首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthesis of washed cells of Synechococcus UTEX 625 grown on 5% CO2 was markedly stimulated (647 ± 50%) at pH 8.0 by the addition of low concentrations of NaCl (concentration required for half-maximal response, K½, = 18 micromolar). Studies with KCl and Na2SO4 showed that the stimulation was due to Na+. Photosynthesis at pH 6.1 was only slightly stimulated by Na+. The response of photosynthesis at pH 8.0 to [Na+] was strongly sigmoidal for dissolved inorganic carbon ([DIC] ≤ 500 micromolar). Cells grown with high total [DIC], but air-levels of CO2, at pH 9.6 showed the same response to low [Na+]. The absence of Na+ could be partially, but not completely overcome, by higher [DIC]. Various methods for examining CO2 or HCO3 use (K½CO2 determination; isotopic disequilibrium; and consideration of HCO3 dehydration rate) were consistent with CO2 use by the cells, but HCO3 use could not be ruled out. Isotopic disequilibrium studies showed that CO2 use was stimulated by Na+. Cells grown on 5% CO2 accumulated DIC against a concentration gradient by a process (or processes) dependent on Na+. No evidence for uptake of Na+ concomitant with DIC uptake could be found. The lack of O2 evolution during the initial and most rapid period of DIC accumulation suggested that the required energy was obtained from cyclic photophosphorylation.  相似文献   

2.
1. Viscosity and pH curves of casein dissolved in NaOH, KOH, LiOH, and NH4OH are shown and it is found that a maximum viscosity occurs at about the same pH point with each alkali; i.e., 9.1 to 9.25. The magnitude of the viscosity is largest in ammonia solutions. 2. The maximum viscosity occurs in 8 to 10 per cent solutions of casein in alkalies when about 98 x 10–5 gram equivalents of base are combined with 1 gram of casein. 3. A maximum viscosity occurs in the same region (pH 9.1 to 9.25) when casein is dissolved in Na2CO3, Na3AsO4, Na2SO3, NaF, and Na2PO3. 4. The maximum viscosity obtained with borax solutions of casein occurs at 8.15 to 8.2 pH. It is suggested that casein acts like mannitol, glycerol, etc., in increasing the dissociation of boric acid. 5. The flattening of the viscosity curves of casein solutions, following the decline from maximum, is shown to be due to alkaline hydrolysis whence casein no longer exists as such but is cleaved into a major protein containing no phosphorus or sulfur and less nitrogen. This cleavage commences at pH 10.0 to 10.5. 6. When casein is prepared from solutions that have been subjected to high temperatures (60°C. and above) or has otherwise been heated during its preparation, it yields solutions in alkalies of high viscosity.  相似文献   

3.
Present work deals with the bio-mitigation potential of gaseous phase CO2 by chemolithotrophic bacterium Halomonas stevensii isolated from haloalkaliphilic habitat using thiosulfate ion (S2O32−) as an energy source. H. stevensii was tested for various abiotic stress tolerances such as salt [2–12% (w/v)], temperature (10–60 °C) and pH (2–12). Batch studies were conducted for 6 days at 15 (±1) % (v/v) inlet CO2 concentration to find the CO2 fixing capability of H. stevensii under varying concentration of energy substrate i.e. 0, 50 and 100 mM Na2S2O3. Approximately 98% CO2 removal from gaseous phase was achieved at 50 and 100 mM Na2S2O3. Evaluation of CO2 fixation by H. stevensii and carbon allocation into different cellular organic pool (carbohydrate, proteins and primary metabolite) was carried out by growing H. stevensii at 5%, 10% and 15% (v/v) inlet CO2 concentration for the duration of 6 days. The obtained leachate was quantified using chemical technique, FT-IR and GC. Utilization of gaseous phase CO2 by H. stevensii was also proven by conducting the approximate materials balance and energy assessment for the present CO2 fixation process. The mechanism of CO2 metabolism by H. stevensii was evaluated using GC–MS and carbon partitioning into cellular organic pool analysis.  相似文献   

