首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
The synthesis is described of a spin-labeled analog of ATP, 2',3'-O-(1-oxy-2,2,6,6-tetramethyl-4-piperidylidene)adenosine 5'-triphosphate (SL-ATP). The spin-label moiety is attached by two bonds to the ribose ring as a spiroketal and hence has restricted conformational mobility relative to the ribose moiety of ATP. The synthesis proceeds via an acid-catalyzed addition of adenosine 5'-monophosphate to 1-acetoxy-4-methoxy-2,2,6,6-tetramethyl-1,2,5,6-tetrahydropyridine in acetonitrile. The spiroketal product is pyrophosphorylated, and alkaline hydrolysis with concomitant aerial oxidation gives the required product. The spin-labeled moiety probably takes up two rapidly interconverting conformations with respect to the ribose ring on the basis of the 1H NMR spectra of its precursors and related uridine derivatives [Alessi et al. (1991) J. Chem. Soc., Perkin Trans.1,2243-2247]. SL-ATP is a substrate for myosin and actomyosin with similar kinetic parameters to ATP during triphosphatase activity. SL-ATP supports muscle contraction and permits relaxation of permeabilized rabbit skeletal muscle fibers. SL-ADP is a substrate for yeast 3-phosphoglycerate kinase, thus permitting regeneration of SL-ATP from SL-ADP within muscle fibers. Electron paramagnetic resonance (EPR) studies of SL-ADP bound to myosin filaments and to myofibrils show a degree of nanosecond motion independent of that of the protein, which may be due to conformational flexibility of the ribose moiety of ATP bound to myosin's active site. This nanosecond motion is more restricted in myofibrils than in myosin filaments, suggesting that the binding of actin affects the ribose binding site in myosin. EPR studies on SL-ADP bound to rigor cross-bridges in muscle fiber bundles showed the nucleotide to be highly oriented with respect to the fiber axis.  相似文献   

2.
3.
A Y Woody  C R Vader  R W Woody  B E Haley 《Biochemistry》1984,23(13):2843-2848
A photoaffinity analogue of adenosine 5'-triphosphate (ATP), 8-azidoadenosine 5'-triphosphate (8-N3ATP), has been used to elucidate the role of the various subunits involved in forming the active site of Escherichia coli DNA-dependent RNA polymerase. 8-N3ATP was found to be a competitive inhibitor of the enzyme with respect to the incorporation of ATP with Ki = 42 microM, while uridine 5'-triphosphate (UTP) incorporation was not affected. UV irradiation of the reaction mixture containing RNA polymerase and [gamma-32P]-8-N3ATP induced covalent incorporation of radioactive label into the enzyme. Analysis by gel filtration and nitrocellulose filter binding indicated specific binding. Subunit analysis by sodium dodecyl sulfate and sodium tetradecyl sulfate gel electrophoresis and autoradiography of the labeled enzyme showed that the major incorporation of radioactive label was in beta' and sigma, with minor incorporation in beta and alpha. The same pattern was observed in both the presence and absence of poly[d(A-T)] and poly[d(A-T)] plus ApU. Incorporation of radioactive label in all bands was significantly reduced by 100-150 microM ATP, while 100-200 microM UTP did not show a noticeable effect. Our results indicate major involvement of the beta' and sigma subunits in the active site of RNA polymerase. The observation of a small extent of labeling of the beta and alpha subunits, which was prevented by saturating levels of ATP, suggests that these subunits are in close proximity to the catalytic site.  相似文献   

4.
Four spin-labeled analogs of adenosylcobalamin have been synthesized to aid in the detection and identification of radical intermediates in the adenosylcobalamin-dependent enzymatic reactions and to serve as probes of the coenzyme, substrate, and effector binding sites of the protein. Three isomers of adenosylcobalamin, in which one of the propionamide side chains (b, d, or e) was hydrolyzed, and adenosylepicobalamin e-carboxylic acid were reacted with 4-amino-2,2,6,6-tetramethylpiperidine-N-oxyl in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide to yield the spin-labeled adenosylcorrinoids. These spin-labeled derivatives of adenosylcobalamin function as coenzymes and/or inhibitors of dioldehydrase from Klebsiella pneumoniae and of ribonucleotide reductase from Corynebacterium nephridii. Electron spin resonance has been used to monitor the photolytic cleavage of the carbon-cobalt bond of these analogs.  相似文献   

