首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
tRNA saturation experiments were performed with ribosomal subunits from the extreme halophilic archaebacterium Halobacterium halobium. In the presence of poly(U) the 30S subunit could bind equally well one AcPhe-tRNAPhe, Phe-tRNAPhe, or deacylated tRNAPhe molecule, respectively. Binding experiments with a mixture of two differently labeled tRNA species revealed that all three kinds of tRNA bound to one and the same binding site on the 30S subunit. Poly(U) dependent binding to the 50S subunit was insignificant for AcPhe-tRNA and Phe-tRNA. In the absence of poly(U) both AcPhe-tRNAPhe and Phe-tRNAPhe showed no significant binding to either subunit, whereas the binding of deacylated tRNAPhe could not be clearly determined. These results are in good agreement with those obtained from ribosomal subunits of the eubacterium Escherichia coli.  相似文献   

2.
Studies of Escherichia coli 30S ribosomal subunit assembly have revealed a hierarchical and cooperative association of ribosomal proteins with 16S ribosomal RNA; these results have been used to compile an in vitro 30S subunit assembly map. In single protein addition and omission studies, ribosomal protein S13 was shown to be dependent on the prior association of ribosomal protein S20 for binding to the ribonucleoprotein particle. While the overwhelming majority of interactions revealed in the assembly map are consistent with additional data, the dependency of S13 on S20 is not. Structural studies position S13 in the head of the 30S subunit > 100 A away from S20, which resides near the bottom of the body of the 30S subunit. All of the proteins that reside in the head of the 30S subunit, except S13, have been shown to be part of the S7 assembly branch, that is, they all depend on S7 for association with the assembling 30S subunit. Given these observations, the assembly requirements for S13 were investigated using base-specific chemical footprinting and primer extension analysis. These studies reveal that S13 can bind to 16S rRNA in the presence of S7, but not S20. Additionally, interaction between S13 and other members of the S7 assembly branch have been observed. These results link S13 to the 3' major domain family of proteins, and the S7 assembly branch, placing S13 in a new location in the 30S subunit assembly map where its position is in accordance with much biochemical and structural data.  相似文献   

3.
Nature of the ribosomal binding site for initiation factor 3 (IF-3)   总被引:2,自引:0,他引:2  
In vitro labelled IF-3 binds to both 16S and 23S rRNA but while one molecule of IF-3 binds to each 30S particle, binding to 50S particles is negligible. If proteins are removed by LiCl or CsCl treatment from either ribosomal subunit, however, binding specificity is lost and new “binding sites” appear on both ribosomal particles. Controlled RNase digestion of the 30S subunits does not cause the loss of any r-protein while controlled trypsin digestion results in the loss or degradation of several r-proteins; compared to the Phe-tRNA binding site, the binding site of IF-3 seems to be more sensitive to RNase than to trypsin digestion. Antibodies against single 30S r-proteins, which inhibit other ribosomal functions, do not prevent the binding of IF-3. RNA-binding dyes (acridine orange and pyronine) inhibit the binding of IF-3 to 30S ribosomal subunits. It is proposed that a segment of the 16S rRNA provides the binding site for IF-3 and that r-proteins confer specificity, restricting the number of available “binding sites”, and stabilize the 30S-IF-3 interaction.  相似文献   

4.
We present a detailed analysis of the protein structures in the 30 S ribosomal subunit from Thermus thermophilus, and their interactions with 16 S RNA based on a crystal structure at 3.05 A resolution. With 20 different polypeptide chains, the 30 S subunit adds significantly to our data base of RNA structure and protein-RNA interactions. In addition to globular domains, many of the proteins have long, extended regions, either in the termini or in internal loops, which make extensive contact to the RNA component and are involved in stabilizing RNA tertiary structure. Many ribosomal proteins share similar alpha+beta sandwich folds, but we show that the topology of this domain varies considerably, as do the ways in which the proteins interact with RNA. Analysis of the protein-RNA interactions in the context of ribosomal assembly shows that the primary binders are globular proteins that bind at RNA multihelix junctions, whereas proteins with long extensions assemble later. We attempt to correlate the structure with a large body of biochemical and genetic data on the 30 S subunit.  相似文献   

