首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following induction with D-phenylglycine both d-phenylglycine aminotransferase activity and benzoylformate decarboxylase activity were observed in cultures of Pseudomonas stutzeri ST-201. Induction with benzoylformate, on the other hand, induced only benzoylformate decarboxylase activity. Purification of the benzoylformate decarboxylase, followed by N-terminal sequencing, enabled the design of probes for hybridization with P. stutzeri ST-201 genomic DNA libraries. Sequencing of two overlapping genomic DNA restriction fragments revealed two open reading frames which were denoted dpgB and dpgC. Sequence alignments suggested that the genes encoded a thiamin-diphosphate-dependent decarboxylase and an aldehyde dehydrogenase, respectively. Both genes were isolated and expressed in Escherichia coli. The dpgB gene product was confirmed as a benzoylformate decarboxylase while the dpgC gene product was characterized as a NAD+/NADP+-dependent benzaldehyde dehydrogenase. In keeping with their high sequence identities (both greater than 85%) the kinetic properties of the two enzymes were similar to those of the homologous enzymes in the mandelate pathway of Pseudomonas putida ATCC 12633. However, Pseudomonas stutzeri ST-201 was unable to grow on either isomer of mandelate, and sequencing indicated that the dpgB gene did not form part of an operon. Thus it appears that the two enzymes form part of a d-phenylglycine, rather than mandelate, degrading pathway.  相似文献   

2.
The genes that encode the five known enzymes of the mandelate pathway of Pseudomonas putida (ATCC 12633), mandelate racemase (mdlA), (S)-mandelate dehydrogenase (mdlB), benzoylformate decarboxylase (mdlC), NAD(+)-dependent benzaldehyde dehydrogenase (mdlD), and NADP(+)-dependent benzaldehyde dehydrogenase (mdlE), have been cloned. The genes for (S)-mandelate dehydrogenase and benzoylformate decarboxylase have been sequenced; these genes and that for mandelate racemase [Ransom, S. C., Gerlt, J. A., Powers, V. M., & Kenyon, G. L. (1988) Biochemistry 27, 540] are organized in an operon (mdlCBA). Mandelate racemase has regions of sequence similarity to muconate lactonizing enzymes I and II from P. putida. (S)-Mandelate dehydrogenase is predicted to be 393 amino acids in length and to have a molecular weight of 43,352; it has regions of sequence similarity to glycolate oxidase from spinach and ferricytochrome b2 lactate dehydrogenase from yeast. Benzoylformate decarboxylase is predicted to be 499 amino acids in length and to have a molecular weight of 53,621; it has regions of sequence similarity to enzymes that decarboxylate pyruvate with thiamin pyrophosphate as cofactor. These observations support the hypothesis that the mandelate pathway evolved by recruitment of enzymes from preexisting metabolic pathways. The gene for benzoylformate decarboxylase has been expressed in Escherichia coli with the trc promoter, and homogeneous enzyme has been isolated from induced cells.  相似文献   

3.
Following induction with d-phenylglycine both d-phenylglycine aminotransferase activity and benzoylformate decarboxylase activity were observed in cultures of Pseudomonas stutzeri ST-201. Induction with benzoylformate, on the other hand, induced only benzoylformate decarboxylase activity. Purification of the benzoylformate decarboxylase, followed by N-terminal sequencing, enabled the design of probes for hybridization with P. stutzeri ST-201 genomic DNA libraries. Sequencing of two overlapping genomic DNA restriction fragments revealed two open reading frames which were denoted dpgB and dpgC. Sequence alignments suggested that the genes encoded a thiamin-diphosphate-dependent decarboxylase and an aldehyde dehydrogenase, respectively. Both genes were isolated and expressed in Escherichia coli. The dpgB gene product was confirmed as a benzoylformate decarboxylase while the dpgC gene product was characterized as a NAD+/NADP+-dependent benzaldehyde dehydrogenase. In keeping with their high sequence identities (both greater than 85%) the kinetic properties of the two enzymes were similar to those of the homologous enzymes in the mandelate pathway of Pseudomonas putida ATCC 12633. However, Pseudomonas stutzeri ST-201 was unable to grow on either isomer of mandelate, and sequencing indicated that the dpgB gene did not form part of an operon. Thus it appears that the two enzymes form part of a d-phenylglycine, rather than mandelate, degrading pathway.  相似文献   