5.
The effects of 2'-substitutions of ATP on the substrate and inhibitor properties for RNA synthesis were studied in the poly(dAT)-dependent reaction of Escherichia coli RNA polymerase. In the presence of UTP, 2'-deoxy-2'-azidoadenosine 5'-triphosphate (AZTP) was incorporated into an acid-insoluble fraction at one-tenth of the rate of ATP incorporation; it thus acts as a competitive inhibitor for poly(AU) synthesis. On the other hand, another ATP analog, 2'-deoxy-2'-fluoroadenosine 5'-triphosphate (AfTP), was co-polymerized with UTP into acid-insoluble materials at a rate less than 1% of that of ATP incorporation; in addition, it exerted a strong but mixed-type inhibition on poly(AU) synthesis. Different modes of action of the two ATP analogs are discussed in connection with the specificity of substrate recognition by RNA polymerase.  相似文献   

6.
N Shimamoto  C W Wu 《Biochemistry》1980,19(5):842-848
A non-steady-state kinetic method has been developed to observe the initiation of long RNA chains by Escherichia coli RNA polymerase without the enzyme turnover. This method was used to determine the order of binding of the first two nucleotides to the enzyme in RNA synthesis with the first two nucleotides to the enzyme in RNA synthesis with poly(dA-dT) as the template. It was shown that initiator [ATP, uridyly(3'-5')adenosine, or adenyly(3'-5')uridylyl-(3'-5')adenosine] binds first to the enzyme-template complex, followed by UTP binding. The concentration dependence of UTP incorporation into the initiation complex suggests that more than one UTP molecule may bind to the enzyme-DNA complex during the initiation process. Comparison of the kinetic parameters derived from these studies with those obtained under steady-state conditions indicates that the steps involving binding of initiator or UTP during initiation cannot be rate limiting in the poly(dA-dT)-directed RNA synthesis. The non-steady-state technique also provides a method for active-site titration of RNA polymerase. The results show that only 36 +/- 9% of the enzyme molecules are active in a RNA polymerase preparation of high purity and specific activity. In addition, the minimal length of poly(dA-dT) involved in RNA synthesis by one RNA polymerase molecule was estimated to be approximately 500 base pairs.  相似文献   

7.
Substrate specificity of CTP synthetase from Escherichia coli   总被引:1,自引:0,他引:1  
The stoichiometry of the enzymatic reaction catalyzed by CTP synthetase from Escherichia coli was analyzed by high-performance liquid chromatography. The results revealed that for every mole of UTP transformed to CTP, one mole of ATP was converted to ADP. The substrate specificity of CTP synthetase from E. coli was investigated by means of UTP analogs. Chemical modification of UTP involved either the uracil, ribose or 5'-triphosphate part. None of the UTP analogs studied proved to be a substrate. The capacity of the UTP analogs to inhibit CTP synthetase was investigated. From the UTP derivatives employed only 2-thiouridine 5'-triphosphate was found to inhibit the enzyme competitively with reasonable affinity: Ki/Km(UTP) = 1. This study indicated that the three main structural elements of the UTP molecule: uracil, ribose and 5'-triphosphate moiety, contribute to substrate specificity. The behaviour of a limited number of CTP analogs as product-like inhibitors supported this view.  相似文献   

8.
We have used the photoaffinity analogs 8-azidoadenosine 5'-triphosphate (8-N3ATP) and 8-azidoguanosine 5'-triphosphate (8-N3GTP) to investigate the relationship between a viral induced protein (Mr = 120,000) in tobacco mosaic virus (TMV)-infected tobacco and the TMV-induced RNA-dependent RNA polymerase activity. When the radioactive analogs [gamma-32P]8-N3ATP and [gamma-32P]8-N3GTP were incubated with the tobacco tissue homogenate from TMV-infected plants, incorporation of label occurred into the viral induced protein in the presence of UV light. The incorporation was found to be totally dependent on UV-illumination and greatly enhanced by Mg2+. Saturation of photoincorporated label indicates an apparent Kd of 16 microM (+/- 3 microM) and 12 microM (+/- 3 microM) for 8-N3ATP and 8-N3GTP, respectively. Protection against photolabeling by [gamma-32P]8-N3ATP and [gamma-32P]8-N3GTP with various nonradioactive nucleotides and nucleosides suggests that the photolabeled site is protected best by nucleoside triphosphates. At 200 microM both deoxyribonucleoside triphosphates and ribonucleoside triphosphates were very effective at protecting the site from photolabeling. These data suggest that the photolabeled protein may be part of an RNA-dependent RNA polymerase. The utility of nucleotide photoaffinity analogs as a method to study viral induced nucleotide-binding proteins is discussed.  相似文献   