5.
Ribosomes are composed of RNA and protein molecules that associate together to form a supramolecular machine responsible for protein biosynthesis. Detailed information about the structure of the ribosome has come from the recent X-ray crystal structures of the ribosome and the ribosomal subunits. However, the molecular interactions between the rRNAs and the r-proteins that occur during the intermediate steps of ribosome assembly are poorly understood. Here we describe a modification-interference approach to identify nonbridging phosphate oxygens within 16S rRNA that are important for the in vitro assembly of the Escherichia coli 30S small ribosomal subunit and for its association with the 50S large ribosomal subunit. The 30S small subunit was reconstituted from phosphorothioate-substituted 16S rRNA and small subunit proteins. Active 30S subunits were selected by their ability to bind to the 50S large subunit and form 70S ribosomes. Analysis of the selected population shows that phosphate oxygens at specific positions in the 16S rRNA are important for either subunit assembly or for binding to the 50S subunit. The X-ray crystallographic structures of the 30S subunit suggest that some of these phosphate oxygens participate in r-protein binding, coordination of metal ions, or for the formation of intersubunit bridges in the mature 30S subunit. Interestingly, however, several of the phosphate oxygens identified in this study do not participate in any interaction in the mature 30S subunit, suggesting that they play a role in the early steps of the 30S subunit assembly.  相似文献   

6.
Summary Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apirion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974).Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes.Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30s ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur.Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.  相似文献   

7.
Assembly of 30S ribosomal subunits from Escherichia coli has been dissected in detail using an in vitro system. Such studies have allowed characterization of the role for ribosomal protein S15 in the hierarchical assembly of 30S subunits; S15 is a primary binding protein that orchestrates the assembly of ribosomal proteins S6, S11, S18, and S21 with the central domain of 16S ribosomal RNA to form the platform of the 30S subunit. In vitro S15 is the sole primary binding protein in this cascade, performing a critical role during assembly of these four proteins. To investigate the role of S15 in vivo, the essential nature of rpsO, the gene encoding S15, was examined. Surprisingly, E. coli with an in-frame deletion of rpsO are viable, although at 37 degrees C this DeltarpsO strain has an exaggerated doubling time compared to its parental strain. In the absence of S15, the remaining four platform proteins are assembled into ribosomes in vivo, and the overall architecture of the 30S subunits formed in the DeltarpsO strain at 37 degrees C is not altered. Nonetheless, 30S subunits lacking S15 appear to be somewhat defective in subunit association in vivo and in vitro. In addition, this strain is cold sensitive, displaying a marked ribosome biogenesis defect at low temperature, suggesting that under nonideal conditions S15 is critical for assembly. The viability of this strain indicates that in vivo functional populations of 70S ribosomes must form in the absence of S15 and that 30S subunit assembly has a plasicity that has not previously been revealed or characterized.  相似文献   

8.
R C Marsh  A Parmeggiani 《Biochemistry》1977,16(7):1278-1283
The role of the 30S ribosomal subunit in the formation of the complex ribosome-guanine nucleotide-elongation factor G (EF-G) has been examined in a great variety of experimental conditions. Our results show that at a large molar excess of EF-G or high concentrations of GTP or GDP, 50S ribosomal subunits are as active alone as with 30S subunits in the formation of the complex, while at lower concentrations of nucleotide or lower amounts of EF-G, addition of the 30S subunit stimulates greatly the reaction. The presence of the 30S ribosomal subunit can also moderate the inhibition of the 50S subunit activity that occurs by increasing moderately the concentrations of K+ and NH4+, and extends upward the concentration range of these monovalent cations in which complex formation is at maximum. The Mg2+ requirement for complex formation with the 50S subunit appears to be slightly less than that needed for association of the 30S and 50S ribosomal subunits. Measurement of the reaction rate constants of the complex formation shows that the 30S ribosomal subunit has only little effect on the initial association of EF-G and guanine nucleotide with the 50S subunit; but once this complex is formed, the 30S subunit increases its stability from 10- to 18-fold. It is concluded that stabilization of the interaction between EF-G and ribosome is a major function of the 30S subunit in the ribosome-EF-G GTPase reaction.  相似文献   

