首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND AND AIMS: Colleters are secretory structures consisting of a parenchymatic middle axis surrounded by a layer of palisade-like epidermal cells. Colleters occur in a large number of rubiaceous species. Their function is to protect the developing shoot apex. They are also taxonomically useful in the Rubiaceae. This study characterized the structure of the colleters of Simira glaziovii, S. pikia and S. rubra and the biochemistry of secretions in S. glaziovii. METHODS: Stipules of the shoot apices of the three species studied were collected at Barragem de Saracuruna, in Rio de Janeiro state, Brazil. The samples were fixed according to the usual methods for light and electron microscopy. Secretion stipules of S. glaziovii were washed with 0.1 m Tris-HCl plus 0.1 %Triton X-100 to extract proteins and carbohydrates. KEY RESULTS: Colleters in these species are located at the base of the stipule. Each species shows a different pattern of distribution. They form as emergentia from the stipules. Simira glaziovii was different from the other two species because it exhibited vascular traces. The epidermal cells of colleters have dense cytoplasm, nuclei, small vacuoles, endoplasmic reticulum, Golgi apparatus, mitochondria and extraplasmic spaces if they are secretory. The outer cell wall of the mature colleters differs from the outer cell wall of stipule cells and immature colleters. Both carbohydrates and proteins were found in secretions from the stipules of S. glaziovii. CONCLUSIONS: Few ultrastructural differences were noted among the three species. These secretory structures not only protect the shoot apex, but also have taxonomic importance below the genus level.  相似文献   

2.
J M Westafer  R M Brown 《Cytobios》1976,15(58-59):111-138
The ultrastructure of the cotton fibres was examined after developing successful fixation methods. Fibre cells were fixed at different stages of development. In cells which were elongating and producing primary cell walls, the Golgi apparatus appeared to be directly involved in secretion and synthesis of primary wall components. In cells which were synthesizing thick secondary cell walls, evidence suggested a major role for the endoplasmic reticulum and plasma memebrane in the synthesis and secretion of secondary wall materials. The possibility of a shift from a Golgi apparatus pathway for primary wall synthesis to an endoplasmic reticulum pathway for secondary wall synthesis is discussed. Plasma membrane micro-invaginations are present only during secondary wall synthesis and may represent sites of cellulose assembly. A model for primary wall biogenesis via the Golgi apparatus is presented, and the potential of the cotton fibre as a model system for studying cellulose biogenesis in higher plants is discussed.  相似文献   

3.
The genus Hymenaea is characterized by a great diversity of secretory structures, but there are no reports of colleters yet. The objectives of this study are to report the occurrence and describe the origin and structure of colleters in Hymenaea stigonocarpa Mart. ex Hayne. Shoot apex samples were collected, fixed, and processed for light microscopy, scanning electron microscopy, and transmission electron microscopy as per usual methods. Colleters occur predominantly on the stipule's adaxial side. These structures are found at the base on a narrow strip, corresponding to the median vein up to half the length of the stipule. When present on the abaxial side, they are concentrated at the base and restricted to the margins. Colleters develop from the protoderm; they are elongate and club-shaped. Their body has no stratification; their surface cells differ from the inner cells only in position and presence of cuticle. Colleter cells have thin walls, dense cytoplasm, large nuclei, many mitochondria, rough endoplasmic reticulum, and abundant dictyosomes. Histochemical tests with Ruthenium red showed pectic compounds in the cytosol. In H. stigonocarpa, colleter arrangement is compatible with the hypothesis that they protect shoot apex. In this species, protection is reinforced by the sheath formed by the stipule pairs.  相似文献   

4.
Colleters are secretory structure present on many families including Rubiaceae. Particular characteristics have been described about colleters secretory cells, however senescence process are still under debate. Tocoyena bullata (Vell.) Mart. (Rubiaceae) shoot apex were collected at Jardim Botânico do Rio de Janeiro, RJ/Brazil. Stipules were separated and fragments were fixed in 2.5% glutaraldehyde and 4.0% formaldehyde in 0.05 m sodium cacodylate buffer, pH 7.2, post fixed in 1.0% osmium tetroxide in the same buffer, dehydrated in acetone, critical‐point‐drying, sputtered coated and observed. For light microscopy fragments were fixed and dehydrated, infiltrated with historesin and stained with 1% toluidine blue. For transmission electron microscopy, the samples were infiltrated with Epoxi resin. Colleters are present on stipule adaxial surface. On the beginning of development, these structures are recognized as small projections. Later on, colleters differentiated and secrete by cuticle rupture. The colleters senescence occurs in a concomitant and indissoluble way of programmed cell death. Ultrastructural analyses during the process strongly suggest the senescence is based on a non‐autolitic programmed cell death. T. bullata colleters, present at stipule abaxial surface are cylindrical secretory structures. Colleters secretory cells originated as stipule projections; differentiate; secrete and senesce by programmed cell death. The secretion and the cell dead occurs in a concomitantly and indissoluble way.  相似文献   