9.
The parameters of the hydrolysis of ATP and several analogs by soluble mitochondrial ATPase were determined. Vmax of the reaction decreases within the range: 2'-desoxy-ATP greater than ATP greater than etheno-ATP greater than GTP greater than 3'-O-methylATP greater than UTP. ATP, 2'-desoxypATP, 3'O-methyl-ATP, GTP, and etheno-ATP are hydrolysed by soluble mitochondrial ATPase with close Km(app) values. CTP is not hydrolysed by the enzyme and does not inhibit the ATPase reaction at a concentration of 10(-2) M. Nucleoside triphosphate derivatives with an "open" ribose cycle 9-[1',5'-dihydroxy-4-(S)-hydroxymethyl-3'-oxapent-2' (R)-yl]adenyl-5'-triphosphate, and 1-[1',5'-dihydroxy-4'-(S)-hydroxymethyl-3'-oxapent-2'(R)-yl[cytosine-5'-triphosphate are effective inhibitors of ATPase (Ki approximately 5.10(-5)M). Mitochondrial ATPase binds the ATP analogs that have hydrocarbon radicals-(CH2)2-, -(CH2)3-, and (CH2)4- instead of the ribose residues: 9-(2'hydroxyethyl)adenyl-2'-triphosphate, 9-(3'-hydroxypropyl)-adenine-3'-triphosphate, and 9-(4'-hydroxybutyl)adenine-4'-triphosphyl)adenine-4'-triphosphate were not hydrolysed by the enzyme, although they inbibit the ATPase reaction (Ki 2.10(-4)M). 9-(2'-hydroxyethyl)adenine-2'-triphosphate is hydrolysed by ATPase eight times more slowly than ATP. It is suggested that the hydrolysis of the substrates of mitochondrial ATPase is- preceded by the binding of the substrates in a tense conformation in the active site of the enzyme.  相似文献   

10.
It is found that EPR spectra of immunoglobulins and their subunits spin-labeled by iminoxyl radical 2,2,6,6-tetramethyl-4-amino (N-dichlorotriazine) at pH 7.5 are similar in form and reflect the capability of spin-label to be in two states. Formation of specific complexes of spin-labeled antibodies with antigens is accompanied by increased correlation time of labels as well as by increased fraction of the labels in a more immobilized state. It is shown that splitting spin-labeled light chains to halves results in the label losing its capacity of being in the more rigid microenvironment. EPR spectra are interpreted as due to the relative motion of domains.  相似文献   

11.
A variety of compounds were assessed for their ability to induce morphological differentiation and to affect the synthesis of RNA in uncloned mouse neuroblastoma cells in culture. The stimulation of morphological differentiation in uncloned cells after exposure for 48 hours to concentrations of 3 times 10-7 to 3 times 10-4 M papavarine or 10-9 to 10-3 M dibutyryl adenosine 3':5'-monophosphate (dibutyryl-cAMP) was associated, in part, with a concentration-dependent decrease in incorporation of [5-3H]uridine into ribosomal RNA (rRNA) and heterogeneous RNA (HnRNA). The latter effect on cellular RNA produced by papavarine occurred within 1 hour after its addition to the medium and was associated with impaired uptake of radioactive precursor into uridine nucleotides and reduction in the intracellular concentration of uridine 5'-triphosphate (UTP). Dibutytyl-cAMP produced a decreased in the specific radioactivity of UTP without affecting the concentration of UTP in the tumor cells. The effects of papavarine and dibutyryl-cAMP could be distinguished further by the 50% reduction of acetylcholinesterase activity produced by papavarine, but not by dibutyryl-cAMP. Papavarine did not, however, reduce the cellular level of the soluble enzyme, adenine phosphoribosyltransferase. Sodium butyrate, while producing morphological effects similar to those of papavarine and dibutyryl-cAMP at equimolar concentrations, caused no significant changes in the incorporation of [5-3H]uridine into rRNA and HnRNA; however, acetylcholinesterase activity was stimulated 6- to 7-fold above control levels. In contrast to the other differentiating agents examined, addition of 10-9 to 3 times 10-4 M concentrations of cAMP to the tissue culture medium enhanced morphological differentiation of nueroblastoma cells, and caused a 10- to 20-fold stimulation of the incorporation of [5-3H]uridine into rRNA and HnRNA at concentrations of 10-4 M and higher. This effect observed only at high concentrations of cyclic nucleotide was accompanied by an elevation in the specific acitivty of UTP, These studies suggest that the morphological response of neuroblastoma cells is not necessarily associated with concomitant alterations in the synthesis of RNA with agents other than cAMP. Observed changes in incorporation of [5-3H]uridine into RNA appear in most instances to be due to alterations in the uptake of uridine, and in the pool size and specific radioactivity of UTP.  相似文献   