4.
Humic acid in the live alga Pilayellalittoralis was isolated as an aqueous gel by a standard sequential extraction method augmented with removal of alginic acid. Portions of the aqueous gel were (1) vacuum oven dried at 40 °C, (2) freeze freeze dried after cooling in liquid N2, and (3) dried with supercritical fluid CO2 after substitution of water in the gel with acetone. This paper compares the analytical and spectral properties of the products with compost derived HA and reports significant differences in their surface areas, packing densities, water retention, solute sorption and metal binding properties. The results are discussed in terms of different product morphologies determined by scanning electron microscopy. The aerogel obtained by supercritical fluid CO2 drying of an HA gel from Pilayella has the highest surface area (188 m2 g-1) reported for a humic acid. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Pectic polysaccharides solubilized in vivo during ripening, were isolated using phenol, acetic acid, and water (PAW) from the outer pericarp of kiwifruit (Actinidia deliciosa [A. Chev.] C.F. Liang and A.R. Ferguson var deliciosa `Hayward') before and after postharvest ethylene treatment. Insoluble polysaccharides of the cell wall materials (CWMs) were solubilized in vitro by chemical extraction with 0.05 molar cyclohexane-trans-1,2-diamine tetraacetate (CDTA), 0.05 molar Na2CO3, 6 molar guanidinium thiocyanate, and 4 molar KOH. The Na2CO3-soluble fraction decreased by 26%, and the CDTA-soluble fraction increased by 54% 1 day after ethylene treatment. Concomitantly, an increase in the pectic polymer content of the PAW-soluble fraction occurred without loss of galactose from the cell wall. The molecular weight of the PAW-soluble pectic fraction 1 day after ethylene treatment was similar to that of the Na2CO3-soluble fraction before ethylene treatment. Four days after ethylene treatment, 60% of cell wall polyuronide was solubilized, and 50% of the galactose was lost from the CWM, but the degree of galactosylation and molecular weight of pectic polymers remaining in the CWMs did not decrease. The exception was the CDTA-soluble fraction which showed an apparent decrease in molecular weight during ripening. Concurrently, the PAW-soluble pectic fraction showed a 20-fold reduction in molecular weight. The results suggest that considerable solubilization of the pectic polymers occurred during ripening without changes to their primary structure or degree of polymerization. Following solubilization, the polymers then became susceptible to depolymerization and degalactosidation. Pectolytic enzymes such as endopolygalacturonase and β-galactosidase were therefore implicated in the degradation of solubilized cell wall pectic polymers but not the initial solubilization of the bulk of the pectic polymers in vivo.  相似文献   

6.
Supercritical fluid CO2 extraction of the live, dried algaPilayella littoralis efficiently removes non-humic substances in hours instead of the days required for sequential extraction with ether, acetone, ethanol and dioxane. Completion of extraction (including aqueous removal of alginic acids) with either preliminary in a standard procedure gives humic acid samples with closely comparable properties.Authors for correspondence  相似文献   

7.
d-Mannitol (hereafter denoted mannitol) is used in the medical and food industry and is currently produced commercially by chemical hydrogenation of fructose or by extraction from seaweed. Here, the marine cyanobacterium Synechococcus sp. PCC 7002 was genetically modified to photosynthetically produce mannitol from CO2 as the sole carbon source. Two codon-optimized genes, mannitol-1-phosphate dehydrogenase (mtlD) from Escherichia coli and mannitol-1-phosphatase (mlp) from the protozoan chicken parasite Eimeria tenella, in combination encoding a biosynthetic pathway from fructose-6-phosphate to mannitol, were expressed in the cyanobacterium resulting in accumulation of mannitol in the cells and in the culture medium. The mannitol biosynthetic genes were expressed from a single synthetic operon inserted into the cyanobacterial chromosome by homologous recombination. The mannitol biosynthesis operon was constructed using a novel uracil-specific excision reagent (USER)-based polycistronic expression system characterized by ligase-independent, directional cloning of the protein-encoding genes such that the insertion site was regenerated after each cloning step. Genetic inactivation of glycogen biosynthesis increased the yield of mannitol presumably by redirecting the metabolic flux to mannitol under conditions where glycogen normally accumulates. A total mannitol yield equivalent to 10% of cell dry weight was obtained in cell cultures synthesizing glycogen while the yield increased to 32% of cell dry weight in cell cultures deficient in glycogen synthesis; in both cases about 75% of the mannitol was released from the cells into the culture medium by an unknown mechanism. The highest productivity was obtained in a glycogen synthase deficient culture that after 12 days showed a mannitol concentration of 1.1 g mannitol L−1 and a production rate of 0.15 g mannitol L−1 day−1. This system may be useful for biosynthesis of valuable sugars and sugar derivatives from CO2 in cyanobacteria.  相似文献   