5.
Summary Kidneys of adult male and female lizards were studied by electron microscopy, in order to understand the ultrastructure of the collecting duct and a differentiated part thereof, the sexual segment, which is an important accessory sexual organ. First portion of sexual segment in males: The cells are filled with large secretory granules of a wide range of opacities. The granular endoplasmic reticulum is abundant; basal formations of superimposed flat cisternae are frequent. Distended vesicles and microvesicles prevail in the supranuclear, well developed Golgi apparatus. Evidences indicate that secretion of these cells is holocrine. Second portion of sexual segment in males: All of the secretory granules are apical in location and relatively electron-opaque; they show a denser core. This core is formed by a substance which, after lying in contact with ribosomes, enters the secretory vesicles of the highly developed Golgi apparatus. A lighter substance is then condensed around it. The secretion of the granules is merocrine. The granular endoplasmic reticulum is very abundant in these cells, but basal ergastoplasmic formations are lacking. Sexual segment in females: The cells show features similar to those of the male first portion, but they are smaller. Undifferentiated collecting duct: Most of the cells are mucigenic. They have small ovoid, apical secretory granules. The density of the granules varies from cell to cell; when they are electron-lucent, they exhibit laminar or dotted opaque figures. Moderately developed Golgi apparatus and granular endoplasmic reticulum, as well as elongated mitochondria, occur in mucigenic cells. Intercalated among the latter are non-secretory cells. They have very abundant mitochondria, numerous microvilli, many pinocytic and smooth-membrane vesicles, whereas the organelles participating in synthetic processes are poorly developed; their function is most likely related to active solute transport.  相似文献   

6.
Summary The extrafloral nectary ofAcacia terminalis is of the flat type and is located on the adaxial surface of the petiole of the bipinnate leaf. The secretory area is restricted to the base of the trough and no gaps or pores were detected by staining with vital dyes. Between the vascular bundles beneath the nectary and the surface cuticle there were three cell types. The cells of the flanking zone adjacent to the vascular bundles did not appear to be producing secretion whereas the cells of the glandular and secretory zones were secreting. The cells of the glandular zone were elongated whereas those of the surface secretory zone were spherical. Both had endoplasmic reticulum and Golgi bodies with secretory vesicles which were observed in close association with the plasmalemma. Secretion accumulated in the intercellular spaces of the glandular zone cells and forced the cells of the secretory zone apart. Symplastic contact was maintained in all cell types by plasmodesmata which were often associated with endoplasmic reticulum. Secretion accumulated beneath the cuticle which was distended but remained intact on the surface of the secretion.  相似文献   

7.
慈菇匍匐茎中分泌道的初步研究   总被引:2,自引:0,他引:2  
慈茹匍蔔茎的分泌道是裂生的胞间道,分布于匍匐茎的基本组织中。单个分泌道原始细胞起始于离茎端约1毫米处的基本分生组织中,原始细胞经分裂形成5—7个上皮细胞包围着中央的裂生腔隙,成为管道系统。上皮细胞无鞘细胞包围。上皮细胞中高尔基体和内质网发达,并溢出小囊泡向着分泌道腔隙面壁的质膜附近迁移,乳汁中亦存在大量完整的小囊泡。上皮细胞和外围薄壁细胞之间的壁层具有大量胞间连丝,小囊泡和内质网的膜结构与胞间连丝末端相接,同时可见上皮细胞的质膜在数处反折内陷,形成袋状结构,在与上皮细胞相对的薄壁细胞内也有同样现象出现,袋状结构内含小形颗粒或囊泡,并在结构上显示出上皮细胞与相邻薄壁细胞间存在着活跃的物质交流。由此认为。代谢物质以整体小囊泡的形式经胞间连丝或内陷的质膜向分泌道迁移是物质运输和分泌的可能方式之一。在电镜下观察,液泡中的积聚物与乳汁十分相似,液泡可能是乳汁的贮存场所之一。  相似文献   

