首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesozoic plants and the problem of angiosperm ancestry   总被引:1,自引:0,他引:1  
Krassilov, V.: Mesozoic plants and the problem of angiosperm ancestry.
Trends leading to the foliar and floral structures of angiosperms may be deduced by comparison with Mesozoic gymnosperms. The Debeya-Fontainea group of Cretaceous angiosperms closely resembles the Early Mesozoic Scoresbya group of pteridosperms with regard to leaf characters. The bivalved capsules of Jurassic Leptostrobus , with stigmatic bands, are regarded as the forerunners of certain types of angiosperm carpels. The angiospermous characters arose in several lineages of gymnosperms and were probably accumulated by non-sexual transfer of genetic material. The earliest angiosperm mega- and microfossils have been reported from the Middle and Upper Jurassic of the northern hemisphere. Most of these angiosperms were confined to chaparral-like communities dominated by shrubby conifers and cycadophytes. The rise of angiosperms was promoted by the climatic changes and the simultaneous rise of mammals.  相似文献   

2.
The ecophysiology of early angiosperms   总被引:1,自引:0,他引:1  
Angiosperms first appeared during the Early Cretaceous, and within 30 million years they reigned over many floras worldwide. Associated with this rise to prominence, angiosperms produced a spectrum of reproductive and vegetative innovations, which produced a cascade of ecological consequences that altered the ecology and biogeochemistry of the planet. The pace, pattern and phylogenetic systematics of the Cretaceous angiosperm diversification are broadly sketched out. However, the ecophysiology and environmental interactions that energized the early angiosperm radiation remain unresolved. This constrains our ability to diagnose the selective pressures and habitat contexts responsible for the evolution of fundamental angiosperm features, such as flowers, rapid growth, xylem vessels and net-veined leaves, which in association with environmental opportunities, drove waves of phylogenetic and ecological diversification. Here, we consider our current understanding of early angiosperm ecophysiology. We focus on comparative patterns of ecophysiological evolution, emphasizing carbon- and water-use traits, by merging recent molecular phylogenetic studies with physiological studies focused on extant basal angiosperms. In doing so, we discuss how early angiosperms established a roothold in pre-existing Mesozoic plant communities, and how these events canalized subsequent bursts of angiosperm diversification during the Aptian-Albian.  相似文献   

3.
The flowering plants--angiosperms--appeared during the Early Cretaceous period and within 10-30 Myr dominated the species composition of many floras worldwide. Emerging insights into the phylogenetics of development and discoveries of early angiosperm fossils are shedding increased light on the patterns and processes of early angiosperm evolution. However, we also need to integrate ecology, in particular how early angiosperms established a roothold in pre-existing Mesozoic plant communities. These events were critical in guiding subsequent waves of angiosperm diversification during the Aptian-Albian. Previous pictures of the early flowering plant ecology have been diverse, ranging from large tropical rainforest trees, weedy drought-adapted and colonizing shrubs, disturbance- and sun-loving rhizomatous herbs, and, more recently, aquatic herbs; however, none of these images were tethered to a robust hypothesis of angiosperm phylogeny. Here, we synthesize our current understanding of early angiosperm ecology, focusing on patterns of functional ecology, by merging recent molecular phylogenetic studies and functional studies on extant 'basal angiosperms' with the picture of early angiosperm evolution drawn by the fossil record.  相似文献   

4.
Although flowers, leaves, and stems of the angiosperms have understandably received more attention than roots, the growing root tips, or root apical meristems (RAMs), are organs that could provide insight into angiosperm evolution. We studied RAM organization across a broad spectrum of angiosperms (45 orders and 132 families of basal angiosperms, monocots, and eudicots) to characterize angiosperm RAMs and cortex development related to RAMs. Types of RAM organization in root tips of flowering plants include open RAMs without boundaries between some tissues in the growing tip and closed RAMs with distinct boundaries between apical regions. Epidermis origin is associated with the cortex in some basal angiosperms and monocots and with the lateral rootcap in eudicots and other basal angiosperms. In most angiosperm RAMs, initials for the central region of the rootcap, or columella, are distinct from the lateral rootcap and its initials. Slightly more angiosperm families have exclusively closed RAMs than exclusively open RAMs, but many families have representatives with both open and closed RAMs. Root tips with open RAMs are generally found in angiosperm families considered sister to other families; certain open RAMs may be ancestral in angiosperms.  相似文献   