8.
Alkali-salinity exerts severe osmotic, ionic, and high-pH stresses to plants. To understand the alkali-salinity responsive mechanisms underlying photosynthetic modulation and reactive oxygen species (ROS) homeostasis, physiological and diverse quantitative proteomics analyses of alkaligrass (Puccinellia tenuiflora) under Na2CO3 stress were conducted. In addition, Western blot, real-time PCR, and transgenic techniques were applied to validate the proteomic results and test the functions of the Na2CO3-responsive proteins. A total of 104 and 102 Na2CO3-responsive proteins were identified in leaves and chloroplasts, respectively. In addition, 84 Na2CO3-responsive phosphoproteins were identified, including 56 new phosphorylation sites in 56 phosphoproteins from chloroplasts, which are crucial for the regulation of photosynthesis, ion transport, signal transduction, and energy homeostasis. A full-length PtFBA encoding an alkaligrass chloroplastic fructose-bisphosphate aldolase (FBA) was overexpressed in wild-type cells of cyanobacterium Synechocystis sp. Strain PCC 6803, leading to enhanced Na2CO3 tolerance. All these results indicate that thermal dissipation, state transition, cyclic electron transport, photorespiration, repair of photosystem (PS) II, PSI activity, and ROS homeostasis were altered in response to Na2CO3 stress, which help to improve our understanding of the Na2CO3-responsive mechanisms in halophytes.  相似文献   

9.
Aphanocapsa 6308 metabolizes both NaHCO3 and Na2CO3. The short term incorporation (5-s) metabolic pattern and the patterns of incorporation of bicarbonate for exponential versus stationary phase cultures differ, however. Cells were equilibrated for 10 min in air and distilled water prior to injection of either NaH14CO3 at pH 8.0, or Na2 14CO3 at pH 11.0. Hot ethanol extracts were analyzed via paper chromatography and autoradiography for products of CO2 fixation. At 5 s, malate (51.5%) predominates slightly as a primary bicarbonate fixation product over 3-phosphoglycerate (40.3%); 3-phosphoglycerate is the primary product of carbonate fixation. At 60 s, the carbonate and bicarbonate labelling patterns are similar. Cells in stationary phase fix in 5 s a greater proportion of bicarbonate into malate (36% vs. 14% for 3-phosphoglycerate) than do cells in exponential growth. Likewise, 60 s incorporations show a large amount of bicarbonate fixed into aspartate (30.9%) in stationary phase cells over that of exponential phase (11.6%). These data suggest an operative C4 pathway for purposes not related to carbohydrate synthesis but rather as compensation for the incomplete tricarboxylic acid cycle in cyanobacteria. The enhancement of both aspartate fixation and CO2 fixation into citrulline in stationary phase correlates with an increase in cyanophycin granule production which requires both aspartate and arginine.Nonstandard Abbreviations 3-PGA 3-phosphoglyceric acid - TCA tricarboxylic acid  相似文献   

10.
Kelp beds, besides being one of the most important benthic resources in northern Chile, provide a variety of environmental goods and services. In order to evaluate economically the wild kelp populations in northern Chile (26° to 32° S) more than simply their commercial value as a source of raw materials for alginate extraction, we used several economic indicators to holistically assess the value of a group of brown seaweeds of economic importance, Lessonia spp. and Macrocystis pyrifera: (1) market value of biomass as a source of raw material for extraction of alginic acid, (2) market value of associated species of economic importance, (3) value as a source of scientific information, (4) value as a climate buffer (CO2 capture and release of O2), (5) value of associated biodiversity (non-commercial species), (6) value as cultural heritage and (7) value as a reservoir of biodiversity. Existence values of kelp beds which estimate the willingness of citizens to pay and work without payment to preserve the ecosystem were calculated using the contingent valuation technique. The results indicate that kelp beds in northern Chile have a total value of US $540 million. Of this total, kelp fishery accounts for 75 % and associated-species fisheries account for 15 %. In this context, the economic value of Chilean kelp beds is mainly associated with the industry of alginate extraction. By contrast, existence value as a source of scientific information or environmental buffer for CO2 capture or O2 production represents only 9 % of the total value, representing a very low relative importance to society. The economic valuation of coastal resources and marine ecosystems is a complementary tool for decision making and implementation of public policies related to the conservation and sustainable exploitation of renewable resources and their ecosystems.  相似文献   

