominant species: Chara tomentosa, Nitellopsis obtusa, Myriophyllum spicatum) covered about 50% of the open lake area in Lake Tåkern. In Lake Krankesjön, submerged vegetation was sparse during 1983–84, but increased continuously in the following years and covered about 50% of the open lake area by 1990 and 1991. Potamogeton pectinatus was the first species to expand in Lake Krankesjön, but was later replaced by C. tomentosa. 2. During 1983–84, turbidity was high in Lake Krankesjön, which indicated that submerged macrophytes were light-limited. During 1986–91, there was a negative correlation between the areal coverage of charophytes and angiosperms, indicating that competition for space had become an important limiting factor. The same negative correlation was found in Lake Tåkern for 1983–91. 3. Charophytes had much higher biomass per unit area than angiosperms in both lakes and reduced water movement considerably. This was probably one reason for the increase of water transparency in Lake Krankesjön during the spatial expansion of these plants. Charophytes also stored large amounts of phosphorus and nitrogen, Charophytes are probably superior competitors for both space and nutrients and thus have competitive advantage over angiosperms in this lake type. 4. In Lake Krankesjön, both P. pectinatus and C. tomentosa were negatively affected by high water level during the growing period. Total disappearance of submerged vegetation occurred in both lakes after catastrophic events (dry-out during summer or mechanical damage by ice) caused by extremely low water level. Changes in water level are thus one of the most important reasons for among-year fluctuations in areal coverage of submerged macrophytes in these lakes.  相似文献   

7.
Meijer  M. -L.  de Haan  M. W.  Breukelaar  A. W.  Buiteveld  H. 《Hydrobiologia》1990,200(1):303-315
Experimental reduction of the fish stock in two shallow lakes in The Netherlands shows that such a biomanipulation can lead to a substantial increase in transparency, which is caused not only by a decrease in algal biomass, but also by a decrease in resuspended sediment and detritus. A model was developed to describe transparency in relation to chlorophyll-a and inorganic, suspended solids (resuspended sediment). With the use of this model it is shown that more than 50% of the turbidity in these shallow lakes before biomanipulation was determined by the sediment resuspension, mainly caused by benthivorous fish. Another analysis reveals that the concentration of inorganic suspended solids and the biomass of benthivorous fish are positively correlated, and that even in the absence of algae a benthivorous fish biomass of 600 kg ha−1 can reduce the Secchi depth to 0.4 m in shallow lakes. In addition, it is argued that algal biomass is also indirectly reduced by removal of benthivorous fish. Reduction of benthivorous fish is necessary to get macrophytes and macrophytes seem to be necessary to keep the algal biomass low in nutrient-rich shallow lakes. It is concluded that the impact of benthivorous fish on the turbidity can be large, especially in shallow lakes.  相似文献   

8.
Shallow lakes respond in different ways to changes in nutrient loading (nitrogen, phosphorus). These lakes may be in two different states: turbid, dominated by phytoplankton, and clear, dominated by submerged macrophytes. Both states are self-stabilizing; a shift from turbid to clear occurs at much lower nutrient loading than a shift in the opposite direction. These critical loading levels vary among lakes and are dependent on morphological, biological, and lake management factors. This paper focuses on the role of wetland zones. Several processes are important: transport and settling of suspended solids, denitrification, nutrient uptake by marsh vegetation (increasing nutrient retention), and improvement of habitat conditions for predatory fish. A conceptual model of a lake with surrounding reed marsh was made, including these relations. The lake-part of this model consists of an existing lake model named PCLake. The relative area of lake and marsh can be varied. Model calculations revealed that nutrient concentrations are lowered by the presence of a marsh area, and that the critical loading level for a shift to clear water is increased. This happens only if the mixing rate of the lake and marsh water is adequate. In general, the relative marsh area should be quite large in order to have a substantial effect. Export of nutrients can be enhanced by harvesting of reed vegetation. Optimal predatory fish stock contributes to water quality improvement, but only if combined with favourable loading and physical conditions. Within limits, the presence of a wetland zone around lakes may thus increase the ability of lakes to cope with nutrients and enhance restoration. Validation of the conclusions in real lakes is recommended, a task hampered by the fact that, in the Netherlands, many wetland zones have disappeared in the past.  相似文献   