5.
Crisp MD  Cook LG 《The New phytologist》2011,192(4):997-1009
We test the widely held notion that living gymnosperms are 'ancient' and 'living fossils' by comparing them with their sister group, the angiosperms. This perception derives partly from the lack of gross morphological differences between some Mesozoic gymnosperm fossils and their living relatives (e.g. Ginkgo, cycads and dawn redwood), suggesting that the rate of evolution of gymnosperms has been slow. We estimated the ages and diversification rates of gymnosperm lineages using Bayesian relaxed molecular clock dating calibrated with 21 fossils, based on the phylogenetic analysis of alignments of matK chloroplast DNA (cpDNA) and 26S nuclear ribosomal DNA (nrDNA) sequences, and compared these with published estimates for angiosperms. Gymnosperm crown groups of Cenozoic age are significantly younger than their angiosperm counterparts (median age: 32 Ma vs 50 Ma) and have long unbranched stems, indicating major extinctions in the Cenozoic, in contrast with angiosperms. Surviving gymnosperm genera have diversified more slowly than angiosperms during the Neogene as a result of their higher extinction rate. Compared with angiosperms, living gymnosperm groups are not ancient. The fossil record also indicates that gymnosperms suffered major extinctions when climate changed in the Oligocene and Miocene. Extant gymnosperm groups occupy diverse habitats and some probably survived after making adaptive shifts.  相似文献   

6.
Flowering plants (angiosperms) are by far the largest, most diverse, and most important group of land plants, with over 250,000 species and a dominating presence in most terrestrial ecosystems. Understanding the origin and early diversification of angiosperms has posed a long-standing botanical challenge [1]. Numerous morphological and molecular systematic studies have attempted to reconstruct the early history of this group, including identifying the root of the angiosperm tree. There is considerable disagreement among these studies, with various groups of putatively basal angiosperms from the subclass Magnoliidae having been placed at the root of the angiosperm tree (reviewed in [2-4]). We investigated the early evolution of angiosperms by conducting combined phylogenetic analyses of five genes that represent all three plant genomes from a broad sampling of angiosperms. Amborella, a monotypic, vessel-less dioecious shrub from New Caledonia, was clearly identified as the first branch of angiosperm evolution, followed by the Nymphaeales (water lillies), and then a clade of woody vines comprising Schisandraceae and Austrobaileyaceae. These findings are remarkably congruent with those from several concurrent molecular studies [5-7] and have important implications for whether or not the first angiosperms were woody and contained vessels, for interpreting the evolution of other key characteristics of basal angiosperms, and for understanding the timing and pattern of angiosperm origin and diversification.  相似文献   

7.
? Premise of the study: It has been 8 years since the last comprehensive analysis of divergence times across the angiosperms. Given recent methodological improvements in estimating divergence times, refined understanding of relationships among major angiosperm lineages, and the immense interest in using large angiosperm phylogenies to investigate questions in ecology and comparative biology, new estimates of the ages of the major clades are badly needed. Improved estimations of divergence times will concomitantly improve our understanding of both the evolutionary history of the angiosperms and the patterns and processes that have led to this highly diverse clade. ? Methods: We simultaneously estimated the age of the angiosperms and the divergence times of key angiosperm lineages, using 36 calibration points for 567 taxa and a "relaxed clock" methodology that does not assume any correlation between rates, thus allowing for lineage-specific rate heterogeneity. ? Key results: Based on the analysis for which we set fossils to fit lognormal priors, we obtained an estimated age of the angiosperms of 167-199 Ma and the following age estimates for major angiosperm clades: Mesangiospermae (139-156 Ma); Gunneridae (109-139 Ma); Rosidae (108-121 Ma); Asteridae (101-119 Ma). ? Conclusions: With the exception of the age of the angiosperms themselves, these age estimates are generally younger than other recent molecular estimates and very close to dates inferred from the fossil record. We also provide dates for all major angiosperm clades (including 45 orders and 335 families [208 stem group age only, 127 both stem and crown group ages], sensu APG III). Our analyses provide a new comprehensive source of reference dates for major angiosperm clades that we hope will be of broad utility.  相似文献   