8.
In this work we compare the structure and secretion of dendroid colleters on stipules, bracts and sepals of Alibertia sessilis, a non-nodulate Rubiaceae species from Brazilian cerrado, with notes on the plant phenology. Samples were processed according to usual methods for anatomy, histochemistry and ultrastructure. Colleters are conical and constituted by a central axis of elongated parenchyma cells from which radiate numerous epidermal cells. Epidermal cells are cylindrical on the vegetative apex and digitiform or bulbous on reproductive apex. Both colleters produce hydrophilic and lipophilic compounds. On the vegetative apex, epidermal cells present numerous well-developed Golgi bodies associated with a network of smooth endoplasmatic reticulum (SER), scarce oil bodies and profiles of rough endoplasmatic reticulum (RER), indicating the involvement of these glands in the production of mainly polysaccharides in addition to protein and lipids. Differently, epidermal cells on bracts and sepals present abundant and prominent oil drops, fewer Golgi bodies and a well developed network of SER with locally dilated cisterns indicating predominance of lipids. Ecrine and granulocrine mechanisms are common to colleters of both apices. We hypothesize that exudates protect vegetative meristems and developing organs against desiccation in the dry season and against insects and pathogens during the wet season. Predominantly lipidic secretion protects the floral organs against dehydration in the dry season and can attract floral visitants. These aspects are relevant if one considers that A. sessilis inhabits the cerrado, an environment characterized by a well-delimited dry season, high irradiance and elevated vapor pressure deficits.  相似文献   

9.
The constitutive secretory pathway has been reconstituted in mechanically permeabilized Chinese hamster ovary cells using two secretory markers, an acyltripeptide (N-octanoyl-Asn-Tyr-Thr-NH2) that is glycosylated at Asn in the endoplasmic reticulum and a truncated ceramide that is converted to sphingomyelin. Secretion of these bulk phase markers is dependent on cytosolic proteins and ATP. Secretion of both the glycosylated tripeptide and truncated sphingomyelin was inhibited at 15 degrees C. These results are taken as evidence that the vesicle flow to the plasma membrane (rather than artificial lysis of endoplasmic reticulum or Golgi cisternae) is required for the release of markers to the medium. Guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), a nonhydrolyzable analogue of GTP, inhibited secretion, resulting in an accumulation of both the glycosylated tripeptide and truncated sphingomyelin in the semi-intact cell. Inhibition of secretion by GTP gamma S was not observed in the presence of the aminoglycoside antibiotic neomycin.  相似文献   

10.
Endocytic routes to the Golgi apparatus   总被引:4,自引:4,他引:0  
 The endocytic routes of labelled lectins as well as cationic ferritin were studied in cells with a regulated secretion, i.e. pancreatic beta cells, and in constitutively secreting cells, i.e. fibroblasts and HepG2 hepatoma cells, paying particular attention to routes into the Golgi apparatus. Considerable amounts of internalised molecules were taken up into the trans Golgi network (TGN) and into Golgi subcompartments in all three cell types as well as in secretory granules of the pancreatic beta cells. The internalised materials did not pass rapidly the TGN and Golgi stacks, but were still present hours after internalisation, being then particularly concentrated in TGN-elements and in the transmost Golgi cisterna. Endocytosed materials reached forming secretory granules present in the TGN. Further, direct fusion between endocytotic vesicles and mature secretory granules was observed. Golgi subcompartments as well as endocytic TGN containing endocytosed materials were in close apposition to specialised regions of the endoplasmic reticulum. The Golgi apparatus including its parts containing endocytosed materials were transformed into a tubular reticulum upon treatment with the fungal metabolite Brefeldin A. Rarely, internalised material was observed in the lumen of the endoplasmic reticulum, thus providing evidence for an endocytic plasma membrane to endoplasmic reticulum route. Accepted: 9 March 1998  相似文献   

11.
The fine structural localization of albumin in rat liver parenchymal cells was determined by an improved immunocytochemical method and serial sectioning. Albumin in the secretory apparatus of the parenchymal cells was present in segments of the rough endoplasmic reticulum, interrupted with negative segments, in transport vesicles, Golgi saccules, finely anastomosed tubules and vesicles on the trans side of the Golgi complex, and in secretion granules. Horizontally sectioned Golgi saccules contained lipoprotein particles on one side and albumin on the other side. After transport, the vesicles that contained albumin fused with the so-called rigid lamellae on the trans-side of the Golgi complex. Ultrathin serial sections revealed no true structural continuity between the endoplasmic reticulum and the cis-aspect of the Golgi complex. We concluded that secretory proteins are transported from the endoplasmic reticulum to the Golgi complex by transport vesicles that bud from the endoplasmic reticulum and fuse with the Golgi saccules. These vesicles fuse regularly with the Golgi saccules on the cis-side and occasionally with tubular elements on the trans-aspect that may belong to the so-called GERL.  相似文献   