4.
5.
A 3.8-kilobase DNA fragment from Bacillus subtilis containing the hemA gene has been cloned and sequenced. Four open reading frames were identified. The first is hemA, encoding a protein of 50.8 kilodaltons. The primary defect of a B. subtilis 5-aminolevulinic acid-requiring mutant was identified as a cysteine-to-tyrosine substitution in the HemA protein. The predicted amino acid sequence of the B. subtilis HemA protein showed 34% identity with the Escherichia coli HemA protein, which is known to code for the NAD(P)H:glutamyl-tRNA reductase of the C5 pathway for 5-aminolevulinic acid synthesis. The B. subtilis HemA protein also complements the defect of an E. coli hemA mutant. The second open reading frame in the cloned fragment, called ORF2, codes for a protein of about 30 kilodaltons with unknown function. It is not the proposed hemB gene product porphobilinogen synthase. The third open reading frame is hemC, coding for porphobilinogen deaminase. The fourth open reading frame extends past the sequenced fragment and may be identical to hemD, coding for uroporphyrinogen III cosynthase. Analysis of deletion mutants of the hemA region suggests that (at least) hemA, ORF2, and hemC may be part of an operon.  相似文献   

6.
An 8-kb region downstream of the ketosteroid dehydrogenase (ksdD)-ketosteroid isomerase (ksdI) genes of Arthrobacter simplex was cloned. The nucleotide sequence of the first 3-kb segment downstream of ksdD-ksdI operon was determined. Three open reading frames (ORFs) preceded by Shine-Dalgarno (SD) sequences have been found. Homology search revealed that the putative product encoded by ORF3 has high level of similarity with the 3-oxosteroid dehydrogenases from A. simplex and P. testosteroni (90% identity in their putative active sites). The role of ORF3 product as a FAD-containing dehydrogenase in steroid degradation pathway is discussed.  相似文献   

7.
The locking-on strategy uses soluble analogues of the enzymes specific substrate to produce biospecific adsorption of individual NAD(P)(+)-dependent dehydrogenases on immobilized NAD(P)(+) derivatives, which is so selective that a single enzyme activity can be purified from crude cellular extracts in a single chromatographic step with yields approaching 100%. However, attempts to further develop and apply this strategy to the biospecific chromatographic purification of a range of NAD(P)(+)-dependent dehydrogenases revealed some anomalous chromatographic behavior and certain unexplained phenomenon. Much of this can be attributed to nonbiospecific interference effects. Identification and elimination of this interference is discussed in the present study focusing on bovine liver glutamate dehydrogenase (GDH; EC 1.4.1.3) as the "test" enzyme. Results further confirm the potential of the locking-on strategy for the rapid purification of NAD(P)(+)-dependent dehydrogenases and provide further insight into the parameters which should be considered during the development of a truly biospecific affinity chromatographic system based on the locking-on strategy. The kinetic mechanism of bovine liver GDH has been the topic of much controversy with some reports advocating a sequential ordered mechanism of substrate binding and others reporting a sequential random mechanism. Since the kinetic locking-on strategy is dependent on the target NAD(P)(+)-dependent dehydrogenase having an ordered sequential mechanism of substrate binding, the bioaffinity chromatographic behavior of bovine liver GDH using the locking-on tactic suggests that this enzyme has an ordered sequential mechanism of substrate binding under a variety of experimental conditions when NAD(+) is used as cofactor.  相似文献   

