首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
Two Ca2+ transport systems were investigated in plasma membrane vesicles isolated from sheep brain cortex synaptosomes by hypotonic lysis and partial purification. Synaptic plasma membrane vesicles loaded with Na+ (Na+i) accumulate Ca2+ in exchange for Na+, provided that a Na+ gradient (in leads to out) is present. Agents that dissipate the Na+ gradient (monensin) prevent the Na+/Ca2+ exchange completely. Ca2+ accumulated by Na+/Ca2+ exchange can be released by A 23187, indicating that Ca2+ is accumulated intravesicularly. In the absence of any Na+ gradient (K+i-loaded vesicles), the membrane vesicles also accumulate Ca2+ owing to ATP hydrolysis. Monovalent cations stimulate Na+/Ca2+ exchange as well as the ATP-dependent Ca2+ uptake activity. Taking the value for Na+/Ca2+ exchange in the presence of choline chloride (external cation) as reference, other monovalent cations in the external media have the following effects: K+ or NH4+ stimulates Na+/Ca2+ exchange; Li+ or Cs+ inhibits Na+/Ca2+ exchange. The ATP-dependent Ca2+ transport system is stimulated by increasing K+ concentrations in the external medium (Km for K+ is 15 mM). Replacing K+ by Na+ in the external medium inhibits the ATP-dependent Ca2+ uptake, and this effect is due more to the reduction of K+ than to the elevation of Na+. The results suggest that synaptic membrane vesicles isolated from sheep brain cortex synaptosomes possess mechanisms for Na+/Ca2+ exchange and ATP-dependent Ca2+ uptake, whose activity may be regulated by monovalent cations, specifically K+, at physiological concentrations.  相似文献   

2.
Inositol hexakisphosphate (InsP6) increased 45Ca2+ uptake in cultured cerebellar granule cells. This increase was concentration dependent (EC50 = 20 microM), exhibited slow kinetics, and was present after 5 days of cell maturation in culture. InsP6 also enhanced D-[3H]aspartate release in cerebellar granule cells at 11-12 days in vitro. Stimulation of 45Ca2+ uptake was also produced by inositol pentakisphosphate but not by inositol 1,3,4,5-tetrakisphosphate. The increase in 45Ca2+ influx induced by InsP6 was independent of extracellular Na+ and was only partially reduced by the organic calcium channel blocker nifedipine. The intrinsic action of InsP6 was not affected by competitive or noncompetitive glutamate receptor antagonists. In addition, stimulations of 45Ca2+ uptake by InsP6 and glutamate were additive. These data provide evidence that InsP6 directly activates a specific population of neurons in the CNS.  相似文献   

3.
The uptake of 22Na+ and secretion of catecholamines by primary cultures of adrenal medulla cells under the influence of a variety of agonists and antagonists were determined. Veratridine, batrachotoxin, scorpion venom, and nicotine caused a parallel increase in 22Na+ uptake and Ca2+-dependent catecholamine secretion. Ba2+, depolarizing concentrations of K+, and the Ca2+ ionophore Ionomycin stimulated secretion of catecholamines but did not increase the uptake of 22Na+. Tetrodotoxin inhibited both 22Na+ uptake and catecholamine secretion evoked by veratridine, batrachotoxin, and scorpion venom, but had no effect on 22Na+ uptake and catecholamine secretion caused by nicotine. On the other hand, histrionicotoxin, which blocks the acetylcholine receptor-linked ion conductance channel, blocked nicotine-stimulated 22Na+ uptake and catecholamine secretion, but only partially inhibited veratridine-stimulated catecholamine secretion and had no effect on veratridine-stimulated 22Na+ uptake. The combination of veratridine plus tetrodotoxin, which has been shown to prevent nicotine-stimulated secretion of catecholamines by adrenal medulla cells, also prevented nicotine-stimulated 22Na+ uptake by the primary cultures. These studies demonstrate the presence of tetrodotoxin-sensitive Na+ channels in adrenal medulla cells which are functionally linked to Ca2+-dependent catecholamine secretion. However, These channels are not utilized for Na+ entry upon activation of nicotinic receptors; in this case Na+ entry occurs through the receptor-associated ion conductance channel.  相似文献   