8.
BACKGROUND AND AIMS: The mid-Cretaceous is a period of sudden turnover from gymnosperm to angiosperm-dominated floras. The aim was to investigate the fossil plant ecology in order to follow the spread of angiosperm taxa. METHODS: Floristic lists and localities from the latest Albian-Cenomanian of Europe are analysed with Wagner's Parsimony Method, a clustering method currently used in phylogeny (cladistics). KEY RESULTS: Wagner's Parsimony Method points out that (a) gymnosperms dominated brackish water-related environments while angiosperms dominated freshwater-related environments (e.g. swamps, floodplains, levees, channels), (b) angiosperms showed the highest diversity in stable, freshwater-related environments, (c) a single angiosperm, 'Diospyros' cretacea, is restricted to brackish water-related environments and (d) the families Lauraceae and Platanaceae were exclusive to disturbed, braided river environments, implying a opportunist strategy for early tree angiosperms. CONCLUSIONS: During the Mid-Cretaceous, European floras were characterized by (a) coastal gymnosperms, (b) highly diversified fluvial angiosperms and (c) the first European brackish water-related angiosperm.  相似文献   

9.
中国台湾海峡两岸原始被子植物的起源、分化和关系   总被引:4,自引:0,他引:4  
文章分析了中国台湾海峡两岸共有20个原始被子植物科的地理分布,区系分化,起源以及它们之间的关系,进一步证明台湾海峡两海的植物区系是一个统一的区系,台湾省是一个东亚植物区系的马来西亚植物区系交汇,而以东亚植物区系成分占优势的地区,台淡丰富的原始被子植物特有种,大多种是在台湾同大陆分离以后形成的,带有新特有的种的性质,中国大陆同台湾现存的原始被子植物科属在区系上是共同起源的,起源的时间和地区可以追溯到中生代的华夏古陆,即在白垩纪末台湾同大陆第一次分裂之前就已经表成了,第四纪冰期大陆同台湾之间的陆桥,对两岸原始被子植物的分布几乎没有影响。  相似文献   

10.
Aquatic plants are phylogenetically well dispersed across the angiosperms. Reproductive and other life-history traits of aquatic angiosperms are closely associated with specific growth forms. Hydrophilous pollination exhibits notable examples of convergent evolution in angiosperm reproductive structures, and hydrophiles exhibit great diversity in sexual system. In this study, we reconstructed ancestral characters of aquatic lineages based on the phylogeny of aquatic angiosperms. Our aim is to find the correlations of life form, pollination mode and sexual system in aquatic angiosperms. Hydrophily is the adaptive evolution of completely submersed angiosperms to aquatic habitats. Hydroautogamy and maleflower-ephydrophily are the transitional stages from anemophily and entomophily to hydrophily. True hydrophily occurs in 18 submersed angiosperm genera, which is associated with an unusually high incidence of unisexual flowers. All marine angiosperms are submersed, hydrophilous species. This study would help us understand the evolution of hydrophilous pollination and its correlations with life form and sexual system.  相似文献   