11.
Polymalic acid (PMA) is a water-soluble polyester with many attractive properties for biomedical application. Its monomer l-malic acid is widely used in the food industry and also a potential C4 platform chemical. Cofactor and CO2 donor involved in the reductive routes were investigated for PMA production by Aureobasidium pullulans. Biotin as the key cofactor of pyruvate carboxylase was favor for the PMA biosynthesis. Na2CO3 as CO2 donor can obviously improved PMA titer when compared with no CO2 supplier NaOH, and also exhibit more advantages than the other donor CaCO3 because of its water-soluble characteristic. A combinational process with addition of biotin 70 mg/L and Na2CO3 as the CO2 donor was scaled-up in 50 L fermentor, achieving the high product 34.3 g/L of PMA and productivity of 0.41 g/L h. This process provides an efficient and economical way for PMA and malic acid production, and is promising for industrial application.  相似文献   

12.
Mannitol, sucrose, and laminitol have been isolated from ethanolic extracts of the brown seaweed Desmarestia aculeata and characterised, and rhamnose, sedoheptulose, glucose, fructose, and 2-O-methyl- and 3-O-methyl-fucose have been identified by their chromatographic mobilities and g.l.c. retention times. Laminarin, alginic acid, and “fucans” were isolated also and characterised. The laminarin contained 1.7% of mannitol end-groups, and the fucans a relatively high proportion of galactose which was present as end-group and (1→3)-linked units.  相似文献   

13.
The Na+ requirement for photosynthesis and its relationship to dissolved inorganic carbon (DIC) concentration and Li+ concentration was examined in air-grown cells of the cyanobacterium Synechococcus leopoliensis UTEX 625 at pH 8. Analysis of the rate of photosynthesis (O2 evolution) as a function of Na+ concentration, at fixed DIC concentration, revealed two distinct regions to the response curve, for which half-saturation values for Na+ (K½[Na+]) were calculated. The value of both the low and the high K½(Na+) was dependent upon extracellular DIC concentration. The low K½(Na+) decreased from 1000 micromolar at 5 micromolar DIC to 200 micromolar at 140 micromolar DIC whereas over the same DIC concentration range the high K½(Na+) decreased from 10 millimolar to 1 millimolar. The most significant increases in photosynthesis occurred in the 1 to 20 millimolar range. A fraction of total photosynthesis, however, was independent of added Na+ and this fraction increased with increased DIC concentration. A number of factors were identified as contributing to the complexity of interaction between Na+ and DIC concentration in the photosynthesis of Synechococcus. First, as revealed by transport studies and mass spectrometry, both CO2 and HCO3 transport contributed to the intracellular supply of DIC and hence to photosynthesis. Second, both the CO2 and HCO3 transport systems required Na+, directly or indirectly, for full activity. However, micromolar levels of Na+ were required for CO2 transport while millimolar levels were required for HCO3 transport. These levels corresponded to those found for the low and high K½(Na+) for photosynthesis. Third, the contribution of each transport system to intracellular DIC was dependent on extracellular DIC concentration, where the contribution from CO2 transport increased with increased DIC concentration relative to HCO3 transport. This change was reflected in a decrease in the Na+ concentration required for maximum photosynthesis, in accord with the lower Na+-requirement for CO2 transport. Lithium competitively inhibited Na+-stimulated photosynthesis by blocking the cells' ability to form an intracellular DIC pool through Na+-dependent HCO3 transport. Lithium had little effect on CO2 transport and only a small effect on the size of the pool it generated. Thus, CO2 transport did not require a functional HCO3 transport system for full activity. Based on these observations and the differential requirement for Na+ in the CO2 and HCO3 transport system, it was proposed that CO2 and HCO3 were transported across the membrane by different transport systems.  相似文献   