4.
The effects of some gangliosides on active uptake of nonmetabolizable alpha-aminoisobutyric acid (AIB) and Na+, K+-ATPase and Ca2+, Mg2+-ATPase activities in superior cervical ganglia (SCG) and nodose ganglia (NG) excised from adult rats were examined during aerobic incubation at 37 degrees C for 2 h. In NG, amino acid uptake was greatly accelerated with the addition of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylgluc osyl ceramide (GM1) (85%) and also with N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide (GM2) or [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetyl- neuraminyl]-galactosylglucosyl ceramide (GD1a) (43% each) compared with a nonaddition control at a 5 nM concentration. Under identical conditions, Na+, K+-ATPase activity was strongly stimulated with GM1 (180%) and GD1a (93%), whereas Ca2+, Mg2+-ATPase activity showed no change. In SCG, on the other hand, AIB uptake was apparently inhibited (-27%) by addition of GM1, with a slight decrease in Na+, K+-ATPase but no change in Ca2+, Mg2+-ATPase activity in the tissue. Both asialo-GM1, in which N-acetylneuraminic acid is deficient, and Forssman glycolipid, which is not present in nervous tissue, failed to produce any significant increase in both SCG and NG not only in amino acid uptake, but also in Na+, K+-ATPase activity. A kinetic study of active AIB uptake showed that GM1 ganglioside produced an increase in Km with no change in Vmax in SCG, whereas it caused a decrease in Km with a slight increase in Vmax in NG. Treatment of NG and SCG with neuraminidase from Vibrio cholerae, an enzyme that split off sialic acid from polysialoganglioside, leaving GM1 intact, caused little inhibition of the amino acid uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Na+-dependent uptake of dicarboxylic amino acids in membrane saccules, due to exchange diffusion and independent of ion gradients, was highly sensitive to inhibition by K+. The IC50 was 1-2 mM under a variety of conditions (i.e., whole tissue or synaptic membranes, frozen/thawed or fresh, D-[3H]aspartate (10-1000 nM) or L-[3H]glutamate (100 nM), phosphate or Tris buffer, NaCl or Na acetate, presence or absence of Ca2+ and Mg2+). The degree of inhibition by K+ was also not affected on removal of ion gradients by ionophores, or by extensive washing with H2O and reloading of membrane saccules with glutamate and incubation medium in the presence or absence of K+ (3 mM, i.e., IC70). Rb+, NH4+, and, to a lesser degree Cs+, but not Li+, could substitute for K+. [K+] showed a competitive relationship to [Na+]2. Incubation with K+ before or after uptake suggested that the ion acts in part by allowing net efflux, thus reducing the internal pool of amino acid against which D-[3H]aspartate exchanges, and in part by inhibiting the interaction of Na+ and D-[3H]aspartate with the transporter. The current model of the Na+-dependent high-affinity acidic amino acid transport carrier allows the observations to be explained and reconciled with previous seemingly conflicting reports on stimulation of acidic amino acid uptake by low concentrations of K+. The findings correct the interpretation of recent reports on a K+-induced inhibition of Na+-dependent "binding" of glutamate and aspartate, and partly elucidate the mechanism of action.  相似文献   