9.
10.
Ozimek  Teresa  Gulati  Ramesh D.  van Donk  Ellen 《Hydrobiologia》1990,200(1):399-407
Lake Zwemlust (area 1.5 ha, Zm 1.5 m) has been the object of an extensive limnological study since its biomanipulation involving removal of planktivorous fish (bream) in March 1987 and emptying of the lake. In the subsequent summer period of 1987 the Secchi depth increased to the lake bottom (2.5 m), compared withca 30 cm in the earlier summers. The reaction of submerged macrophytes to improving under-water light climate was rapid. In summer 1987, besides the introducedChara globularis, 5 species of submerged macrophytes occurred and colonized 10% of the lake area. In 1988 and 1989 only quantitative changes were observed; new species did not appear, but the area colonized by macrophytes increased by 7 and 10 times, respectively.Elodea nuttallii was dominant among the macrophytes andMougeotia sp. among the filamentous green algae. Their abundance, contributed to transient N-limination of phytoplankton causing a persistent clear water phase in 1988 and 1989, unlike in 1987 when zooplankton grazing contributed chiefly to the water clarity. Laboratory bioassays on macrophytes confirmed nitrogen limitation.  相似文献   

11.
We analyzed experimentally the relative contribution of phytoplankton and periphyton in two shallow lakes from the Pampa Plain (Argentina) that represent opposite scenarios according to the alternative states hypothesis for shallow lakes: a clear lake with submerged macrophytes, and a turbid lake with high phytoplankton biomass. To study the temporal changes of both microalgal communities under such contrasting conditions, we placed enclosures in the littoral zone of each lake, including natural phytoplankton and artificial substrata, half previously colonized by periphyton until a mature stage and half clean to analyze periphyton colonization. In the clear vegetated shallow lake, periphyton chlorophyll a concentrations were 3–6 times higher than those of the phytoplankton community. In contrast, phytoplankton chlorophyll a concentrations were 76–1,325 times higher than those of periphyton in the turbid lake. Here, under light limitation conditions, the colonization of the periphyton was significantly lower than in the clear lake. Our results indicate that in turbid shallow lakes, the light limitation caused by phytoplankton determines a low periphyton biomass dominated by heterotrophic components. In clear vegetated shallow lakes, where nitrogen limitation probably occurs, periphyton may develop higher biomass, most likely due to their higher efficiency in nutrient recycling.  相似文献   

12.
13.
Several studies have shown that submerged macrophytes provide a refuge for zooplankton against fish predation, whereas the role of emergent and floating-leaved species, which are often dominant in eutrophic turbid lakes, is far less investigated. Zooplankton density in open water and amongst emergent and floating-leaved vegetation was monitored in a small, eutrophic lake (Frederiksborg Slotssø) in Denmark during July–October 2006. Emergent and floating-leaved macrophytes harboured significantly higher densities of pelagic as well as plant-associated zooplankton species, compared to the open water, even during periods where the predation pressure was presumably high (during the recruitment of 0+ fish fry). Zooplankton abundance in open water and among vegetation exhibited low values in July and peaked in August. Bosmina and Ceriodaphnia dominated the zooplankton community in the littoral vegetated areas (up to 4,400 ind l?1 among Phragmites australis and 11,000 ind l?1 between Polygonum amphibium stands), whereas the dominant species in the pelagic were Daphnia (up to 67 ind l?1) and Cyclops (41 ind l?1). The zooplankton density pattern observed was probably a consequence of concomitant modifications in the predation pressure, refuge availability and concentration of cyanobacteria in the lake. It is suggested that emergent and floating-leaved macrophytes may play an important role in enhancing water clarity due to increased grazing pressure by zooplankton migrating into the plant stands. As a consequence, especially in turbid lakes, the ecological role of these functional types of vegetation, and not merely that of submerged macrophyte species, should be taken into consideration.  相似文献   

14.
In shallow temperate lakes many ecological processes depend on submerged macrophytes. In subtropical and tropical lakes, free-floating macrophytes may be equally or more important. We tested the hypothesis that different macrophyte growth forms would be linked with different bottom-up and top-down mechanisms in out-competing phytoplankton. We compared experimentally the effects of submerged and free-floating plants on water chemistry, phytoplankton biomass, zooplankton and fish community structure in a shallow hypertrophic lake (Lake Rodó, 34°55S 56°10W, Uruguay). Except for the retention of suspended solids, we found no other significant bottom-up process connected with either Eichhornia crassipes or Potamogeton pectinatus. Free-floating plants had a lower abundance of medium-sized zooplankton than any other microhabitat and submerged plants were apparently preferred by microcrustaceans. Fish showed a differential habitat use according to species, size-class and feeding habits. Dominant omnivore-planktivores, particularly the smallest size classes, preferred submerged plants. In contrast, omnivore-piscivores were significantly associated with free-floating plants. The density of omnivorous-planktivorous fish, by size class, significantly explained the distribution of medium-sized zooplankton, the high number of size 0 fish being the main factor. The abiotic environment and the structure of the zooplankton community explained little of the fish distribution pattern. Our results suggest that bottom-up effects of free-floating plants are weak when cover is low or intermediate. Top-down effects are complex, as effects on zooplankton and fish communities seem contradictory. The low piscivores:planktivores ratio in all microhabitats suggests, however, that cascading effects on phytoplankton through free-floating plant impacts on piscivorous fish are unlikely to be strong.  相似文献   