8.
We have sequenced and analysed a 39.5 kbp genome fragment of a marine Group II euryarchaeote identified in a metagenomic library of 500 m deep plankton at the Antarctic Polar Front. The clone contains a 16S rRNA gene that is separated from the 23S rRNA gene in the genome. This appears to be a trait shared by Thermoplasmatales and Group II euryarchaeota. This genome fragment exhibits a compact organization, including a few overlapping genes in the canonical spectinomycin-like (spc) operon for ribosomal proteins that is immediately upstream the 16S rDNA. Most open reading frames (ORFs) encoded proteins involved in housekeeping processes and, as expected, exhibited a phylogenetic distribution congruent with that of the 16S rRNA. A considerable number of proteins with predicted transmembrane helices was identified. Among those, two proteins encoded by genes likely forming an operon appear to be part of a membrane terminal electron transport chain. One of these proteins has an unusual domain arrangement including ferredoxin, flavodoxin and one succinate dehydrogenase/fumarate reductase subunit. These proteins probably constitute a new succinate dehydrogenase-like oxidoreductase involved in what could be a novel pathway for energy metabolism in Group II euryarchaeota.  相似文献   

9.
Abstract A fragment of Methylobacter marinus A45 DNA has been cloned and sequenced, and an open reading frame has been identified that could code for a 46-kDa polypeptide. Comparison of the deduced amino acid sequence of the polypeptide against the protein data bank has revealed strong similarity with a number of alcohol dehydrogenases, with highest similarity towards class III alcohol dehydrogenases, which recently have been shown to be identical to glutathione-dependent formaldehyde dehydrogenases. We were unable to measure appreciable levels of NAD(P)-dependent formaldehyde dehydrogenases or alcohol dehydrogenase activities using aldehydes or primary or secondary alcohols in cell-free extracts from batch cultures of M. marinus A45. However, formaldehyde dehydrogenases activity was detected on zymograms. Our data suggest that, although NAD(P)-linked formaldehyde dehydrogenase or alcohol dehydrogenase activities are undetectable in cell-free extracts of most methylotrophs employing the ribulose monophosphate pathway for formaldehyde assimilation and dissimilation, the gene encoding formaldehyde dehydrogenase is present in M. marinus A45 and may be present in more of these organisms as well.  相似文献   

10.
11.
Sequencing of the genomes of Mycobacterium tuberculosis H37Rv and Streptomyces coelicolor A3(2) identified putative genes for an NAD(+)-dependent DNA ligase. We have cloned both open reading frames and overexpressed the protein products in Escherichia coli. In vitro biochemical assays confirm that each of these proteins encodes a functional DNA ligase that uses NAD(+) as its cofactor. Expression of either protein is able to complement E. coli GR501, which carries a temperature-sensitive mutation in ligA. Thus, in vitro and in vivo analyses confirm predictions that ligA genes from M. tuberculosis and S. coelicolor are NAD(+)-dependent DNA ligases.  相似文献   

12.
The catabolism of 4-hydroxyacetophenone in Pseudomonas fluorescens ACB is known to proceed through the intermediate formation of hydroquinone. Here, we provide evidence that hydroquinone is further degraded through 4-hydroxymuconic semialdehyde and maleylacetate to beta-ketoadipate. The P. fluorescens ACB genes involved in 4-hydroxyacetophenone utilization were cloned and characterized. Sequence analysis of a 15-kb DNA fragment showed the presence of 14 open reading frames containing a gene cluster (hapCDEFGHIBA) of which at least four encoded enzymes are involved in 4-hydroxyacetophenone degradation: 4-hydroxyacetophenone monooxygenase (hapA), 4-hydroxyphenyl acetate hydrolase (hapB), 4-hydroxymuconic semialdehyde dehydrogenase (hapE), and maleylacetate reductase (hapF). In between hapF and hapB, three genes encoding a putative intradiol dioxygenase (hapG), a protein of the Yci1 family (hapH), and a [2Fe-2S] ferredoxin (hapI) were found. Downstream of the hap genes, five open reading frames are situated encoding three putative regulatory proteins (orf10, orf12, and orf13) and two proteins possibly involved in a membrane efflux pump (orf11 and orf14). Upstream of hapE, two genes (hapC and hapD) were present that showed weak similarity with several iron(II)-dependent extradiol dioxygenases. Based on these findings and additional biochemical evidence, it is proposed that the hapC and hapD gene products are involved in the ring cleavage of hydroquinone.  相似文献   

