首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Treatment ofNeurospora crassamycelia with cupric ion has been shown to permeabilize the plasma and mitochondrial membranes. Permeabilized mycelia were shown to take up arginine into the vacuoles. Uptake was ATP-independent and appeared to be driven by an existing K+-gradient. The kinetic characteristics of the observed uptake were similar to those observed using vacuolar membrane vesicles: theKmfor arginine uptake was found to be 4.2–4.5 mM. Permeabilized mycelia were used to study the regulation of arginine uptake into vacuoles. The results suggest that uptake is relatively indifferent to the contents of the vacuoles and is not affected by growth of mycelia in amino acid-supplemented medium. Efflux of arginine, lysine, and ornithine from vacuoles was also measured using mycelia permeabilized with cupric ion. Arginine release was shown to be specifically enhanced by cytosolic ornithine and/or increases in the vacuolar pool of arginine or ornithine. Lysine efflux was shown be indifferent to the presence of other amino acids. These observations emphasize the importance of vacuolar compartmentation in controlling arginine and ornithine metabolism and suggest that vacuolar compartmentation may play an important role in nitrogen homeostasis of filamentous fungi.  相似文献   

2.
By using the Cu2+ method (Y. Ohsumi, K. Kitamoto, and Y. Anraku, J. Bacteriol. 170:2676-2682, 1988) for differential extraction of the vacuolar and cytosolic amino acid pools from yeast cells, the amino acid compositions of the two pools extracted from Saccharomyces cerevisiae cells, grown in synthetic medium supplemented with various amino acids, were determined. Histidine and lysine in the medium expanded the vacuolar pool extremely. Glutamate also accumulated in the cells, but mainly in the cytosol. The composition of amino acids in the cytosolic pool was fairly constant, in contrast to that in the vacuolar pool. Cells grown in synthetic medium supplemented with 10 mM arginine accumulated arginine in the vacuoles at a concentration of about 430 mM. This large arginine pool was metabolically active and was effectively utilized during nitrogen starvation. Arginine efflux from the vacuoles was coupled with K+ influx, with an arginine/K+ exchange ratio of 1, as judged by the initial rate. The vacuolar arginine pool was exchangeable with lysine added to the medium and was decreased by treatment of the cells with the mating pheromone, alpha-factor.  相似文献   

3.
The catabolic products of arginine metabolism were observed in Aphanocapsa 6308, a unicellular cyanobacterium, by thin layer chromatography of growth media, by limiting growth conditions, and by enzymatic analysis. Of the organic, nitrogenous compounds examined, only arginine supported growth in CO2-free media. The excretion of ornithine at a concentration level greater than citrulline suggested the existence in Aphanocapsa 6308 of the arginine dihydrolase pathway which produced ornithine, CO2, NH4, + adenosine 5-triphosphate. Its existence was confirmed by enzymatic analysis. Although cells could not grow on urea as a sole carbon source a very active urease and subsequently an arginase were also demonstrated, indicating that Aphanocapsa can metabolize arginine via the arginase pathway. The level of enzymes for both pathways indicates a lack of genetic control. It is suggested that the arginase pathway provides only nitrogen for the cells whereas the arginine dihydrolase pathway provides not only nitrogen, but also CO2 and adenosine 5-triphosphate.Nonstandard Abbreviations CCCP carbonylcyanide mchlorophenyl hydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - CGP cyanophycin granule protein - PS II photosystem II - PSI photosystem I - TLC thin layer chromatography - TCA trichloroacetic acid - DPM disintegrations per min  相似文献   

4.
Nitrogen starvation has been shown to increase the cytosolic arginine concentration and to accelerate protein turnover in mycelia of Neurospora crassa. The cytosolic arginine is derived from a metabolically inactive vacuolar pool. Redistribution of arginine between cytosolic and vacuolar compartments is the result of mobilization of this metabolite in response to nitrogen starvation. Mobilization of arginine (and purines) also occurred in response to glutamine limitation, but arginine accumulated upon proline starvation. These observations indicate that mobilization is a consequence of glutamine limitation rather than a general response to amino acid starvation (or limitation). Analysis of the amino acid pools in mycelia subjected to starvation or limitation suggests that glutamine (or a metabolite derived from glutamine) provides a signal which determines the metabolic fate of vacuolar arginine. The results are consistent with the hypothesis that vacuolar compartmentation provides a readily available store of nitrogen-rich compounds to be utilized during differentiation or under conditions of nutritional stress.  相似文献   