6.
The Na+ dependence of tyrosine uptake into rat brain synaptosomes and synaptosomal plasma membrane vesicles (SPMV) was examined in the present study. At low tyrosine concentrations, the isoosmotic substitution of Na+ by sucrose in the incubation medium led to an increase of tyrosine uptake in synaptosomes and to a decrease in SPMV. The removal of extracellular Ca2+ and Mg2+ and addition of isoosmotic sucrose completely prevented the augmented tyrosine uptake in Na+-free incubated synaptosomes. Morphological differences were found at the electron-microscopic level when synaptosomes were incubated in Na+-free and Na+-containing media. The internal volume measured for synaptosomes incubated in a Na+-free medium was almost half of that obtained in a Na+-containing medium, in good agreement with the observations made with the electron microscope. Also, the omission of Ca2+ and Mg2+ resulted in a specific swelling of only the synaptosomes incubated in Na+-free medium. When synaptosomes and SPMV were preloaded with several neutral amino acids, the tyrosine uptake rate was greatly increased, indicating fully operational exchange mechanisms for these amino acids. We propose that the enhancement of high-affinity synaptosomal tyrosine uptake observed in Na+-free medium is a consequence of a specific shrinkage of the synaptosomes and a parallel increase of the exchange rate with endogenous neutral amino acids.  相似文献   

7.
1. In the present paper we review some presynaptic aspects of the mode of action of botulinal toxins (BoTxs) at vertebrate neuromuscular junctions with emphasis on studies carried out in our laboratories using electrophysiological and morphological techniques. 2. Spontaneous quantal transmitter release recorded as miniature end-plate potentials is drastically affected by BoTxs. The low probability of release at poisoned terminals can be enhanced by carbonyl cyanide m-chlorophenylhydrazone (CCCP), Cd2+ and La3+. However, CCCP and La3+ which drastically deplete clear synaptic vesicles from unpoisoned terminals failed to markedly affect the density of synaptic vesicles at poisoned terminals. It is concluded that poisoned terminals have a reduced sensitivity to the release-promoting action of Ca2+, Cd2+ and La3+. 3. When comparing the effect of the various BoTxs on nerve-impulse evoked transmitter release it appears that increasing phasic Ca2+ entry into the terminals enhances evoked synchronized quantal release only from terminals poisoned with serotypes A and E. In contrast, enhanced Ca2+ entry into terminals poisoned with serotypes B, D and F induced a period of high frequency asynchronous release suggesting that these BoTxs may affect a presynaptic step beyond the influx of Ca2+, that may be involved in the synchronization of transmitter quanta. These data suggest that the actions of BoTxs involve several steps of the acetylcholine release process. 4. The analysis of presynaptic currents which depend on both Ca2+ entry and intraterminal background Ca2+ levels strongly suggests that neither Ca2+ entry nor intraterminal Ca2+ levels are altered by BoTxs. Furthermore, poisoned terminals are no more efficient than unpoisoned ones in dealing with Ca2+ overloads. 5. Finally, the morphological examination of junctions paralysed by BoTx-A indicates that the toxin triggers a particularly important overgrowth of the nerve terminals and suggests that the in vivo functional recovery may occur from an extension of the original nerve terminal arborization and the concomitant remodelling of postsynaptic structures.  相似文献   

8.
A latent ATP-dependent Ca storage system is enriched in preparations of pinched-off presynaptic nerve terminals (synaptosomes), and is exposed when the terminals are disrupted by osmotic shock or saponin treatment. The data indicate that a fraction of the Ca uptake (measured with 45Ca) is associated with the intraterminal mitochondria; it is blocked by ruthenium red, by FCCP, and by azide + dinitrophenol + oligomycin. There is, however, a residual ATP-dependent Ca uptake that is insensitive to the aforementioned poisons; this (nonmitochondrial) Ca uptake is blocked by tetracaine, mersalyl and A-23187. Moreover, A-23187 rapidly releases previously accumulated Ca from these (nonmitochondrial) storage sites, whereas the Ca chelator, EGTA, does not. The proteolytic enzyme, trypsin, spares the mitochondria but inactivates the nonmitochondrial Ca uptake mechanism. Chemical measurements of total Ca indicate that the ATP-dependent Ca uptake at the nonmitochondrial sites involves the net transfer of Ca from medium to tissue fragments. This system can sequester Ca when the ambient-ionized Ca2+ concentration (buffered with EGTA) is less than 0.3 micrometer; brain mitochondria take up little Ca when the ionized Ca2+ level is this low. Preliminary subfractionation studies indicate that the nonmitochondrial Ca storage system does not sediment with synaptic vesicles. We propose that this Ca storage system, which has many properties comparable to those of skeletal muscle sarcoplasmic reticulum, may be associated with intraterminal smooth endoplasmic reticulum. This Ca-sequestering organelle may help to buffer intracellular Ca.  相似文献   