9.
Ion-exchange high-performance liquid chromatography was applied to the separation of proteins from the 30S ribosomal subunit. The proteins present in each peak have been identified by polyacrylamide gel electrophoresis analysis. The purification has been made using either unmodified proteins or proteins specifically labeled at their SH group. The results clearly show that the method can be used to purify and identify ribosomal proteins.  相似文献   

10.
Previous studies have shown that the 30S ribosomal subunit of Escherichia coli can be reconstituted in vitro from individually purified ribosomal proteins and 16S ribosomal RNA, which were isolated from natural 30S subunits. We have developed a 30S subunit reconstitution system that uses only recombinant ribosomal protein components. The genes encoding E. coli ribosomal proteins S2-S21 were cloned, and all twenty of the individual proteins were overexpressed and purified. Reconstitution, following standard procedures, using the complete set of recombinant proteins and purified 16S ribosomal RNA is highly inefficient. Efficient reconstitution of 30S subunits using these components requires sequential addition of proteins, following either the 30S subunit assembly map (Mizushima & Nomura, 1970, Nature 226:1214-1218; Held et al., 1974, J Biol Chem 249:3103-3111) or following the order of protein assembly predicted from in vitro assembly kinetics (Powers et al., 1993, J MoI Biol 232:362-374). In the first procedure, the proteins were divided into three groups, Group I (S4, S7, S8, S15, S17, and S20), Group II (S5, S6, S9, Sll, S12, S13, S16, S18, and S19), and Group III (S2, S3, S10, S14, and S21), which were sequentially added to 16S rRNA with a 20 min incubation at 42 degrees C following the addition of each group. In the second procedure, the proteins were divided into Group I (S4, S6, S11, S15, S16, S17, S18, and S20), Group II (S7, S8, S9, S13, and S19), Group II' (S5 and S12) and Group III (S2, S3, S10, S14, and S21). Similarly efficient reconstitution is observed whether the proteins are grouped according to the assembly map or according to the results of in vitro 30S subunit assembly kinetics. Although reconstitution of 30S subunits using the recombinant proteins is slightly less efficient than reconstitution using a mixture of total proteins isolated from 30S subunits, it is much more efficient than reconstitution using proteins that were individually isolated from ribosomes. Particles reconstituted from the recombinant proteins sediment at 30S in sucrose gradients, bind tRNA in a template-dependent manner, and associate with 50S subunits to form 70S ribosomes that are active in poly(U)-directed polyphenylalanine synthesis. Both the protein composition and the dimethyl sulfate modification pattern of 16S ribosomal RNA are similar for 30S subunits reconstituted with either recombinant proteins or proteins isolated as a mixture from ribosomal subunits as well as for natural 30S subunits.  相似文献   

11.
This work describes the isolation of mutations in infC, the structural gene for IF3, using different genetic screens. Among 21 mutants characterised, seven were shown to produce stable variant IF3 proteins unable to fully complement a strain carrying a chromosomal deletion of the infC gene. The mutants were also shown to be unable to normally discriminate against several non-canonical initiation codons such as AUU and ACG. The two mutants with the strongest complementation or discrimination defects carry changes in the C-terminal domain of IF3, which is responsible for the binding of the factor to the 30 S ribosomal subunit. We show that the first mutant has an expected decreased but the second an unexpected increased capacity to bind the 30 S subunit. The in vivo defects of the second mutant are explained by its capacity to bind unspecifically to other targets, as shown by its increased affinity for the 50 S subunit, which is normally not recognised by the factor. Interestingly, this mutant corresponds to a change of an acidic residue that might play a negative discriminatory role in preventing interactions with non-cognate RNAs, as has been reported for acidic residues of aminoacyl-tRNA synthetases shown to be involved in tRNA recognition.  相似文献   