12.
BACKGROUND: Cystic fibrosis (CF) is a syndrome caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) gene. Despite advances in our understanding of the molecular pathogenesis of CF, the link between CFTR gene mutations and the pathogenesis of CF lung disease remains poorly defined. CFTR has been assigned a number of putative functions that may contribute to innate airway defense, including the regulation of adenosine 5'-triphosphate (ATP) release into the extracellular environment. Because extracellular ATP and uridine 5'-triphosphate (UTP) may regulate airway mucociliary clearance via interaction with luminal P2Y2 receptors, the loss of CFTR-mediated nucleotide release could explain the defect in CF airway defense. MATERIALS AND METHODS: We tested the physiologic importance of CFTR-mediated nucleotide release in vivo by directly measuring levels of ATP and UTP in nasal airway surface liquid from normal and CF subjects. Because these basal nucleotide levels reflect the net activities of nucleotide release and metabolic pathways, we also measured constitutive rates of nucleotide release and metabolism on well-differentiated normal and CF airway cultures in vitro. The measurement of ATP release rates were paralleled by in vivo studies employing continuous nasal perfusion in normal and CF subjects. Finally, the regulation of ATP release by isoproterenol and methacholine-stimulated submucosal gland secretion was tested. RESULTS: These studies revealed that steady-state ATP and UTP levels were similar in normal (470 +/- 131 nM and 37 +/- 7 nM, respectively) and CF (911 +/- 199 nM and 33 +/- 12 nM, respectively) subjects. The rates of both ATP release and metabolism were also similar in normal and CF airway epithelia both in vitro and in vivo. Airway submucosal glands did not secrete nucleotides, but rather, secreted a soluble nucleotidase in response to cholinergic stimuli. CONCLUSION: The concentration of ATP in airway surface liquid is in a range that is relevant for the activation of airway nucleotide receptors. However, despite this finding that suggests endogenous nucleotides may be important for the regulation of mucociliary clearance, our data do not support a role for CFTR in regulating extracellular nucleotide concentrations on airway surfaces.  相似文献   

13.
The involvement of P2Y receptors, which are activated by extracellular nucleotides, in proliferative regulation of human lung epithelial cells is unclear. Here we show that extracellular ATP and UTP stimulate bromodeoxyuridine (BrdU) incorporation into epithelial cell lines. The nucleotide efficacy profile [ATP = ADP > UDP >or= UTP > adenosine >or= 2-methylthioadenosine-5'-diphosphate, with alpha,beta-methylene adenosine 5'-triphosphate, 2',3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate, AMP, UMP, and ATPalphaS inactive] and PCR analysis indicate involvement of P2Y2 and P2Y6 receptors. The signal transduction pathway, which, via the P2Y2 receptor, transmits the proliferative activity of ATP or UTP in A549 cells downstream of phospholipase C, depends on Ca2+/calmodulin-dependent protein kinase II and nuclear factor-kappaB, but not on protein kinase C. Signaling does not involve the mitogen-activated protein kinases extracellular signal-regulated kinases-1 and -2, the phosphatidylinositol 3-kinase pathway, or Src kinases. Thus nucleotides regulate proliferation of human lung epithelial cells by a novel pathway. The stimulatory effect of UTP, but not ATP, in A549 cells is attenuated by preincubation with interleukin-1beta and interleukin-6, but not tumor necrosis factor-alpha. This indicates an important role for the pyrimidine-activated P2Y receptor in the inflammatory response of lung epithelia. ATP antagonizes the antiproliferative effect of the anticancer drugs paclitaxel and etoposide, whereas it enhances the activity of cisplatin about fourfold. Thus pathways activated by extracellular nucleotides differentially control proliferation of lung epithelial tumor cells.  相似文献   