11.
Gymnosperms, and conifers in particular, are sometimes very productive trees yet angiosperms dominate most temperate and tropical vegetation. Current explanations for angiosperm success emphasize the advantages of insect pollination and seed dispersal by animals for the colonization of isolated habitats. Differences between gymnosperm and angiosperm reproductive and vegetative growth rates have been largely ignored. Gymnosperms are all woody, perennial and usually have long reproductive cycles. Their leaves are not as fully vascularized as those of angiosperms and are more stereotyped in shape and size. Gymnosperm tracheids are generally more resistant to solute flow than angiosperm vessels. A consequence of the less efficient transport system is that maximum growth rates of gymnosperms are lower than maximum growth rates of angiosperms in well lit, well watered habitats. Gymnosperm seedlings may be particularly uncompetitive since their growth depends on a single cohort of relatively inefficient leaves. Later, some gymnosperms attain a higher productivity than co-occurring angiosperm trees by accumulating several cohorts of leaves with a higher total leaf area. These functional constraints on gymnosperm growth rates suggest that gymnosperms will be restricted to areas where growth of angiosperm competitors is reduced, for example, by cold or nutrient shortages. Biogeographic evidence supports this prediction since conifers are largely confined to high latitudes and elevations or nutrient-poor soils. Experimental studies show that competition in the regeneration niche (between conifer seedlings and angiosperm herbs and shrubs) is common and significantly affects conifer growth and survival, Fast-growing angiosperms, especially herbs and shrubs, may also change the frequency of disturbance regimes thereby excluding slower-growing gymnosperms. Shade-tolerant and early successional conifers share similar characteristics of slow initial growth and low plasticity to a change in resources. Shade-tolerant gymnosperms would be expected to occur only where forest openings are small or otherwise unsuitable for rapid filling by fast-growing angiosperm trees, lianas or shrubs. The limited evidence available suggests that shade-tolerant conifers are confined to forests with small gap sizes where large disturbances are very rare. The regeneration hypothesis for gymnosperm exclusion by angiosperms is consistent with several aspects of the fossil record such as the early disappearance of gymnosperms from early successional environments where competition with angiosperms would have been most severe. However there are unresolved difficulties in interpreting process from paleoecological pattern which prevent the testing of alternative hypotheses.  相似文献   

12.
ABSOLUTE DIVERSIFICATION RATES IN ANGIOSPERM CLADES   总被引:18,自引:0,他引:18  
Abstract The extraordinary contemporary species richness and ecological predominance of flowering plants (angiosperms) are even more remarkable when considering the relatively recent onset of their evolutionary diversification. We examine the evolutionary diversification of angiosperms and the observed differential distribution of species in angiosperm clades by estimating the rate of diversification for angiosperms as a whole and for a large set of angiosperm clades. We also identify angiosperm clades with a standing diversity that is either much higher or lower than expected, given the estimated background diversification rate. Recognition of angiosperm clades, the phylogenetic relationships among them, and their taxonomic composition are based on an empirical compilation of primary phylogenetic studies. By making an integrative and critical use of the paleobotanical record, we obtain reasonably secure approximations for the age of a large set of angiosperm clades. Diversification was modeled as a stochastic, time‐homogeneous birth‐and‐death process that depends on the diversification rate (r) and the relative extinction rate (∈). A statistical analysis of the birth and death process was then used to obtain 95% confidence intervals for the expected number of species through time in a clade that diversifies at a rate equal to that of angiosperms as a whole. Confidence intervals were obtained for stem group and for crown group ages in the absence of extinction (∈= 0.0) and under a high relative extinction rate (∈= 0.9). The standing diversity of angiosperm clades was then compared to expected species diversity according to the background rate of diversification, and, depending on their placement with respect to the calculated confidence intervals, exceedingly species‐rich or exceedingly species‐poor clades were identified. The rate of diversification for angiosperms as a whole ranges from 0.077 (∈= 0.9) to 0.089 (∈= 0.0) net speciation events per million years. Ten clades fall above the confidence intervals of expected species diversity, and 13 clades were found to be unexpectedly species poor. The phylogenetic distribution of clades with an exceedingly high number of species suggests that traits that confer high rates of diversification evolved independently in different instances and do not characterize the angiosperms as a whole.  相似文献   