9.
Substance P is known to modulate acetylcholine-induced catecholamine release from adrenal chromaffin cells. To investigate the mechanisms involved in this modulation, the present study examined the effects of substance P on net 45Ca2+ fluxes in cultures of bovine adrenal chromaffin cells. Two effects of substance P were observed: (1) Substance P inhibited carbachol-induced 45Ca2+ uptake and 45Ca2+ efflux and (2) substance P protected against desensitization of carbachol-induced 45Ca2+ uptake and 45Ca2+ efflux. Thus substance P modulates two other cholinergic responses, 45Ca2+ uptake and 45Ca2+ efflux, in a manner similar to its modulation of catecholamine release. The results also indicate that substance P's inhibition of net carbachol-induced 45Ca2+ uptake is due to inhibition of 45Ca2+ uptake rather than enhancement of 45Ca2+ efflux. Substance P almost completely inhibited carbachol-induced 45Ca2+ uptake in both Na+-containing and Na+-free media, suggesting that substance P can inhibit the uptake of 45Ca2+ induced by carbachol regardless of whether 45Ca2+ is taken up through voltage-sensitive or acetylcholine receptor-linked channels. However, substance P produced only a small inhibition of K+-induced 45Ca2+ uptake, indicating that substance P does not interact directly with voltage-sensitive Ca2+ channels. In addition, substance P's inhibition of carbachol-induced 45Ca2+ uptake was noncompetitive with respect to Ca2+, were unable to overcome substance P's inhibition of [3H]-norepinephrine ( [3H]NE) release. It is concluded that substance P does not interact directly with Ca2+ channels in bovine adrenal chromaffin cells.  相似文献   

10.
The binding of [3H]nimodipine to purified synaptic plasma membranes (SPM) isolated from sheep brain cortex was characterized, and the effects of nimodipine, nifedipine, and (+)-verapamil on the [3H]nimodipine binding were compared to the effects on 45Ca2+ translocation under conditions that separate 45Ca2+ fluxes through Ca2+ channels from 45Ca2+ uptake via Na+/Ca2+ exchange. [3H]Nimodipine labels a single class of sites in SPM, with a KD of 0.64 +/- 0.1 nM, a Bmax of 161 +/- 27 fmol X mg-1 protein, and a Hill slope of 1.07, at 25 degrees C. Competition of [3H]nimodipine binding to purified SPM with unlabelled Ca2+ channel blockers shows that: nifedipine and nimodipine are potent competitors, with IC50 values of 4.7 nM and 5.9 nM, respectively; verapamil and (-)-D 600 are partial competitors, with biphasic competition behavior. Thus, (+)-verapamil shows an IC50 of 708 nM for the higher affinity component and the maximal inhibition is 50% of the specific binding, whereas for (-)-verapamil the IC50 is 120 nM, and the maximal inhibition is 30%; (-)-D 600 is even less potent than verapamil in inhibiting [3H]nimodipine binding (IC50 = 430 nM). However, (+)-verapamil, nifedipine, and nimodipine are less potent in inhibiting depolarization-induced 45Ca2+ influx into synaptosomes in the absence of Na+/Ca2+ exchange than in competing for [3H]nimodipine binding. Thus, (+)-verapamil inhibits Ca2+ influx by 50% at about 500 microM, whereas it inhibits 50% of the binding at concentrations 200-fold lower, and the discrepancy is even larger for the dihydropyridines. The Na+/Ca2+ exchange and the ATP-dependent Ca2+ uptake by SPM vesicles are also inhibited by the Ca2+ channel blockers verapamil, nifedipine, and d-cis-diltiazem, with similar IC50 values and in the same concentration range (10(-5)-10(-3) M) at which they inhibit Ca2+ influx through Ca2+ channels. We conclude that high-affinity binding of the Ca2+ blockers by SPM is not correlated with inhibition of the Ca2+ fluxes through channels in synaptosomes under conditions of minimal Na+/Ca2+ exchange. Furthermore, the relatively high concentrations of blockers required to block the channels also inhibit Ca2+ translocation through the Ca2+-ATPase and the Na+/Ca2+ exchanger. In this study, clear differentiation is made of the effects of the Ca2+ channel blockers on these three mechanisms of moving Ca2+ across the synaptosomal membrane, and particular care is taken to separate the contribution of the Na+/Ca2+ exchange from that of the Ca2+ channels under conditions of K+ depolarization.  相似文献   