13.
The mandelate pathway of Pseudomonas putida ATCC 12633 comprises five enzymes and catalyzes the conversion of R- and S-mandelamide to benzoic acid which subsequently enters the beta-ketoadipate pathway. Although the first four enzymes have been extensively characterized the terminal enzyme, a NAD(P)(+)-dependent benzaldehyde dehydrogenase (BADH), remains largely undescribed. Here we report that BADH is a dimer in solution, and that DTT is necessary both to maintain the activity of BADH and to prevent oligimerization of the enzyme. Site-directed mutagenesis confirms that Cys249 is the catalytic cysteine and identifies Cys140 as the cysteine likely to be involved in inter-monomer disulfide formation. BADH can utilize a range of aromatic substrates and will also operate efficiently with cyclohexanal as well as medium-chain aliphatic aldehydes. The logV and logV/K pH-rate profiles for benzaldehyde with either NAD(+) or NADP(+) as the coenzyme are both bell-shaped. The pK(a) values on the ascending limb range from 6.2 to 7.1 while those on the descending limb range from 9.6 to 9.9. A spectrophotometric approach was used to show that the pK(a) of Cys249 was 8.4, i.e., Cys249 is not responsible for the pK(a)s observed in the pH-rate profiles.  相似文献   

14.
15.
Pseudomonas putida F1 utilizes p-cumate (p-isopropylbenzoate) as a growth substrate by means of an eight-step catabolic pathway. A 35.75-kb DNA segment, within which the cmt operon encoding the catabolism of p-cumate is located, was cloned as four separate overlapping restriction fragments and mapped with restriction endonucleases. By examining enzyme activities in recombinant bacteria carrying these fragments and sub-cloned fragments, genes encoding most of the enzymes of the p-cumate pathway were located. Subsequent sequence analysis of 11,260 bp gave precise locations of the 12 genes of the cmt operon. The first three genes, cmtAaAbAc, and the sixth gene, cmtAd, encode the components of p-cumate 2,3-dioxygenase (ferredoxin reductase, large subunit of the terminal dioxygenase, small subunit of the terminal dioxygenase, and ferredoxin, respectively); these genes are separated by cmtC, which encodes 2,3-dihydroxy-p-cumate 3,4-dioxygenase, and cmtB, coding for 2,3-dihydroxy-2,3-dihydro-p-cumate dehydrogenase. The ring cleavage product, 2-hydroxy-3-carboxy-6-oxo-7-methylocta-2,4-dienoate, is acted on by a decarboxylase encoded by the seventh gene, cmtD, which is followed by a large open reading frame, cmtI, of unknown function. The next four genes, cmtEFHG, encode 2-hydroxy-6-oxo-7-methylocta-2,4-dienoate hydrolase, 2-hydroxypenta-2,4-dienoate hydratase, 4-hydroxy-2-oxovalerate aldolase, and acetaldehyde dehydrogenase, respectively, which transform the decarboxylation product to amphibolic intermediates. The deduced amino acid sequences of all the cmt gene products except CmtD and CmtI have a recognizable but low level of identity with amino acid sequences of enzymes catalyzing analogous reactions in other catabolic pathways. This identity is highest for the last two enzymes of the pathway (4-hydroxy-2-oxovalerate aldolase and acetaldehyde dehydrogenase [acylating]), which have identities of 66 to 77% with the corresponding enzymes from other aromatic meta-cleavage pathways. Recombinant bacteria carrying certain restriction fragments bordering the cmt operon were found to transform indole to indigo. This reaction, known to be catalyzed by toluene 2,3-dioxygenase, led to the discovery that the tod operon, encoding the catabolism of toluene, is located 2.8 kb downstream from and in the same orientation as the cmt operon in P. putida F1.  相似文献   

16.
17.
Three open reading frames in the Rhodobacter capsulatus photosynthesis gene cluster, designated F0, F108, and F1025, were disrupted by site-directed mutagenesis. Mutants bearing insertions in these reading frames were defective in converting protoporphyrin IX to magnesium-protoporphyrin monomethyl ester, protochlorophyllide to chlorophyllide a, and magnesium-protoporphyrin monomethyl ester to protochlorophyllide, respectively. These results demonstrate that the genes examined most likely encode enzyme subunits that catalyze steps common to plant and bacterial tetrapyrrole photopigment biosynthetic pathways. The open reading frames were found to be part of a large 11-kilobase operon that encodes numerous genes involved in early steps of the bacteriochlorophyll a biosynthetic pathway.  相似文献   