5.
Gas chromatography-mass spectrometry studies of the nitrogen isotopic composition of the N-trifluoroacetyl n-butyl ester derivatives of the amino acids from isolated hydrolyzed cyanophycin from 15N-enriched cells led to two major findings: (1) the amino acid composition of this granular polypeptide, isolated using procedures optimized for extracting and purifying cyanophycin from cells in the stationary growth phase, varied with the culture growth condition; (2) the rate of incorporation of exogenous nitrate differed for each nitrogen atom of the amino acid constituents of cyanophycin or cyanophycin-like polypeptide. Arginine and aspartic acid were the principle components of cyanophycin isolated from exponentially growing cells and from light-limited stationary phase cells, with glutamic acid as an additional minor component. The cyanophycin-like polypeptide from nitrogen-limited cells contained only aspartic and glutamic acids, but no arginine. The glutamic acid content decreased and arginine content increased as nitrate was provided to nitrogen-limited cells. These cells rapidly incorporated nitrate at different rates at each cyanophycin nitrogen site: guanidino nitrogens of arginine>aspartic acid >-amino nitrogen of arginine>glutamic acid. Little media-derived nitrogen was incorporated into cyanophycin of exponentially growing cells during one cellular doubling time.Abbreviations asp-TAB, glu-TAB, arg-TAB N-Trifluoroacetyl n-butyl ester derivatives of aspartic acid, glutamic acid and arginine, respectively - CAP chloramphenicol - CF correction factor - TFAA Trifluoroacetic anhydride - MBTFA N-Methyl-bis-trifluoroacetamide  相似文献   

6.
Most Pseudomonas aeruginosa PAO mutants which were unable to utilize l-arginine as the sole carbon and nitrogen source (aru mutants) under aerobic conditions were also affected in l-ornithine utilization. These aru mutants were impaired in one or several enzymes involved in the conversion of N2-succinylornithine to glutamate and succinate, indicating that the latter steps of the arginine succinyltransferase pathway can be used for ornithine catabolism. Addition of aminooxyacetate, an inhibitor of the N2-succinylornithine 5-aminotransferase, to resting cells of P. aeruginosa in ornithine medium led to the accumulation of N2-succinylornithine. In crude extracts of P. aeruginosa an ornithine succinyltransferase (l-ornithine:succinyl-CoA N2-succinyltransferase) activity could be detected. An aru mutant having reduced arginine succinyltransferase activity also had correspondingly low levels of ornithine succinyltransferase. Thus, in P. aeruginosa, these two activities might be due to the same enzyme, which initiates aerobic arginine and ornithine catabolism.Abbreviations OAT ornithine 5-aminotransferase - SOAT N2-succinylornithine 5-aminotransferase - Oru ornithine utilization - Aru arginine utilization  相似文献   

7.
Basic amino acids (lysine, histidine and arginine) accumulated in Saccharomyces cerevisiae vacuoles should be mobilized to cytosolic nitrogen metabolism under starvation. We found that the decrease of vacuolar basic amino acids in response to nitrogen starvation was impaired by the deletion of AVT4 gene encoding a vacuolar transporter. In addition, overexpression of AVT4 reduced the accumulation of basic amino acids in vacuoles under nutrient-rich condition. In contrast to AVT4, the deletion and overexpression of AVT3, which encodes the closest homologue of Avt4p, did not affect the contents of vacuolar basic amino acids. Consistent with these, arginine uptake into vacuolar membrane vesicles was decreased by Avt4p-, but not by Avt3p-overproduction, whereas various neutral amino acids were excreted from vacuolar membrane vesicles in a manner dependent on either Avt4p or Avt3p. These results suggest that Avt4p is a vacuolar amino acid exporter involving in the recycling of basic amino acids.  相似文献   