12.
M J Lehane 《Tissue & cell》1989,21(1):101-111
The opaque zone cells of the midgut of the stablefly, Stomoxys calcitrans display a cyclical series of ultrastructural events in response to feeding, which it has been suggested are related to the synthesis and secretion of digestive enzymes. These cells have been studied in vivo using a combination of biochemical, morphometric and electron microscopical autoradiographic techniques. The cyclical nature, timing and relationship of the ultrastructural events to enzyme secretion has been confirmed. The autoradiographic data presented is in good agreement with the classical synthetic pathway for exported proteins. The kinetics of the cellular process have been described: transfer of newly synthesized product from the rough endoplasmic reticulum to Golgi apparatus begins ca. 13-14 min after labelling of the fly and from the Golgi apparatus to secretory granules after ca. 24-26 min. Secretion of this newly synthesized material begins before 60 min and possibly as early as 30 min after labelling of the fly. The data are discussed in relation to the comparable studies in other tissues.  相似文献   

13.
The coagulating gland of male rodents is part of the prostatic complex. Various mechanisms of secretion have been postulated, in part because organelles commonly involved in the secretory process possess unusual features, such as extreme distension of the rough endoplasmic reticulum. In the present study, the pathway, kinetics, and mode of secretion in the coagulating gland of the mouse were studied by electron microscope autoradiography at intervals between 5 min and 8 h after administration of 3H-threonine. The percentage of grains associated with the rough endoplasmic reticulum was initially high and generally decreased throughout the experiment, while a pronounced rise in the proportion of grains associated with the Golgi apparatus and secretory granules was observed 6 h after injection of precursor. In addition, there was a smaller elevation in the percentage of grains over the Golgi apparatus and secretory granules between 1 and 4 h, and radioactive material first reached the lumen of the gland 4 h after injection of the precursor. Although the general pathway of intracellular transport of secretory protein resembles that in other cells, the results indicate that there are several unusual aspects to the secretory process in the coagulating gland. First, the rate of transport was markedly slower than in most other exocrine gland cells, since the bulk of the labeled protein did not reach the Golgi apparatus and secretory granules until 6 h after administration of precursor. This reflected prolonged retention of secretory products in the endoplasmic reticulum. Second, in addition to the major bolus of labeled material that traversed the cells at about 6 h, a smaller wave of radioactivity appeared to pass through the Golgi apparatus and secretory granules and reach the lumen earlier, within the first few hours after the injection. Finally, the primary mode of secretion in the coagulating gland appears to be merocrine because the secretory granules contained much labeled protein.  相似文献   

14.
The endoplasmic reticulum and Golgi apparatus play key roles in regulating the folding, assembly, and transport of newly synthesized proteins along the secretory pathway. We find that the divalent cation manganese disrupts the Golgi apparatus and endoplasmic reticulum (ER). The Golgi apparatus is fragmented into smaller dispersed structures upon manganese treatment. Golgi residents, such as TGN46, beta1,4-galactosyltransferase, giantin, and GM130, are still segregated and partitioned correctly into smaller stacked fragments in manganese-treated cells. The mesh-like ER network is substantially affected and peripheral ER elements are collapsed. These effects are consistent with manganese-mediated inhibition of motor proteins that link membrane organelles along the secretory pathway to the cytoskeleton. This divalent cation thus represents a new tool for studying protein secretion and membrane dynamics along the secretory pathway.  相似文献   

15.
Happ GM  Happ CM 《Tissue & cell》1970,2(3):443-466
The spermathecal accessory gland of female Tenebrio molitor is examined by histochemicai and electron microscopical techniques. Immediately after ecdysis of the female, neither Golgi regions nor the endoplasmic reticulum of the secretory cells are well developed. In two days' time, the cytoplasm is rich in rough endoplasmic reticulum and the Golgi areas are expanded. Membrane-bound droplets of secretion move from the Golgi zone to a central cavity, formed by the invaginated plasma membrane of this cell. As the secretion accumulates this cavity swells until the fourth day after ecdysis when the females first mate. An efferent cuticular ductule, ensheathed in a ductulecarrying cell, carries the product to the main axial duct of the tubular gland. By histochemical criteria, the product is a glycoprotein.  相似文献   