11.
The effects of gamma-aminobutyric acid (GABA) on the spontaneous efflux of [3H]norepinephrine ([3H]NE) were studied in synaptosomes prepared from rat hippocampus and prelabelled with [3H]NE. It had been observed previously that, when synaptosomes were exposed in superfusion to GABA, the basal release of the tritiated catecholamine was enhanced, apparently with no involvement of the known GABA receptors. The mechanisms underlying this effect have now been investigated. The potency of GABA as a releaser of [3H]NE was decreased by lowering the Na+ content of the superfusion medium, and its effect disappeared at 23 mM Na+. The GABA-induced [3H]NE release was counteracted by the GABA uptake inhibitor N-(4,4-diphenyl-3-butenyl)nipecotic acid (SKF 89976A), but it was unaffected by the NE uptake blockers desmethylimipramine and nisoxetine. The GABA-induced release of [3H]NE was Ca2+-dependent and tetrodotoxin-sensitive. The data support the hypothesis that GABA provoked [3H]NE release by a novel mechanism which involves penetration into the noradrenergic nerve terminals through a GABA carrier located on the NE terminals themselves. This uptake process might be electrogenic and provoke depolarization of the nerve terminals, causing an exocytotic release of [3H]NE.  相似文献   

12.
In the present study, we have investigated the role of Ca2+ in the coupling of membrane depolarization to neurotransmitter secretion. We have measured (a) intracellular free Ca2+ concentration ([Ca2+]i) changes, (b) rapid 45Ca2+ uptake, and (c) Ca2+-dependent and -independent release of endogenous glutamate (Glu) and gamma-aminobutyric acid (GABA) as a function of stimulus intensity by elevating the extracellular [K+] to different levels in purified nerve terminals (synaptosomes) from rat hippocampus. During stimulation, Percoll-purified synaptosomes show an increased 45Ca2+ uptake, an elevated [Ca2+]i, and a Ca2+-dependent as well as a Ca2+-independent release of both Glu and GABA. With respect to both amino acids, synaptosomes respond on stimulation essentially in the same way, with maximally a fourfold increase in Ca2+-dependent (exocytotic) release. Ca2+-dependent transmitter release as well as [Ca2+]i elevations show maximal stimulation at moderate depolarizations (30 mM K+). A correlation exists between Ca2+-dependent release of both Glu and GABA and elevation of [Ca2+]i. Ca2+-dependent release is maximally stimulated with an elevation of [Ca2+]i of 60% above steady-state levels, corresponding with an intracellular concentration of approximately 400 nM, whereas elevations to 350 nM are ineffective in stimulating Ca2+-dependent release of both Glu and GABA. In contrast, Ca2+-independent release of both Glu and GABA shows roughly a linear rise with stimulus intensity up to 50 mM K+. 45Ca2+ uptake on stimulation also shows a continuous increase with stimulus intensity, although the relationship appears to be biphasic, with a plateau between 20 and 40 mM K+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Rat brain slices, prelabeled with [3H]noradrenaline, were superfused and exposed to K+ depolarization (10-120 mM K+) or to veratrine (1-25 microM). In the absence of extracellular Ca2+ veratrine, in contrast to K+-depolarization, caused a substantial release of [3H]noradrenaline, which was completely blocked by tetrodotoxin (0.3 microM). The Ca2+ antagonist Cd2+ (50 microM), which strongly reduced K+-induced release in the presence of 1.2 mM Ca2+, did not affect release induced by veratrine in the absence of extracellular Ca2+. Ruthenium red (10 microM), known to inhibit Ca2+-entry into mitochondria, enhanced veratrine-induced [3H]noradrenaline release. Compared with K+ depolarization in the presence of 1.2 mM Ca2+, veratrine in the absence of Ca2+ caused a somewhat delayed release of [3H]noradrenaline. Further, in contrast to the fractional release of [3H]noradrenaline induced by continuous K+ depolarization in the presence of 1.2 mM Ca2+, that induced by prolonged veratrine stimulation in the absence of Ca2+ appeared to be more sustained. The data strongly suggest that veratrine-induced [3H]noradrenaline release in the absence of extracellular Ca2+ is brought about by a mobilization of Ca2+ from intracellular stores, e.g., mitochondria, subsequent to a strongly increased intracellular Na+ concentration. This provides a model for establishing the site of action of drugs that alter the stimulus-secretion coupling process in central noradrenergic nerve terminals.  相似文献   