8.
Arginase, ornithine carbamoyl transferase (OCT) and arginine deiminase activities were found in cell-free extracts of Nostoc PCC 73102, a free-living cyanobacterium originally isolated from the cycad Macrozamia. Addition of either arginine, ornithine or citrulline to the growth medium induced significant changes in their in vitro activities. Moreover, growth in darkness, compared to in light, induced higher in vitro activities. The in vitro activities of arginase and arginine deiminase, two catabolic enzymes primarily involved in the breakdown of arginine, increased substantially by a combination of growth in darkness and addition of either arginine, or ornithine, to the growth medium. The most significant effects on the in vitro OCT activities where observed in cells grown with the addition of ornithine. Cells grown in darkness exhibited about 6% of the in vivo nitrogenase activity observed in cells grown in light. However, addition of external carbon (glucose and fructose) to cells grown in darkness resulted in in vivo nitrogenase activity levels similar to, or even higher than, cells grown in light. Growth with high in vivo nitrogenase activity or in darkness with the addition of external carbon, resulted in repressed levels of in vitro arginase and arginine deiminase activities. It is suggested that nitrogen starvation induces a mobilization of the stored nitrogen, internal release of the amino compound arginine, and an induction of two catabolic enzymes arginase and arginine deiminase. A similar and even more pronunced induction can be observed by addition of external arginine to the growth medium.  相似文献   

9.
Acidic inorganic phosphate (Pi) pool (pH around 6) was detected besides the cytoplasmic pool in intact cells of Chlorella vulgaris 11h by 31P-in vivo nuclear magnetic resonance (NMR) spectroscopy. It was characterized as acidic compartments (vacuoles) in combination with the cytochemical technique; staining the cells with neutral red and chloroquine which are known as basic reagents specifically accumulated in acidic compartments. Under various conditions, the results obtained with the cytochemical methods were well correlated with those obtained from in vivo NMR spectra; the vacuoles were well developed in the cells at the stationary growth phase where the acidic Pi signal was detected. In contrast, cells at the logarithmic phase in which no acidic Pi signal was detected contained only smaller vesicles that accumulated these basic reagents. No acidic compartment was detected by both cytochemical technique and 31P-NMR spectroscopy when the cells were treated with NH4OH. The vacuolar pH was lowered by the anaerobic treatment of the cells in the presence of glucose, while it was not affected by the external pH during the preincubation ranging from 3 to 10. Possible vacuolar functions in unicellular algae especially with respect to intracellular pH regulation are discussed.Non-standard abbreviations EDTA ethylenediaminetetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MDP methylene diphosphonic acid - NMR nuelear magnetic resonance - PCA perchloric acid - PCV packed cell volume - Pi inorganic phosphate - Pic sytoplasmic inorganic phosphate - Piv vacuolar inorganic phosphate - ppm parts per million - SP sugar phosphates - TCA trichloroacetic acid  相似文献   

10.
K. W. Linz  K. Köhler 《Protoplasma》1994,179(1-2):34-45
Summary The electrical properties of the vacuolar membrane of the primitive green algaEremosphaera virdis were investigated using the patch-clamp technique. In whole vacuole measurements two types of transport systems with long activation time-constants were identified. The first, showing marked outward rectification, was activated by an increase in the cytosolic calcium concentration. Furthermore, it displayed sensitivity to micromolar concentrations of the anion channel blocker Zn2+ and to acidification of the cytosol. In contrast, the second time-activated current component was almost insensitive to changes in cytosolic pH and was blocked by the potassium channel inhibitor TEA. In addition to these slowly activating current components, the vacuolar membrane contained at least two further transport systems, responsible for an instantaneous current. These two current components were distinguished by their different sensitivity to protons, cytosolic calcium, and TEA. Comparing these electrical properties to those observed in vacuoles of higher plants or in cytoplasmic droplets from characean algae, respectively, it seems thatEremosphaera is intermediate, corresponding to the systematic position of this simple green alga.Abbreviations [Ca2+]cyt cytosolic free calcium concentration - EGTA ethyleneglycol-bis(-aminoethylether)N,N,N,N-tetraacetic acid - HEPES N-[2-hydroxyethyl]piperazine-N-[2-ethanesulfonic acid] - I electric current - IRC inward rectifying current - MES 2-[N-morpholino]ethanesulfonic acid - ORC outward rectifying current - pHcyt cytosolic pH - pHvac vacuolar pH - Po open probability - Px permeability coefficient of ion species X - TEA tetraethylammonium chloride - Tris tris[hydroxymethyl]aminomethane - V voltage  相似文献   