14.
To evaluate and develop methodologies for the extraction of gel-forming extracellular polymeric substances (EPS), EPS from aerobic granular sludge (AGS) was extracted using six different methods (centrifugation, sonication, ethylenediaminetetraacetic acid (EDTA), formamide with sodium hydroxide (NaOH), formaldehyde with NaOH and sodium carbonate (Na2CO3) with heat and constant mixing). AGS was collected from a pilot wastewater treatment reactor. The ionic gel-forming property of the extracted EPS of the six different extraction methods was tested with calcium ions (Ca2+). From the six extraction methods used, only the Na2CO3 extraction could solubilize the hydrogel matrix of AGS. The alginate-like extracellular polymers (ALE) recovered with this method formed ionic gel beads with Ca2+. The Ca2+-ALE beads were stable in EDTA, formamide with NaOH and formaldehyde with NaOH, indicating that ALE are one part of the structural polymers in EPS. It is recommended to use an extraction method that combines physical and chemical treatment to solubilize AGS and extract structural EPS.  相似文献   

15.
Crystalline mannitol and some oligosaccharides were separated from ethanolic extracts of Desmarestia ligulata and D. firma. Laminaran, ‘fucans’ and alginic acid were also isolated from both species. The laminaran from D. ligulata comprised both M- and G-chains but no M-chains were found in the laminaran from D. firma. In both species the amount of ‘fucan’ was small, particularly in D. firma. Both ‘fucans’ contained glucuronic acid, galactose, xylose and fucose and that from D. ligulata also contained mannose. After sequential extraction of D. ligulata with water, acid and alkali evidence was obtained for the presence of cellulose, a uronan, and protein in the residual material.  相似文献   

16.
We have earlier reported that the endophyte infection can enhance photosynthetic capacity and antioxidant enzyme activities in rice exposed to salinity stress. Now, the changes in primary photochemistry of photosystem (PS) II induced by Na2CO3 stress in endophyte-infected (E+) and endophyte-uninfected (E-) rice seedlings were studied using chlorophyll a fluorescence (OJIP-test). Performance indices (PIABS and PITotal) of E- and E+ rice seedlings revealed the inhibitory effects of Na2CO3 on PS II connectivity (occurrence of an L-band), oxygen evolving complex (occurrence of a K-band), and on the J step of the induction curves, associated with an inhibition of electron transport from plastoquinone A (QA) to plastoquinone B (QB). In E+ seedlings, Na2CO3 effects on L and K bands were much smaller, or even negligible, and also there was no pronounced effect on the J step. Furthermore, the OJIP parameters indicated that 20 mM Na2CO3 had a greater influence on the photosystem (PS) II electron transport chain than did the 10 mM Na2CO3, and that changes were greater in E- than in E+. Endophyte infection was therefore deemed to enhance the photosynthetic mechanism of Oryza sativa exposed to salinity stress.  相似文献   

17.
Abstract

Addition of Na2CO3 to almost salt-free DNA solution (5·10?5M EDTA, pH=5.7, Tm=26.5 °C) elevates both pH and the DNA melting temperature (Tm) if Na2CO3 concentration is less than 0.004M. For 0.004M Na2CO3, Tm=58 °C is maximal and pH=10.56. Further increase in concentration gives rise to a monotonous decrease in Tm to 37 °C for 1M N2CO3 (pH=10.57). Increase in pH is also not monotonous. The highest pH=10.87 is reached at 0.04M Na2CO3 (Tm=48.3 °C). To reveal the cause of this DNA destabilization, which happens in a narrow pH interval (10.56÷10.87) and a wide Na2CO3 concentration interval (0.004÷1M), a procedure has been developed for determining the separate influences on Tm of Na+, pH, and anions formed by Na2CO3 (HCO3 ? and CO3 2-). Comparison of influence of anions formed by Na2CO3 on DNA stability with Cl? (anion inert to DNA stability), ClO4 ? (strong DNA destabilizing “chaotropic” anion) and OH? has been carried out. It has been shown that only Na+ and pH influence Tm in Na2CO3 solution at concentrations lower than 0.001M. However, the Tm decrease with concentration for [Na2CO3]≥0.004M is only partly caused by high pH≈10.7. Na2CO3 anions also exert a strong destabilizing influence at these concentrations. For 0.1M Na2CO3 (pH=10.84, [Na+]=0.2M, Tm=42.7 °C), the anion destabilizing effect is higher 20 °C. For NaClO4 (ClO4 ? is a strong “chaotropic” anion), an equal anion effect occurs at much higher concentrations ~3M. This means that Na2CO3 gives rise to a much stronger anion effect than other salts. The effect is pH dependent. It decreases fivefold at neutral pH after addition of HCl to 0.1M Na2CO3 as well as after addition of NaOH for pH>11.2.  相似文献   