12.
Ribosomal proteins play an important role in p53 activation in response to nucleolar stress. Multiple ribosomal proteins, including L5, L11, L23, and S7, have been shown to bind to and inhibit MDM2, leading to p53 activation. However, it is not clear whether ribosomal protein regulation of MDM2 is specific to some, but not all ribosomal proteins. Here we show that L29 and L30, two ribosomal proteins from the 60 S ribosomal subunit, do not bind to MDM2 and do not inhibit MDM2-mediated p53 suppression, indicating that the ribosomal protein regulation of the MDM2-p53 feedback loop is specific. Interestingly, direct perturbation of the 60 S ribosomal biogenesis by knocking down either L29 or L30 drastically induced the level and activity of p53, leading to p53-depedent cell cycle arrest. This p53 activation was drastically inhibited by knockdown of L11 or L5. Consistently, knockdown of L29 or L30 enhanced the interaction of MDM2 with L11 and L5 and markedly inhibited MDM2-mediated p53 ubiquitination, suggesting that direct perturbation of 60 S ribosomal biogenesis activates p53 via L11- and L5-mediated MDM2 suppression. Mechanistically, knockdown of L30 or L29 significantly increased the NEDDylation and nuclear retention of L11. Knocking down endogenous NEDD8 suppressed p53 activation induced by knockdown of L30. These results demonstrate that NEDDylation of L11 plays a critical role in mediating p53 activation in response to perturbation of ribosomal biogenesis.  相似文献   

13.
Aminoglycoside antibiotics that bind to 16S ribosomal RNA in the aminoacyl-tRNA site (A site) cause misreading of the genetic code and inhibit translocation. Structures of an A site RNA oligonucleotide free in solution and bound to the aminoglycosides paromomycin or gentamicin C1a have been determined by NMR. Recently, the X-ray crystal structure of the entire 30S subunit has been determined, free and bound to paromomycin. Distinct differences were observed in the crystal structure, particularly at A1493. Here, the NMR structure of the oligonucleotide-paromomycin complex was determined with higher precision and is compared with the X-ray crystal structure of the 30S subunit complex. The comparison shows the validity of both structures in identifying critical interactions that affect ribosome function.  相似文献   

14.
The natural modification of specific nucleosides in many tRNAs is essential during decoding of mRNA by the ribosome. For example, tRNA(Lys)(UUU) requires the modification N6-threonylcarbamoyladenosine at position 37 (t(6)A37), adjacent and 3' to the anticodon, to bind AAA in the A site of the ribosomal 30S subunit. Moreover, it can only bind both AAA and AAG lysine codons when doubly modified with t(6)A37 and either 5-methylaminomethyluridine or 2-thiouridine at the wobble position (mnm(5)U34 or s(2)U34). Here we report crystal structures of modified tRNA anticodon stem-loops bound to the 30S ribosomal subunit with lysine codons in the A site. These structures allow the rationalization of how modifications in the anticodon loop enable decoding of both lysine codons AAA and AAG.  相似文献   

15.
In this study, we used site-directed mutagenesis to disrupt an interaction that had been detected between ribosomal proteins S7 and S11 in the crystal structure of the bacterial 30 S subunit. This interaction, which is located in the E site, connects the head of the 30 S subunit to the platform and is involved in the formation of the exit channel through which passes the 30 S-bound messenger RNA. Neither mutations in S7 nor mutations in S11 prevented the incorporation of the proteins into the 30 S subunits but they perturbed the function of the ribosome. In vivo assays showed that ribosomes with either mutated S7 or S11 were altered in the control of translational fidelity, having an increased capacity for frameshifting, readthrough of a nonsense codon and codon misreading. Toeprinting and filter-binding assays showed that 30 S subunits with either mutated S7 or S11 have an enhanced capacity to bind mRNA. The effects of the S7 and S11 mutations can be related to an increased flexibility of the head of the 30 S, to an opening of the mRNA exit channel and to a perturbation of the proposed allosteric coupling between the A and E sites. Altogether, our results demonstrate that S7 and S11 interact in a functional manner and support the notion that protein-protein interactions contribute to the dynamics of the ribosome.  相似文献   