11.
Protoplasts of Saccharomyces cerevisiae synthesized and degraded trehalose when they were incubated in a medium containing traces of glucose and acetate. Such protoplasts were gently lyzed by the polybase method and a particulate and soluble fraction was prepared. Trehalose was found in the soluble fraction and the trehalase activity mostly in the particulate fraction which also contained the vacuoles besides other cell organelles. Upon purification of the vacuoles, by density gradient centrifugation, the specific activity of trehalase increased parallel to the specific content of vacuolar markers. This indicates that trehalose is located in the cytosol and trehalase in the vacuole. It is suggested that trehalose, in addition to its role as a reserve may also function as a protective agent to maintain the cytosolic structure under conditions of stress.Non Standard Abbreviations AMPD 2-amino-2-methyl-1,3-propanediol - DTT dithiothreitol - MES 2-N-morpholinoethanesulfonic acid - PIPES piperazine-N,N-bis-2-ethanesulfonic acid - PMSF phenylmethylsulfonylfluoride  相似文献   

12.
We studied physiological roles of the yeast vacuole in the phosphatemetabolism using 31P-in vivo nuclear magnetic resonance (NMR)spectroscopy. Under phosphate starvation wild-type yeast cellscontinued to grow for two to three generations, implying thatwild-type cells contain large phosphate pool to sustain thegrowth. During the first four hours under the phosphate starvedcondition, the cytosolic phosphate level was maintained almostconstant, while the vacuolar pool of phosphate decreased significantly.31P-NMR spectroscopy on the intact cells and perchloric acid(PCA) extracts showed that drastic decrease of polyphosphatetook place during this phase. In contrast,  相似文献   

13.
Cytosolic and vacuolar pH changes caused by illumination or a changed composition of the gas phase were monitored in leaves of the NAD malic-enzyme-type C4 plant Amaranthus caudatus L. and the C3 plant Vicia faba L. by recording changes in the fluorescence of pH-indicating dyes which had been fed to the leaves. Light-dependent cytosolic alkalization and vacuolar acidification were maximal in the mesophyll cells under high-fluence-rate illumination and in the absence of CO2. Under the same conditions, measurements of light scattering and electrochromic absorption changes at 518 nm revealed maximum thylakoid energization. The results show an intimate relationship between the energization of the photosynthetic apparatus by light, an increase in cytosolic pH and a decrease in vacuolar pH. This was true for both the C4 and the C3 plant, although kinetics, extent and even direction of cytosolic pH changes differed considerably in these plants, reflecting the differences in photosynthetic carbon metabolism. Darkening produced rapid acidification in Vicia, but not in Amaranthus. Continued alkalization in Amaranthus is interpreted to be the result of the decarboxylation of a C4 intermediate and the release of liberated CO2. In the presence of CO2, energy consumption by carbon reduction decreased thylakoid energization, cytosolic alkalization and vacuolar acidification. Under low-fluence-rate illumination, thylakoid energization and light-dependent cytosolic and vacuolar pH changes were decreased in CO2-free air compared with thylakoid energization and pH changes in 1% oxygen/99% nitrogen not only in the C3 plant, but also in Amaranthus. Since oxygenation of ribulose bisphosphate initiates energy-consuming photorespiratory reactions in 21% oxygen, but not in 1% oxygen, this shows that photorespiratory reactions are active not only in the C3 but also in the C4 plant in the absence of external CO2. Photorespiratory conditions appeared to decrease energization not only in the chloroplasts, but also in the cytosol. This is indicated by decreased transfer of protons from the cytosol into the vacuole, a process which is energy-dependent.Abbreviations CDCF 5-(and 6-)carboxy-2,7-dichlorofluorescein - P700 electron-donor pigment in the reaction center of photosystem I - RuBP ribulose-1,5-bisphosphate This work was supported, within the framework of the Sonderforschungsbereiche 176 and 251 of the University of Würzburg, by the Gottfried-Wilhelm-Leibniz Program of the Deutsche Forschungsgemeinschaft. A.S.R. was the recipient of a fellowship from the Alexander-von-Humboldt-Foundation. We are grateful to Mr. Carsten Werner and Mrs. Spidola Neimanis for cooperation.  相似文献   