18.
Stromal acidification has been reported to mediate reduced osmotic potential (ψπ) effects on photosynthesis in the isolated spinach chloroplast (Berkowitz, Gibbs 1983 Plant Physiol 72: 1100-1109). To determine if stromal acidification mediates osmotic dehydration inhibition of photosynthesis in vivo, the effects of a weak base (NH4Cl), which raises stromal pH, on CO2 fixation of vacuum-infiltrated spinach leaf slices, Chlamydomonas reinhardii cells and Aphanocapsa 6308 cells under isotonic and dehydrating conditions were investigated. Five millimolar NH4Cl stimulated spinach leaf slice CO2 fixation by 43% under stress (0.67 molar sorbitol) conditions, and had little effect on fixation under isotonic (0.33 molar sorbitol) conditions. Chlamydomonas cells were found to be more sensitive to reduced ψπ than spinach leaf slices. CO2 fixation in the cells of the green alga Chlamydomonas reinhardii was 99 and 17 micromoles per milligram chlorophyll per hour, respectively, at 0.1 molar mannitol and 0.28 molar mannitol. Five millimolar NH4Cl stimulated CO2 fixation of Chlamydomonas cells by 147% under stress (0.28 molar mannitol) conditions. Aphanocapsa 6308 cells (blue-green alga) were also found to be sensitive to reduced ψπ, and inhibitions in photosynthesis were partially reversed by NH4Cl. These data indicate that in vivo water stress inhibition of photosynthesis is facilitated by stromal acidification, and that this inhibition can be at least partially reversed in situ.  相似文献   

19.
Heterocyst preparations have been obtained which actively perform nitrogen fixation (C2H2 reduction) and contain the enzymes of glycolysis and some of the tricarboxylic acid cycle. Pyruvate: ferredoxin oxidereductase has been unambiguously demonstrated in extracts from heterocysts by the formation of acetylcoenzyme A, CO2 and reduced methyl viologen (ferredoxi) from pyruvate, coenzyme A and oxidized methyl viologen (ferredoxin) as well as by the synthesis of pyruvate from CO2, acetylcoenzyme A and reduced methyl viologen. Pyruvate supports C2H2 reduction by isolated heterocysts, however, with lower activity than Na2S2O4 and H2. α-Ketoglutarate: ferredoxin oxidoreductase is absent in Anabaena cylindrica, confirming that the organism has an incomplete tricarboxylic acid cycle.  相似文献   

20.
Chloride and carbonate salts are the main salts causing salinization and widely exist in aquatic environment, so algae may suffer from salinization stress for high water evaporation. In this study, in order to investigate and compare the toxic effects of the two salts on algal photosynthesis, we used NaCl and Na2CO3 to stress Chlamydomonas reinhardtii. Under the two salt stresses, the content of O 2 and H2O2 in the cells was increased significantly, and it was much higher in Na2CO3 treatment than in NaCl treatment at the same Na+ concentration. The absorbance spectra and 4th derivative spectra of photosynthetic pigments were declined under 300 mM NaCl and 25 mM Na2CO3 stresses, and remarkably changed under 50 mM and 100 mM Na2CO3 stresses. When the cells stressed by the two salts, the maximum quantum yield (Fv/Fm), electron transport rate (ETR) and photochemical quenching (qP) were reduced markedly, but the nonphotochemical dissipation (NPQ) was increased markedly. At the same Na+ concentration, Na2CO3 stress had stronger toxic effects on photosynthetic ability than NaCl stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号