14.
Mouse embryos from the one-cell to the blastocyst stage were cultured for 2 hr in the presence of 5 μM [3H]uridine or 10 μM [3H]adenosine, and the size and specific activity of the UTP and ATP pools were determined by an Escherichia coli RNA polymerase assay using synthetic poly(dA-dT) as template. The total UTP pool increased in size and specific activity with development from 0.05 pmole (0.06% labeled) in the one-cell stage to 0.54 pmole (27% labeled) in the blastocyst stage. The total ATP pool remained relatively constant in size at about 1 pmole/embryo, but increased in specific activity from 2.6 to 52% from one-cell to blastocyst. The turnover of the [3H]UTP pool was also examined under pulse-chase conditions in eight-cell and morula-stage embryos. The UTP pool decayed with approximately first-order kinetics up to 20 hr of chase, but the rate of decay was slower in eight-cell embryos (t0.5 = 5.5 hr) than in morulae (t0.5 = 2.8 hr). The observed specific activities of the UTP pools were used to calculate the overall rates of uridine incorporation into acid-precipitable material during early development. The rate of uridine incorporation per embryo increased from 3.6 × 10?3 pmole/2 hr in the two-cell embryo to 1.8 × 10?1 pmole/2 hr in the blastocyst. The rate of RNA synthesis per cell over a 2-hr period was estimated at 2.5 pg in the two- to four-cell embryo, 5 pg in the eight-cell, and 10 pg in the morula-early blastocyst.  相似文献   

15.
The nucleotide substrate specificity of yeast poly(A) polymerase (yPAP) toward various C-2- and C-8-modified ATP analogs was examined. 32P-Radiolabeled RNA oligonucleotide primers were incubated with yPAP in the absence of ATP to assay polyadenylation using unnatural ATP substrates. The C-2-modified ATP analogs 2-amino-ATP and 2-chloro (Cl)-ATP were excellent substrates for yPAP. 8-Amino-ATP, 8-azido-ATP, and 8-aza-ATP all produced chain termination of polyadenylation, and no primer extension was observed with the C-8-halogenated derivatives 8-Br-ATP and 8-Cl-ATP. The effects of modified ATP analogs on ATP-dependent poly(A) tail synthesis by yPAP were also examined. Whereas C-2 substitution (2-amino-ATP and 2-Cl-ATP) had little effect on poly(A) tail length, C-8 substitution produced moderate (8-amino-ATP, 8-azido-ATP, and 8-aza-ATP) to substantial (8-Br-ATP and 8-Cl-ATP) reduction in poly(A) tail length. To model the biochemical consequences of 8-Cl-Ado incorporation into RNA primers, a synthetic RNA primer containing a 3'-terminal 8-Cl-AMP residue was prepared. Polyadenylation of this modified RNA primer by yPAP in the presence of ATP was blocked completely. To probe potential mechanisms of inhibition, two-dimensional NMR spectroscopy experiments were used to examine the conformation of two C-8-modified AMP nucleotides, 8-Cl-AMP and 8-amino-AMP. C-8 substitution in adenosine analogs shifted the ribose sugar pucker equilibrium to favor the DNA-like C-2'-endo form over the C-3'-endo (RNA-like) conformation, which suggests a potential mechanism for polyadenylation inhibition and chain termination. Base-modified ATP analogs may exert their biological effects through polyadenylation inhibition and thus may provide useful tools for investigating polyadenylation biochemistry within cells.  相似文献   