14.
A method for the isolation of vacuoles based on polybase induced lysis of protoplasts of the cell wall deficient Neurospora crassa slime variant is described. Isolated vacuoles are characterized by 12 to 50 times increased specific activities of several hydrolases as compared with the total homogenate of protoplasts. Total -amino nitrogen, arginine, and polyphosphate are also greatly enriched in these vacuoles. Vacuoles are equipped with a permease for the transport of basic amino acids across the tonoplast.Non-Standard Abbreviation DEAE-dextran diethylaminoethyl-dextran  相似文献   

15.
Important progress in arginine metabolism includes the discovery of widespread expression of two isoforms of arginase, arginase I and II, not only in hepatic cells but also in non-hepatic cells, and the formation of nitric oxide, a widely distributed signal-transducing molecule, from arginine by nitric oxide synthase. Possible physiological roles of arginase may therefore include regulation of nitric oxide synthesis through arginine availability for nitric oxide synthase. In this paper, arginase was investigated in the submandibular, sublingual, and parotid glands of rat, mouse, guinea pig, and rabbit. From their arginase contents, the salivary glands of these species were divided into two groups. Variable levels of arginase activity were detected in the salivary glands of mouse and rat. However, salivary glands of rabbit and guinea pig had almost no arginase activity. The presence of nitric oxide synthase has been reported in all the salivary glands used in this study. Therefore, one of the important findings was the presence of species specificity in the co-localization of arginase and nitric oxide synthase in the salivary glands of the four species. The highest specific activity of arginase was found in mouse parotid gland. In rat, considerable arginase activity was detected in all three glands, at 3.6–7.3% of that in rat liver. In rat submandibular gland, arginase was detected in both cytosolic and particulate fractions. In addition, arginase was detected in isolated acinar cells, but not in duct cells. Experiments on the intracellular distribution and the effects of the arginase inhibitors ornithine and N-hydroxy-L-arginine (NOHA), suggested the presence of both arginase I and arginase II in rat submandibular gland.Abbreviations cGMP cyclic guanosine 3,5-monophosphate - NO nitric oxide - NOHA N-hydroxy-L-arginine - NOS nitric oxide synthase Communicated by I.D. Hume  相似文献   

16.
The regulation of ornithine transcarbamylase (OTC) of Rhodotorula glutinis has been studied, by growing the yeasts in different carbon and nitrogen sources and estimating the enzyme level in crude yeasts extracts.The results show a nutritional repression of OTC by arginine, when added to the culture media as carbon, nitrogen or carbon and nitrogen sources. On the other hand ornithine does not exert any effect in the same experimental conditions.  相似文献   

17.
Summary The ornithine transaminase (EC.2.6.1.13) of Saccharomyces cerevisiae is induced by arginine, ornithine, and their analogs. Genetic regulatory elements which are involved in this induction process have been defined due to the isolation of specific mutants. Two classes of OTAse operator mutants have previously been described; three unlinked genes are presumed to code for a specific repressor, CARGR of both of the arginine catabolic enzymes, arginase, and ornithine transaminase. The level of transaminase of cells grown on ammonia plus arginine is much lower than it is when arginine is the sole nitrogen source. Ammonia thus seems to limit the amount of enzyme synthesized when arginine is present in the growth medium. Nevertheless, all attempts to disclose a nitrogen catabolite repression process in OTAse synthesis have failed; neither the action of mutations that release this regulation on arginase and other catabolic enzymes, nor the use of derepressing growth conditions, affect OTAse synthesis. A decrease of the cells' arginine pool when amonia or aminoacids (serine, glutamate) are added to arginine as a nitrogen nutrient results in a progressive reduction of transaminase synthesis. This suggests that arginine is the only physiological effector in those conditions: ammonia or some aminoacids would reduce the enzyme synthesis because of an inducer exclusion. The first stage of OTAse induction would then be operated by the CARGR repressor, and an additional regulatory element might take part in the full scale process. Preliminary data favoring the involvment of such an element are presented.  相似文献   