14.
[14C]Acetylcholine (ACh) release and parallel alterations in 45Ca2+ uptake and intrasynaptosomal free CA2+ concentration ([Ca2+]i) were measured in guinea-pig brain cortex synaptosomes. Depolarization by high K+ concentrations caused a rapid transient increase in Ca2+ uptake, terminating within 60 s (rate constant = 0.060 s-1; t1/2 = 11.6 s). This resulted in a rapid increase (within 1 s) in [Ca2+1]i, which then fell to a maintained but still-elevated plateau level (t1/2 for the decline was 15 s). Peaks of [Ca2+]i showed a sigmoidal dependence on depolarization, contrasting with the simple linear dependence of plateau levels of [Ca2+]i. The K+-evoked ACh release also had two phases: a fast initial increase (t1/2 = 11.3 s), which terminated within 60 s, was followed by a slow additional increase during sustained depolarizations of up to 10 min. Depolarization by veratridine led to a slow gradual increase in Ca2+ uptake (t1/2 = 130 s) over a 10-min incubation period, whereas an elevated plateau level of [Ca2+]i was achieved within 2 min (without a rapid peak elevation). The Ca2+-dependent fraction of the veratridine-evoked ACh release correlated with the increase in [Ca2+]i rather than with Ca2+ uptake. Using two different methods of depolarization partially circumvented the time limitations imposed by a buffering Ca2+ indicator and we suggest that, in the main, ACh is released in bursts associated with [Ca2+]i transients.  相似文献   

15.
Neutral amino acid transport is largely unexplored in astrocytes, although a role for these cells in blood-brain barrier function is suggested by their close apposition to cerebrovascular endothelium. This study examined the uptake into mouse astrocyte cultures of alpha-aminoisobutyric acid (AIB), a synthetic model substrate for Na+-dependent system A transport. Na+-dependent uptake of AIB was characteristic of system A in its pH sensitivity, kinetic properties, regulatory control, and pattern of analog inhibition. The rate of system A transport declined markedly with increasing age of the astrocyte cultures. There was an unexpectedly active Na+-independent component of AIB uptake that declined less markedly than system A transport as culture age increased. Although the saturability of the Na+-independent component and its pattern of analog inhibition were consistent with system L transport, the following properties deviated: (1) virtually complete inhibition of Na+-independent AIB uptake by characteristic L system substrates, suggesting unusually high affinity of the transporter; (2) apparent absence of trans-stimulation of AIB influx; (3) unusually concentrative uptake at steady state (the estimated distribution ratio for 0.2 mM AIB was 55); and (4) susceptibility to inhibition by N-ethylmaleimide. Direct study of the uptake of system L substrates in astrocytes is needed to confirm the present indications of high affinity and concentrative Na+-independent transport.  相似文献   