15.
Nurminen  Leena  Horppila  Jukka  Lappalainen  Jyrki  Malinen  Tommi 《Hydrobiologia》2003,506(1-3):511-518

The role of rudd (Scardinius erythrophthalmus) herbivory was studied in Kirkkojärvi, a shallow and turbid basin in Lake Hiidenvesi, Finland. The submerged species dominating in the rudd diets were Potamogeton obtusifolius, Ranunculus circinatus, Sparganium emersum, bryophytes, and filamentous algae. Plant consumption estimated with bioenergetics modelling increased with fish age, being highest in late summer concomitant with the macrophyte biomass peak. Depending on the age structure, a rudd biomass of 20 kg ha?1 consumes 18–23 kg of macrophytes ha?1 a?1, while a rudd biomass of 100 kg ha?1 results in plant consumption of 92–115 kg ha?1 a?1. Although, rudd seemed to feed rather unselectively on suitable-sized and edible plants, some species abundant in the littoral, such as Myriophyllum verticillatum and pleustophytic Ceratophyllum demersum, were not found in rudd guts, indicating selective plant consumption. In Kirkkojärvi, selective grazing by rudd and increased turbidity and high nutrient levels partly caused by bottom dwelling cyprinid fish, may promote the inedible and pleustophytic macrophytes, which have increased in Kirkkojärvi during the past decades.

  相似文献   

16.
We describe the limnological changes between 1989 and 2006 in an urban, shallow lake, Laguna Alalay, located in the Andean valley of Cochabamba (Bolivia). Until 1960, water diversion to the lake was used to lower the inundation risk of Cochabamba city. In the 1980s and 1990s, the high waterfowl diversity and recreational services provided by the lake increased its conservation value. However, the population increase and the discharge of wastewater rich in nutrients increased eutrophication, and the lake became characterized by an annual alternation of submerged macrophytes and phytoplankton. The main aim of the present study is to analyze the response of the lake to manipulations implemented by local authorities: (a) sediment removal and accidental introduction of the exotic fish species Odontesthes bonariensis in 1997 and (b) manual mass removal of floating macrophytes during 2004–2006. The sediment removal and species introduction had several unpredictable consequences for the functioning of the lake, namely the transition to a permanent turbid water state and the persistent dominance of floating macrophytes. A general conclusion of our study is that any lake recovery measures in Bolivia should consider not only ecological, but also socio-economic and political aspects. Taking these into account, restoration of the submerged macrophyte-dominated state may not be that universally desirable as is widely held.  相似文献   

17.
During the 1950s, the submerged vegetation of shallow lakes in north‐eastern Germany was dominated by nutrient tolerant species, with Ceratophyllum demersum and Myriophyllum sp. being most common. Almost one third of 300 investigated lakes had already lost their submerged macrophytes at that time. Very shallow lakes showed either high or low macrophyte abundance. Increasing depth resulted in medium macrophyte abundances, which may contribute to the stabilisation of local or temporary clearwater states. Forty years later, the percentage of lakes without macrophytes had dramatically increased. Between 55 and 85% of the investigated lakes showed a low abundance. The decline was most pronounced in very shallow lakes. The majority of the investigated lakes showed summer TP concentrations below 100 μg L–1, but no colonisation by submerged macrophytes, which indicates a resilience against re‐colonisation.  相似文献   

18.
The Waitaki River system in the South Island of New Zealand includes three large glacially-formed headwater lakes, Tekapo, Pukaki and Ohau, which drain into the manmade Lake Benmore. Phytoplankton periodicity was followed from December 1975 to January 1980 as part of a study investigating possible changes in these lakes as a consequence of hydroelectric development. The phytoplankton was highly dominated by diatoms, e.g., Diatoma elongatum, Cyclotella stelligera, Asterionella formosa, and Synedra acus, but in lakes Ohau and Benmore populations of green algae occasionally developed. In all four lakes seasonal phytoplankton periodicity was observed with maximum biomass in spring and summer. In Lake Tekapo, the first lake in the chain, maximum biomass did not exceed 300 mg m–3, but in the very turbid Lake Pukaki the maximum summer biomass ranged between 300 and 800 mg m–3. In Lake Ohau, the least turbid lake, maximum biomass was around 1 000 mg m–3. In the newly created Lake Benmore periodicity was less evident and summer maxima reached over 1 500 mg m–3. The phytoplankton periodicity in these lakes is greatly influenced by seasonal patterns of turbidity from inflowing glacial silt.  相似文献   