16.
The colleter secretion can be useful to protect plants of Cerrado (Brazilian savanna) biome during the long and pronounced dry season. This study describes the presence of colleters in Tontelea micrantha and represents the first record of these structures in Celastraceae. To investigate colleter structure and their secretory processes, young leaves were collected, fixed, and processed according to conventional techniques for light, and electron microscopy. Colleters were observed at the marginal teeth on the leaf. They produce mucilaginous secretions that spread over the leaf surface. After secretory phase, colleters abscise. The secretory epithelium is uniseriate and composed of elongated cells whose dense cytoplasm is rich in organelles. The ultrastructure of the secretory cells is compatible with the pectin-rich secretion. Observations of the young leaves surface revealed the presence of superficial hydrophilic secretion films that appeared to have the function of maintaining the water status of those organs.  相似文献   

17.
The Florey Lecture, 1992. The secretion of proteins by cells.   总被引:2,自引:0,他引:2  
In eukaryotic cells, protein secretion provides a complex organizational problem. Secretory proteins are first transported, in an unfolded state, across the membrane of the endoplasmic reticulum (ER), and are then carried in small vesicles to the Golgi apparatus and finally to the cell membrane. The ER contains soluble proteins which catalyse the folding of newly synthesized polypeptides. These proteins are sorted from secretory proteins in the Golgi complex: they carry a sorting signal (the tetrapeptide KDEL or a related sequence) that allows them to be selectively retrieved and returned to the ER. This retrieval process also appears to be used by some bacterial toxins to aid their invasion of the cell: these toxins contain KDEL-like sequences and may, in effect, follow the secretory pathway in reverse. The membrane-bound receptor responsible for sorting luminal ER proteins has been identified in yeast by genetic means, and related receptors are found in mammalian cells. Unexpectedly, this receptor has a second role: in yeast it is required to maintain the normal size and function of the Golgi apparatus. By helping to maintain the composition of both ER and Golgi compartments, the KDEL receptor has an important role in the organization of the secretory pathway.  相似文献   

18.
Cephalaspideans are a group of opisthobranch gastropods that comprises carnivorous and herbivorous species, allowing an investigation of the relationship between these diets and the morphofunctional features of the salivary glands. In this study, the salivary glands of the carnivorous cephalaspidean Philinopsis depicta were observed by light and electron microscopy. The secretory epithelium of these ribbon-shaped glands is formed by ciliated cells, granular cells and cells with apical vacuole. In ciliated cells the nucleus and most cytoplasmic organelles are located in the wider apical region and a very thin stalk reaches the base of the epithelium. These cells possess significant amounts of glycogen. Granular cells are packed with electron-dense secretory granules and also contain several cisternae of rough endoplasmic reticulum and Golgi stacks. The other type of secretory cell is mainly characterized by the presence of a large apical vacuole containing secretion. These cells possess high amounts of rough endoplasmic reticulum cisternae and several Golgi stacks. Vesicles with peripheral electron-dense material are also abundant, and seem to fuse to form the apical vacuole. The available data point out to a significant difference between the salivary glands of carnivorous and herbivorous cephalaspidean opisthobranchs, with an intensification of protein secretion in carnivorous species.  相似文献   

19.
20.
H. Lehmann  D. Schulz 《Planta》1969,85(4):313-325
Summary In meristematic cells of the gemma of Riella helicophylla and in young bud cells from the protonema of Funaria hygrometrica the cell plate is formed by fusion of small vesicles originating from the Golgi apparatus. These spherical vesicles of about 0.1 m diameter have an electron dense centre, probably consisting of pectic substances or their precursors. The endoplasmic reticulum producing multivesicular bodies participate in cell plate formation too. Another cytoplasmic component forming the cell plate are coated vesicles, the origin of which is the Golgi apparatus and perhaps also the endoplasmic reticulum. In view of these observations the question of whether the endoplasmic reticulum or the Golgi apparatus forms the cell plate must be answered in this way: both endoplasmic reticulum and Golgi apparatus supply material for growth of the cell plate. Multivesicular bodies, coated vesicles and other small vesicles of unknown nature participate in the formation of the primary wall.

Zum Teil finanziert mit Sondermitteln des Landes Niedersachsen an Prof. Dr. M. Bopp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号