16.
The ouabain-induced suppression of glutamine synthesis and retention in incubating rat brain cortex slices was found to be mimicked by changes in the cationic content of the incubation medium, which cause an increase in the intracellular [Na+] and a decrease in the intracellular [K+]. The suppression of glutamine synthesis (and fixation of ammonia) was also found to take place when Ca2+ was omitted from the incubation medium. This occurred whether endogenous or exogenous glutamate was the substrate for glutamine synthesis. The suppressions cannot be due solely to an effect on glutamate uptake, because the uptake is not markedly affected by these conditions. The results show that Na+, K+, and Ca2+ influence the synthesis and distribution of glutamine in the brain. They suggest that Ca2+ and the Na+, K+ pump may serve a role in regulating the activity of ATP-dependent glutamine synthetase, a key enzyme of the glutamate-glutamine cycle, located in the astrocytes. This may be mediated via a direct effect on the enzyme or through an effect on the production of ATP.  相似文献   

17.
A high-affinity Mg2+-independent Ca2+-ATPase (Ca2+-ATPase) has been differentiated from the Mg2+-dependent, Ca2+-stimulated ATPase (Ca2+,Mg2+-ATPase) in rat brain synaptosomal membranes. Using ATP as a substrate, the K0.5 of Ca2+ for Ca2+-ATPase was found to be 1.33 microM with a Km for ATP of 19 microM and a Vmax of 33 nmol/mg/min. Using Ca-ATP as a substrate, the Km for Ca-ATP was found to be 0.22 microM. Unlike Ca2+,Mg2+-ATPase, Ca2+-ATPase was not inhibited by N-ethylmaleimide, trifluoperazine, lanthanum, zinc, or vanadate. La3+ and Zn2+, in contrast, stimulated the enzyme activity. Unlike Ca2+, Mg2+-ATPase activity, ATP-dependent Ca2+ uptake was negligible in the absence of added Mg2+, indicating that the Ca2+ transport into synaptosomal endoplasmic reticulum may not be a function of the Ca2+-ATPase described. Ca2+-ATPase activity was not stimulated by the monovalent cations Na+ or K+. Ca2+, Mg2+-ATPase demonstrated a substrate preference for ATP and ADP, but not GTP, whereas Ca2+-ATPase hydrolyzed ATP and GTP, and to a lesser extent ADP. The results presented here suggest the high-affinity Mg2+-independent Ca2+-ATPase may be a separate form from Ca2+,Mg2+-ATPase. The capacity of Mg2+-independent Ca2+-ATPase to hydrolyze GTP suggests this protein may be involved in GTP-dependent activities within the cell.  相似文献   

18.
We report here characterization of calmodulin-stimulated Ca2+ transport activities in synaptic plasma membranes (SPM). The calcium transport activity consists of a Ca2+-stimulated, Mg2+-dependent ATP hydrolysis coupled with ATP-dependent Ca2+ uptake into membraneous sacs on the cytosolic face of the synaptosomal membrane. These transport activities have been found in synaptosomal subfractions to be located primarily in SPM-1 and SPM-2. Both Ca2+-ATPase and ATP-dependent Ca2+ uptake require calmodulin for maximal activity (KCm for ATPase = 60 nM; KCm for uptake = 50 nM). In the reconstituted membrane system, KCa was found to be 0.8 microM for Ca2+-ATPase and 0.4 microM for Ca2+ uptake. These results demonstrate for the first time the calmodulin requirements for the Ca2+ pump in SPM when Ca2+ ATPase and Ca2+ uptake are assayed under functionally coupled conditions. They suggest that calmodulin association with the membrane calcium pump is regulated by the level of free Ca2+ in the cytoplasm. The activation by calmodulin, in turn, regulates the cytosolic Ca2+ levels in a feedback process. These studies expand the calmodulin hypothesis of synaptic transmission to include activation of a high-affinity Ca2+ + Mg2+ ATPase as a regulator for cytosolic Ca2+.  相似文献   