13.
被子植物系统发育深层关系研究: 进展与挑战   总被引:1,自引:0,他引:1  
曾丽萍  张宁  马红 《生物多样性》2014,22(1):21-434
被子植物系统发育学是研究被子植物及其各类群间亲缘关系与进化历史的学科。从20世纪90年代起, 核苷酸和氨基酸序列等分子数据开始被广泛运用于被子植物系统发育研究, 经过20多年的发展, 从使用单个或联合少数几个细胞器基因, 到近期应用整个叶绿体基因组来重建被子植物的系统发育关系, 目、科水平上的被子植物系统发育框架已被广泛接受。在这个框架中, 基部类群、主要的5个分支(即真双子叶植物、单子叶植物、木兰类、金粟兰目和金鱼藻目)、每个分支所包含的目以及几个大分支包括的核心类群等都具有高度支持。与此同时, 细胞器基因还存在一些固有的问题, 例如单亲遗传、系统发育信息量有限等, 因此近年来双亲遗传的核基因在被子植物系统发育研究中的重要性逐渐得到关注, 并在不同分类阶元的研究中都取得了一定进展。但是, 被子植物系统发育中仍然存在一些难以确定的关系, 例如被子植物5个分支之间的关系、真双子叶植物内部某些类群的位置等。本文简述了20多年来被子植物系统发育深层关系的主要研究进展, 讨论了被子植物系统发育学常用的细胞器基因和核基因的选用, 已经确定和尚未确定系统发育位置的主要类群, 以及研究中尚存在的问题和可能的解决方法。  相似文献   

14.
The angiosperms, one of five groups of extant seed plants, are the largest group of land plants. Despite their relatively recent origin, this clade is extremely diverse morphologically and ecologically. However, angiosperms are clearly united by several synapomorphies. During the past 10 years, higher-level relationships of the angiosperms have been resolved. For example, most analyses are consistent in identifying Amborella, Nymphaeaceae, and Austrobaileyales as the basalmost branches of the angiosperm tree. Other basal lineages include Chloranthaceae, magnoliids, and monocots. Approximately three quarters of all angiosperm species belong to the eudicot clade, which is strongly supported by molecular data but united morphologically by a single synapomorphy-triaperturate pollen. Major clades of eudicots include Ranunculales, which are sister to all other eudicots, and a clade of core eudicots, the largest members of which are Saxifragales, Caryophyllales, rosids, and asterids. Despite rapid progress in resolving angiosperm relationships, several significant problems remain: (1) relationships among the monocots, Chloranthaceae, magnoliids, and eudicots, (2) branching order among basal eudicots, (3) relationships among the major clades of core eudicots, (4) relationships within rosids, (5) relationships of the many lineages of parasitic plants, and (6) integration of fossils with extant taxa into a comprehensive tree of angiosperm phylogeny.  相似文献   

15.
Despite more than a century of research, some key aspects of habitat preference and ecology of the earliest angiosperms remain poorly constrained. Proposed growth ecology has varied from opportunistic weedy species growing in full sun to slow-growing species limited to the shaded understorey of gymnosperm forests. Evidence suggests that the earliest angiosperms possessed low transpiration rates: gas exchange rates for extant basal angiosperms are low, as are the reconstructed gas exchange rates for the oldest known angiosperm leaf fossils. Leaves with low transpirational capacity are vulnerable to overheating in full sun, favouring the hypothesis that early angiosperms were limited to the shaded understorey. Here, modelled leaf temperatures are used to examine the thermal tolerance of some of the earliest angiosperms. Our results indicate that small leaf size could have mitigated the low transpirational cooling capacity of many early angiosperms, enabling many species to survive in full sun. We propose that during the earliest phases of the angiosperm leaf record, angiosperms may not have been limited to the understorey, and that some species were able to compete with ferns and gymnosperms in both shaded and sunny habitats, especially in the absence of competition from more rapidly growing and transpiring advanced lineages of angiosperms.  相似文献   

16.
17.
Deep evolutionary histories can play an important role in assembling species into communities, but few studies have explored the effects of deep evolutionary histories on species assembly of angiosperms (flowering plants). Here we explore patterns of family divergence and diversification times (stem and crown ages, respectively) and phylogenetic fuses for angiosperm assemblages in 100 × 100 km grid cells across geographic and ecological gradients in China. We found that both family stem and crown ages of angiosperm assemblages are older in southeastern China with warm and humid climates than in northwestern China with cold and dry climates; these patterns are stronger for family stem ages than for family crown ages; families in colder and drier climates are more closely related across the family-level angiosperm phylogeny; and family phylogenetic fuses are, on average, longer for angiosperm assemblages in warm and humid climates than in cold and dry climate. We conclude that the fact that deep evolutionary histories, which were measured as family stem and crown ages and family phylogenetic fuses in this study, have shown strong geographic and ecological patterns suggests that deep evolutionary histories of angiosperms have profound effects on assembling angiosperm species into ecological communities.  相似文献   