16.
Ma B  Yu LH  Fan J  Ni X  Burnstock G 《Life sciences》2008,83(5-6):185-191
  相似文献   

17.
DNA-dependent RNA polymerase from Escherichia coli contains 2 mol of zinc/mol of holoenzyme (alpha 2 beta beta' sigma) with one zinc each in the beta and beta' subunits. A new method to substitute selectively the zinc in the beta subunit was developed by the inactivation of RNA polymerase with 0.25 M NaNO3, 1 M NaCl, 1 mM diaminocyclohexane tetraacetic acid, and 0.1 mM dithiothreitol followed by reconstitution with Co(II), Cd(II), or Cu(II). The hybrid Co-Zn, Cd-Zn, or Cu-Zn RNA polymerase thus obtained retains, respectively, 91, 88, and 50% enzyme activity of the reconstituted Zn-Zn RNA polymerase. Co-Zn RNA polymerase exhibits absorption maxima at 395 and 465 nm, and Cu-Zn RNA polymerase at 637 nm (epsilon = 815 M-1 cm-1). 1-Aminonaphthalene-5-sulfonic acid (AmNS) derivatives of ATP, UTP, and dinucleoside monophosphates (diNMPs), UpA or ApU, were synthesized with AmNS attached to NTP via a gamma-phosphoamidate bond or to diNMPs via a 5'-secondary amine linkage. Since the fluorescence emission maxima of (5'-AmNS)UpA, (gamma-AmNS)ATP, and (gamma-AmNS)UTP at 445, 464, and 464 nm, respectively, when excited at 340 nm, overlap the 465-nm absorption band of Co-Zn RNA polymerase, the spatial relationship between fluorescence substrate analogs and the intrinsic Co(II) in Co-Zn RNA polymerase was studied by fluorescence resonance energy transfer technique. The fluorescence of the initiator, (5'-AmNS)UpA, and elongator, (gamma-AmNS)UTP, of the RNA chain, was quenched 20.3 and 7.1%, by the addition of saturation concentration of Zn-Zn RNA polymerase, and 21.3 and 14.7%, respectively, by the addition of template, poly(dA-dT). The fluorescence of (5'-AmNS)UpA and (gamma-AmNS)UTP was quenched 81.8 and 80.6%, respectively, by the addition of the saturation concentration of Co-Zn RNA polymerase in the absence of template, and 82.7 and 82.9% in the presence of template. On the basis of respective Ro values of 21.3 and 21.9 A for the (5'-AmNS)UpA-Co and (gamma-AmNS)UTP-Co pairs, the distances from Co(II) to the initiation site and to the elongation site were calculated to be 17.4 and 17.5 A, respectively, in the absence and 17.2 and 17.4 A in the presence of template.  相似文献   

18.
19.
3'-Deoxycytidine 5'-triphosphate and 3'-deoxyuridine 5'-triphosphate were synthesized starting from cordycepin in good yield. The inhibitory effects of these nucleotides were examined in comparison with that of cordycepin 5'-triphosphate (3'-dATP) using purified DNA-dependent RNA polymerases I and II from Dictyostelium discoideum cells. Both nucleotide analogues strongly and competitively inhibited the incorporations of CTP and UTP into RNA by the RNA polymerases. The Km and Ki values for CTP and 3'-dCTP were 6.3 micro M and 3.0 micro M, respectively, and those for UTP and 3'-dUTP were 6.3 micro M and 2.0 micro M, respectively. These two analogues will be useful in studies at the molecular level on the relationship of template and substrate in RNA synthesis with chromatin, isolated nuclei or permeable cells, because they do not have any effect on poly (rA) synthesis.  相似文献   

20.
Cytidine 5'-triphosphate synthase (CTPS) catalyzes the ATP-dependent formation of CTP from UTP using either NH3 or L-glutamine as the source of nitrogen. To identify the location of the ATP-binding site within the primary structure of E. coli CTPS, we used the affinity label 2',3'-dialdehyde adenosine 5'-triphosphate (oATP). oATP irreversibly inactivated CTPS in a first-order, time-dependent manner while ATP protected the enzyme from inactivation. In the presence of 10 mM UTP, the values of k(inact) and K(I) were 0.054 +/- 0.001 min(-1) and 3.36 +/- 0.02 mM, respectively. CTPS was labeled using (2,8-3H)oATP and subsequently subjected to trypsin-catalyzed proteolysis. The tryptic peptides were separated using reversed-phase HPLC, and two peptides were identified using N-terminal sequencing (S(492)GDDQLVEIIEVPNH(506) and Y(298)IELPDAY(K(306)) in a 5:1 ratio). The latter suggested that Lys 306 had been modified by oATP. Replacement of Lys 306 by alanine reduced the rate of oATP-dependent inactivation (k(inact) = 0.0058 +/- 0.0005 min(-1), K(I) = 3.7 +/- 1.3 mM) and reduced the apparent affinity of CTPS for both ATP and UTP by approximately 2-fold. The efficiency of K306A-catalyzed glutamine-dependent CTP formation was also reduced 2-fold while near wild-type activity was observed when NH3 was the substrate. These findings suggest that Lys 306 is not essential for ATP binding, but does play a role in bringing about the conformational changes that mediate interactions between the ATP and UTP sites, and between the ATP-binding site and the glutamine amide transfer domain. Replacement of the nearby, fully conserved Lys 297 by alanine did not affect NH3-dependent CTP formation, relative to wild-type CTPS, but reduced k(cat) for the glutaminase activity 78-fold. Our findings suggest that the conformational change associated with binding ATP may be transmitted through the L10-alpha11 structural unit (residues 297-312) and thereby mediate effects on the glutaminase activity of CTPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号