18.
John Z. Kiss  Fred D. Sack 《Planta》1989,178(1):123-130
The activity of arginine decarboxylase (EC 4.1.1.19) in cultured roots of Hyoscyamus albus L., which produce considerable amounts of tropane alkaloids, was twice that of ornithine decarboxylase (EC 4.1.1.17), both activities being highest during active root growth, whereas arginase (EC 3.5.3.1) activity was negligible. Actively growing roots had putrescine conjugates as their major polyamines, and spermidine was the most abundant free polyamine. Putrescine N-methyltransferase (PMT; EC 2.1.1.53) activity was high, the peak occurring on the sixth day of culture when root growth became slower. Thereafter, the free N-methylputrescine content of the roots increased and was followed by an increase in alkaloid content (mostly hyoscyamine). The amounts of arginine and, especially, of ornithine were low. No N-methylornithine was detected. The PMT activity was present only in root, shoot and cell-suspension cultures of plants that synthesized tropane alkaloids or nicotine; no enzyme activities that methylate ornithine at the -amino group or that decarboxylate -N-methylornithine were detected in any of the cultures tested. Our data indicate that tropane alkaloids in H. albus roots are synthesized by way of the symmetrical putrescine, i.e. a pathway different from that proposed by E. Leete (1962, J. Am. Chem. Soc. 84, 55) according to which these alkaloids are synthesized by way of asymmetrical -N-methylornithine.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - PCA perchloric acid - PMT putrescine N-methyltransferase  相似文献   

19.
The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and γ-aminobutyric acid, metabolites that play important roles in plant development and stress response. Suspension cultures of poplar (Populus nigra × maximowiczii), transformed with a constitutively expressing mouse ornithine decarboxylase gene, were used to study the effect of up-regulation of putrescine biosynthesis (and concomitantly its enhanced catabolism) on cellular contents of various protein and non-protein amino acids. It was observed that up-regulation of putrescine metabolism affected the steady state concentrations of most amino acids in the cells. While there was a decrease in the cellular contents of glutamine, glutamate, ornithine, arginine, histidine, serine, glycine, cysteine, phenylalanine, tryptophan, aspartate, lysine, leucine and methionine, an increase was seen in the contents of alanine, threonine, valine, isoleucine and γ-aminobutyric acid. An overall increase in percent cellular nitrogen and carbon content was also observed in high putrescine metabolizing cells compared to control cells. It is concluded that genetic manipulation of putrescine biosynthesis affecting ornithine consumption caused a major change in the entire ornithine biosynthetic pathway and had pleiotropic effects on other amino acids and total cellular carbon and nitrogen, as well. We suggest that ornithine plays a key role in regulating this pathway.  相似文献   

20.
Liquid cultures of the deuteromycete, Fusarium oxysporum f. sp. tulipae, a tulip pathogen, produced high amounts of ethylene during stationary phase. 1-Aminocyclopropane-1-carboxylic acid, the direct precursor of ethylene in plants, was not present in the fungus. Radioactivity from [3,4-3H]glutamate as well as [U-14C]glutamate was incorporated into ethylene, indicating that it was derived from C3 and C4 of glutamate or 2-oxoglutarate. Ferrous ions markedly stimulated the rate of ethylene formation in vivo, whereas Fe3+, Cu2+ or Zn2+ had little or no effect. Ethylene biosynthesis was strongly inhibited by the heavy metal chelator ,-dipyridine. The effect of ,-dipyridine was fully reversed by Fe2+ ions and partially by Cu2+ and Zn2+ ions but not by the supply of glutamate or 2-oxoglutarate, suggesting that a step in the ethylene biosynthetic pathway downstream of 2-oxoglutarate is dependent on Fe2+. When stationary phase cultures were supplied with arginine, ornithine, or proline, ethylene production increased dramatically while addition of glutamate or 2-oxoglutarate had little effect. Tracer studies were performed to test the possibility that an intermediate in the catabolism of arginine to glutamate was the direct precursor of ethylene. In cultures supplied with [U-14C]arginine or [U-14C]glutamate, the specific radioactivity of ethylene was closely similar to the specific radioactivity of the endogenous glutamate pool, indicating that glutamate was on the pathway between arginine and ethylene. An enzyme system converting 2-oxoglutarate to ethylene in a reaction dependent on oxygen, ferrous ions and arginine has previously been described in extracts from Penicillium digitatum (Fukuda et al. 1986). The present results suggest that a similar enzyme system catalyzes the final step of ethylene biosynthesis in F. oxysporum.Non-standard abbreviations AdoMet S-adenosyl methionine - ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene forming enzyme  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号