18.
The open reading frame TM1643 of Thermotoga maritima belongs to a large family of proteins, with homologues in bacteria, archaea, and eukaryotes. TM1643 is found in an operon with two other genes that encode enzymes involved in the biosynthesis of NAD. In several bacteria, the gene in the position occupied by TM1643 encodes an aspartate oxidase (NadB), which synthesizes iminoaspartate as a substrate for NadA, the next enzyme in the pathway. The amino acid sequence of TM1643 does not share any recognizable homology with aspartate oxidase or with other proteins of known functions or structures. To help define the biological functions of TM1643, we determined its crystal structure at 2.6A resolution and performed a series of screens for enzymatic function. The structure reveals the presence of an N-terminal Rossmann fold domain with a bound NAD(+) cofactor and a C-terminal alpha+beta domain. The structural information suggests that TM1643 may be a dehydrogenase and the active site of the enzyme is located at the interface between the two domains. The enzymatic characterization of TM1643 revealed that it possesses NAD or NADP-dependent dehydrogenase activity toward l-aspartate but no aspartate oxidase activity. The product of the aspartate dehydrogenase activity is also iminoaspartate. Therefore, our studies demonstrate that two different enzymes, an oxidase and a dehydrogenase, may have evolved to catalyze the first step of NAD biosynthesis in prokaryotes. TM1643 establishes a new class of amino acid dehydrogenases.  相似文献   

19.
Rhodococcus sp. strain IGTS8 possesses an enzymatic pathway that can remove covalently bound sulfur from dibenzothiophene (DBT) without breaking carbon-carbon bonds. The DNA sequence of a 4.0-kb BstBI-BsiWI fragment that carries the genes for this pathway was determined. Frameshift and deletion mutations established that three open reading frames were required for DBT desulfurization, and the genes were designated soxABC (for sulfur oxidation). Each sox gene was subcloned independently and expressed in Escherichia coli MZ1 under control of the inducible lambda pL promoter with a lambda cII ribosomal binding site. SoxC is an approximately 45-kDa protein that oxidizes DBT to DBT-5,5'-dioxide. SoxA is an approximately 50-kDa protein responsible for metabolizing DBT-5,5'-dioxide to an unidentified intermediate. SoxB is an approximately 40-kDa protein that, together with the SoxA protein, completes the desulfurization of DBT-5,5'-dioxide to 2-hydroxybiphenyl. Protein sequence comparisons revealed that the predicted SoxC protein is similar to members of the acyl coenzyme A dehydrogenase family but that the SoxA and SoxB proteins have no significant identities to other known proteins. The sox genes are plasmidborne and appear to be expressed as an operon in Rhodococcus sp. strain IGTS8 and in E. coli.  相似文献   

20.
A cDNA encoding a nicotinamide adenine dinucleotide (NAD+) -dependent glycerol 3-phosphate dehydrogenase (GPDH) has been cloned by rapid amplification of cDNA ends from Dunaliella salina. The cDNA is 3032 base pairs long with an open reading frame encoding a polypeptide of 701 amino acids. The polypeptide shows high homology with published NAD+ -dependent GPDHs and has at its N-terminal a chloroplast targeting sequence. RNA gel blot analysis was performed to study GPDH gene expression under different conditions, and changes of the glycerol content were monitored. The results indicate that the cDNA may encode an osmoregulated isoform primarily involved in glycerol synthesis. The 701-amino-acid polypeptide is about 300 amino acids longer than previously reported plant NAD+ -dependent GPDHs. This 300-amino-acid fragment has a phosphoserine phosphatase domain. We suggest that the phosphoserine phosphatase domain functions as glycerol 3-phosphatase and that, consequently, NAD+ -dependent GPDH from D. salina can catalyze the step from dihydroxyacetone phosphate to glycerol directly. This is unique and a possible explanation for the fast glycerol synthesis found in D. salina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号