16.
The binding of [14C]tuberactinomycin O, an antibiotic closely related to viomycin, to E. coli ribosomes has been examined by equilibrium dialysis method. The antibiotic has been observed to bind to the 70S ribosome, which possesses two binding sites: one on the 30S ribosomal subunit and another on the 50S subunit. The affinity for the large subunit is greater than that for the small subunit. The binding to both ribosomal subunits is reversed by viomycin, indicating that tuberactinomycin O and viomycin have the same binding sites on the ribosome. The results seem to be in accordance with the previous finding that viomycin exhibits dual actions on ribosomal function: the inhibition of fMet-tRNAF (initiation) and inhibition of translocation of peptidyl-tRNA.  相似文献   

17.
《The Journal of cell biology》1990,111(6):2261-2274
Two strains of Saccharomyces cerevisiae were constructed that are conditional for synthesis of the 60S ribosomal subunit protein, L16, or the 40S ribosomal subunit protein, rp59. These strains were used to determine the effects of depriving cells of either of these ribosomal proteins on ribosome assembly and on the synthesis and stability of other ribosomal proteins and ribosomal RNAs. Termination of synthesis of either protein leads to diminished accumulation of the subunit into which it normally assembles. Depletion of L16 or rp59 has no effect on synthesis of most other ribosomal proteins or ribosomal RNAs. However, most ribosomal proteins and ribosomal RNAs that are components of the same subunit as L16 or rp59 are rapidly degraded upon depletion of L16 or rp59, presumably resulting from abortive assembly of the subunit. Depletion of L16 has no effect on the stability of most components of the 40S subunit. Conversely, termination of synthesis of rp59 has no effect on the stability of most 60S subunit components. The implications of these findings for control of ribosome assembly and the order of assembly of ribosomal proteins into the ribosome are discussed.  相似文献   

18.
Bacterial resistance to 4,6-type aminoglycoside antibiotics, which target the ribosome, has been traced to the ArmA/RmtA family of rRNA methyltransferases. These plasmid-encoded enzymes transfer a methyl group from S-adenosyl-L-methionine to N7 of the buried G1405 in the aminoglycoside binding site of 16S rRNA of the 30S ribosomal subunit. ArmA methylates mature 30S subunits but not 16S rRNA, 50S, or 70S ribosomal subunits or isolated Helix 44 of the 30S subunit. To more fully characterize this family of enzymes, we have investigated the substrate requirements of ArmA and to a lesser extent its ortholog RmtA. We determined the Mg+2 dependence of ArmA activity toward the 30S ribosomal subunits and found that the enzyme recognizes both low Mg+2 (translationally inactive) and high Mg+2 (translationally active) forms of this substrate. We tested the effects of LiCl pretreatment of the 30S subunits, initiation factor 3 (IF3), and gentamicin/kasugamycin resistance methyltransferase (KsgA) on ArmA activity and determined whether in vivo derived pre-30S ribosomal subunits are ArmA methylation substrates. ArmA failed to methylate the 30S subunits generated from LiCl washes above 0.75 M, despite the apparent retention of ribosomal proteins and a fully mature 16S rRNA. From our experiments, we conclude that ArmA is most active toward the 30S ribosomal subunits that are at or very near full maturity, but that it can also recognize more than one form of the 30S subunit.  相似文献   

19.
20.
Ribosome biogenesis involves an integrated series of binding events coupled with conformational changes that ultimately result in the formation of a functional macromolecular complex. In vitro, Escherichia coli 30 S subunit assembly occurs in a cooperative manner with the ordered addition of 20 ribosomal proteins (r-proteins) with 16 S rRNA. The assembly pathway for 30 S subunits has been dissected in vitro into three steps, where specific r-proteins associate with 16 S rRNA early in 30 S subunit assembly, followed by a mid-assembly conformational rearrangement of the complex that then enables the remaining r-proteins to associate in the final step. Although the three steps of 30 S subunit assembly have been known for some time, few details have been elucidated about changes that occur as a result of these three specific stages. Here, we present a detailed analysis of the concerted early and late stages of small ribosomal subunit assembly. Conformational changes, roles for base-pairing and r-proteins at specific stages of assembly, and a polar nature to the assembly process have been revealed. This work has allowed a more comprehensive and global view of E.coli 30 S ribosomal subunit assembly to be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号