19.
1. The impact of changes in submerged macrophyte abundance on fish-zooplankton-phytoplankton interactions was studied in eighteen large-scale (100 m2) enclosures in a shallow eutrophic take. The submerged macrophytes comprised Potamategon pectinatus L., P. pusillus L. and Callitriche hermaphroditica L. while the fish fry stock comprised three-spined sticklebacks, Gasterosteus acuteatus L., and roach, Rutilus rutilus L. 2. In the absence of macrophytes zooplankton biomass was low and dominated by cyclopoid copepods regardless of fish density, while the phytoplankton biovolume was high (up to 38 mm31) and dominated by small pennate diatoms and chlorococcales. When the lake volume infested by submerged macrophytes (PVI) exceeded 15–20% and the fish density was below a catch per unit effort (CPUE) of 10 (approx. 2 fry m?2), planktonic cladoceran biomass was high and dominated by relatively large-sized specimens, while the phytoplankton biovolume was low and dominated by small fast-growing flagellates. At higher fish densities, zooplankton biomass and average biomass of cladocerans decreased and a shift to cyclopoids occurred, while phytoplankton biovolume increased markedly and became dominated by cyanophytes and dinoflagellates. 3. Stepwise multiple linear regressions on log-transformed data revealed that the biomass of Daphnia, Bosmina, Ceriodaphmia and Chydorus were all significantly positively related to PVI and negatively to the abundance of fish or PVI x fish. The average individual biomass of cladocerans was negatively related to fish, but unrelated to PVI. Calculated zooplankton grazing pressure on phytoplankton was positively related to PVI and negatively to PVI x fish. Accordingly the phytoplankton biovolume was negatively related to PVI and to PVI x zooplankton biomass. Cyanophytes and chryptophytes (% of biomass) were positively and Chlorococcales and diatoms negatively related to PVI, while cyanophytes and Chlorococcales were negatively related to PVI x zooplankton biomass. In contrast diatoms and cryptophytes were positively related to the zooplankton biomass or PVI x zooplankton. 4. The results suggest that fish predation has less impact on the zooplankton community in the more structured environment of macrophyte beds, particularly when the PVI exceeds 15–20%. They further suggest that the refuge capacity of macrophytes decreases markedly with increasing fish density (in our study above approximately 10 CPUE). Provided that the density of planktivorous fish is not high, even small improvements in submerged macrophyte abundance may have a substantial positive impact on the zooplankton, leading to a lower phytoplankton biovolume and higher water transparency. However, at high fish densities the refuge effect seems low and no major zooplankton mediated effects of enhanced growth of macrophytes are to be expected.  相似文献   

20.
M. Beklioglu  O. Ince  I. Tuzun 《Hydrobiologia》2003,490(1-3):93-105
Nutrient loading in lakes is recognized as a serious threat to water quality. Over 25 years of raw sewage effluent discharge shifted Lake Eymir from a state dominated by submerged plants to a turbid water state. Successful effluent diversion undertaken in 1995 achieved 88% and 95% reductions in the areal loading of total phosphorus (TP) and dissolved inorganic nitrogen (DIN), respectively. Furthermore, the reduced load of TP was very close to the suggested threshold areal load (0.6 g m–2 yr–1) to attain recovery. Even though diversion also reduced the in-lake TP level by half, the poor water clarity and low submerged plant coverage (112 ± 43 cm and 2.5% coverage of the lake total surface area, respectively) persisted. Domination of the fish stock by planktivorous tench (Tinca tinca L.) and the benthivorous common carp (Cyprinus carpio L.) (66 ± 0.7 and 31 ± 1 kg CPUE, respectively) appeared to perpetuate the poor water condition. A substantial fish removal effort over 1 year achieved a 57% reduction in the fish stock which led to a 2.5-fold increase in Secchi disk transparency. This increase occurred largely because of a 4.5-fold decrease in the inorganic suspended solid concentration, and to some extent, a decrease in chlorophyll-a concentration. A strong top-down effect of fish on the large-sized grazers was evident as density and the body size of Daphnia pulexde Geer increased significantly after the fish removal. Even though the spring and annual euphotic depths occurred well above the maximum and mean depths of the lake, respectively, re-development of submerged plants was poor (6.2% coverage). A weak re-establishment of submerged plants might be attributed to an insufficiently viable seed bank, inappropriate chemical conditions of the sediment (severe oxygen deficiency), or to the high coot (Fulica atra L.) density. However, the top-down effect of fish appeared to be of great importance in determining water clarity, and in turn, conditions for submerged plant development in a warm temperate lake as recorded in the north temperate lakes. Furthermore, this study provides evidence for the importance of top-down control of fish, which, in turn, can be effectively utilised as a restoration strategy in warm-temperate lakes as well. More applications, along with long monitoring programs, are needed to develop a better understanding about requirements for biomanipulation success in this climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号