19.
We have studied the effects of several cations on (1) the neuronal uptake of [3H]dopamine ([3H]DA) and (2) the specific binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenyl-2-[1-3H]propenyl)piperazi ne ([3H]GBR 12783) to a site associated with the neuronal carrier of DA, in preparations obtained from rat striatum. When studied under the same experimental conditions, both the uptake of [3H]DA and the binding of [3H]GBR 12783 were similarly impaired by the gradual replacement of NaCl by sucrose. In both processes, no convenient substitute for Na+ was found. Furthermore, potential substitutes of Na+ acted as inhibitors of the uptake with a rank order of potency as follows: K+ = Li+ > or = Cs+ > or = Rb+ > choline+ > Tris+ > sucrose, which was somewhat different from that observed in binding studies, i.e., Cs+ > Rb+ > choline+ > or = K+ > Li+ > Tris+ > sucrose. In the presence of either 36 mM or 136 mM Na+, [3H]DA uptake was optimal with 2 mM Mg2+, 1 mM K+, or 1 mM Ca2+. In contrast, higher concentrations of divalent cations competitively blocked the uptake process. K+ concentrations > 50 mM impaired the specific binding, whereas in the millimolar range of concentrations, K+ noncompetitively inhibited the uptake. Decreasing the Na+ concentration increased the inhibitory effect of K+, Ca2+, and Mg2+ on the specific uptake. An increase in NaCl concentration from 0 to 120 mM elicited a significant decline in the affinity of some substrates for the [3H]GBR 12783 binding site. An uptake study performed using optimal experimental conditions defined in the present study revealed that decreasing Na+ concentration reduces the affinity of DA for the neuronal transport. We propose a hypothetical model for the neuronal transport of DA in which both Na+ and K+ membrane gradients are involved.  相似文献   

20.
Abstract: The effects of K+ depolarization and of stimulation by veratridine on apparent cytosolic free Ca2+ ([Ca2+]cyt) and net Ca2+ accumulation were measured in isolated rat brain presynaptic nerve terminals (synaptosomes). [Ca2+]cyt was determined with fura-2, and Ca2+ accumulation was measured with tracer 45Ca. [Ca2+]cyt was ~ 325 nM in synaptosomes incubated in the normal physiological salt solution under resting conditions. When [K+]0, was increased from the normal 5 mM to 30 or 50 mM, 45Ca uptake and [Ca2+]cyt both increased within 1 s. Both increases were directly related to [Ca2+]0 for [Ca2+]0= 0.02–1.2 mM; however, the increase in 45Ca uptake greatly exceeded the increase in [Ca2+]cyt. With small Ca2+ loads ≤100 μmol/L of cell water, equivalent to the Ca2+ entry during a train of ≤60 impulses), the 45Ca uptake exceeded the increase in [Ca2+]cyt by a factor of nearly 1,000. This indicates that ~99.9% of the entering Ca2+ was buffered and/or sequestered within ~ 1 s. With larger Ca2+ loads, a larger fraction of the entering Ca2+ was buffered; ~99.97% of the load was buffered with loads of 250–425 μmol/L of cell water. The ratio between the total Ca2+ entry and the increase in [Ca2+]cyt, the “calcium buffer ratio”β, was therefore ~ 3,500:1. This ratio was somewhat lower than the ratio of total intraterminal calcium: [Ca2+]cyt, which ranged between ~7,300:1 and 12,800:1. When the synaptosomes were activated with 10 μM veratridine ([Ca2+]0= 0.2–0.6 mM), 45Ca influx and [Ca2+]cyt increased progressively for ~10 s (β= 2,700:13,050:1) and then leveled off. Application of 10 μM tetrodotoxin before the introduction of veratridine prevented the increases in 45Ca influx and [Ca2+]cyt. Application of 10 μM tetrodotoxin after 5–10 s of exposure to veratridine caused both the [Ca2+]cyt and the veratridine-stimulated 45Ca within the terminals to decline, thereby demonstrating that the Ca2+ loading is reversible in the presence of extracellular Ca2+. These data show that synaptosomes are capable of buffering and metabolizing Ca2+ in a manner expected for intact neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号