18.
The classic leaf fossil floras from the Cretaceous of the Lusitanian Basin, Portugal, which were first described more than one hundred years ago, have played an important role in the development of ideas on the early evolution of angiosperms. Insights into the nature of vegetational change in the Lusitanian Basin through the Cretaceous have also come from studies of fossil pollen and spores, but the discovery of a series of mesofossil floras containing well-preserved angiosperm reproductive structures has provided a new basis for understanding the systematic relationships and biology of angiosperms at several stratigraphic levels through the Cretaceous. In the earliest mesofossil floras from the Torres Vedras locality, which are of probable Late Barremian-Early Aptian age, angiosperms are surprisingly diverse with about 50 different taxa. In slightly later mesofossil floras, which are of probable Late Aptian-Early Albian age, the diversity of angiosperms is still more substantial with more than hundred different kinds of angiosperm reproductive structures recognized from the Famalicão locality alone. However, this early diversity is largely among angiosperm lineages that produced monoaperturate pollen (e.g., Chloranthaceae, Nymphaeales) and early diverging monocots (Alismatales). Eudicots are rare in these Early Cretaceous mesofossil floras, but already by the Late Cenomanian the vegetation of the western Iberian Peninsula is dominated by angiosperms belonging to various groups of core eudicots. The Normapolles complex is a particularly conspicuous element in both mesofossil floras and in palynological assemblages. In the Late Cretaceous mesofossil floras from Esgueira and Mira, which are of Campanian-Maastrichtian age, core eudicots are also floristically dominant and flowers show great organisational similarity to fossil flowers from other Late Cretaceous floras described from other localities in Asia, Europe and North America.  相似文献   

19.
Abstract.— Seed dormancy plays an important role in germination ecology and seed plant evolution. Morphological seed dormancy is caused by an underdeveloped embryo that must mature prior to germination. It has been suggested that the presence of an underdeveloped embryo is plesiomorphic among seed plants and that parallel directional change in embryo morphology has occurred separately in gymnosperms and in angiosperms. We test these hypotheses using original data on embryo morphology of key basal taxa, a published dataset, and the generalized least squares (GLS) method of ancestral character state reconstruction. Reconstructions for embryo to seed ratio (E:S) using family means for 179 families showed that E:S has increased between the ancestral angiosperm and almost all extant angiosperm taxa. Species in the rosid clade have particularly large embryos relative to the angiosperm ancestor. Results for the gymnosperms show a similar but smaller increase. There were no statistically significant differences in E:S between basal taxa and any derived group due to extremely large standard errors produced by GLS models. However, differences between reconstructed values for the angiosperm ancestor and more highly nested nodes are large and these results are robust to topological and branch-length manipulations. Our analysis supports the idea that the underdeveloped embryo is primitive among seed plants and that there has been a directional change in E:S within both angiosperms and gymnosperms. Our analysis suggests that dormancy enforced by an underdeveloped embryo is plesiomorphic among angiosperms and that nondormancy and other dormancy types probably evolved within the angiosperms. The shift in E:S was likely a heterochronic change, and has important implications for the life history of seed plants.  相似文献   

20.
Recent progress in reconstructing angiosperm phylogeny   总被引:5,自引:0,他引:5  
In the past year, the study of angiosperm phylogeny has moved from tentative inferences based on relatively small data matrices into an era of sophisticated, multigene analyses and significantly greater confidence. Recent studies provide both strong statistical support and mutual corroboration for crucial aspects of angiosperm phylogeny. These include identifying the earliest extant lineages of angiosperms, confirming Amborella as the sister of all other angiosperms, confirming some previously proposed lineages and redefining other groups consistent with their phylogeny. This phylogenetic framework enables the exploration of both genotypic and phenotypic diversification among angiosperms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号