首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The high resolution structure of rhodopsin has greatly enhanced current understanding of G protein-coupled receptor (GPCR) structure in the off-state, but the activation process remains to be clarified. We investigated molecular mechanisms of delta-opioid receptor activation without a preconceived structural hypothesis. Using random mutagenesis of the entire receptor, we identified 30 activating point mutations. Three-dimensional modeling revealed an activation path originating from the third extracellular loop and propagating through tightly packed helices III, VI and VII down to a VI-VII cytoplasmic switch. N- and C-terminal determinants also influence receptor activity. Findings for this therapeutically important receptor may apply to other GPCRs that respond to diffusible ligands.  相似文献   

4.
Yeagle PL  Albert AD 《Biochemistry》2003,42(6):1365-1368
G protein-coupled receptors (GPCRs) are a family of seven transmembrane helical proteins that initiate a cellular response to an environmental signal. Once activated by an extracellular signal, GPCRs trigger the intracellular signal transduction cascade by activating a heterotrimeric G protein. The interaction between the G protein and the receptor, which triggers the signal transduction, is the focus of intense interest. Three-dimensional structures of the ground state of only one GPCR, rhodopsin, are currently available, but since the G protein cannot bind to this structure, these structures did not lead to an understanding of the activation process. The recent publication of an excited state structure for the same GPCR (and comparison to the ground state structures), in conjunction with other recent biochemical data, provides new insight into G protein activation. We find that the structure data and the biochemical data, for the first time, point to a specific mode of interaction between the G protein and the receptor. Furthermore, we find that transducin (G(t)) must alter its conformation to bind to the activated receptor; the "lock and key" fit heretofore expected is likely not the correct model. We suggest that a conformational distortion, driven by the energy of binding, is induced in G(t) when it binds to the activated receptor. The conformational change in turn enables the exchange of GTP for GDP and the dissociation of the subunits. This is an example of "induced fit" originally proposed by Koshland to describe enzyme-substrate interactions.  相似文献   

5.
刘飞  张幼怡 《生命科学》2008,20(1):53-57
G蛋白偶联受体是体内最大的受体超家族,它们参与调节生物体内多种生理功能与病理过程。G蛋白偶联受体的分子内构象变化与G蛋白的偶联以及受体的二聚化等是G蛋白偶联受体激活的重要基本过程。借助于单分予研究手段,在G蛋白偶联受体激活方面取得了重要进展。本文将就这些方面进行简要的综述。  相似文献   

6.
G protein‐coupled receptor (GPCR) kinases (GRKs) selectively recognize and are allosterically regulated by activated GPCRs, but the molecular basis for this interaction is not understood. Herein, we report crystal structures of GRK6 in which regions known to be critical for receptor phosphorylation have coalesced to stabilize the kinase domain in a closed state and to form a likely receptor docking site. The crux of this docking site is an extended N‐terminal helix that bridges the large and small lobes of the kinase domain and lies adjacent to a basic surface of the protein proposed to bind anionic phospholipids. Mutation of exposed, hydrophobic residues in the N‐terminal helix selectively inhibits receptor, but not peptide phosphorylation, suggesting that these residues interact directly with GPCRs. Our structural and biochemical results thus provide an explanation for how receptor recognition, phospholipid binding, and kinase activation are intimately coupled in GRKs.  相似文献   

7.
The H1 histamine receptor (H1HR) is a member of the G protein-coupled receptor superfamily and regulates numerous cellular functions through its activation of the G(q/11) subfamily of heterotrimeric G proteins. Although the H1HR has been shown to undergo desensitization in multiple cell types, the mechanisms underlying the regulation of H1HR signaling are poorly defined. To address this issue, we examined the effects of wild type and mutant G protein-coupled receptor kinases (GRKs) on the phosphorylation and signaling of human H1HR in HEK293 cells. Overexpression of GRK2 promoted H1HR phosphorylation in intact HEK293 cells and completely inhibited inositol phosphate production stimulated by H1HR, whereas GRK5 and GRK6 had lesser effects on H1HR phosphorylation and signaling. Interestingly, catalytically inactive GRK2 (GRK2-K220R) also significantly attenuated H1HR-mediated inositol phosphate production, as did an N-terminal fragment of GRK2 previously characterized as a regulator of G protein signaling (RGS) protein for Galpha(q/11). Disruption of this RGS function in holo-GRK2 by mutation (GRK2-D110A) partially reversed the quenching effect of GRK2, whereas deletion of both the kinase activity and RGS function (GRK2-D110A/K220R) effectively relieved the inhibition of inositol phosphate generation. To evaluate the role of endogenous GRKs on H1HR regulation, we used small interfering RNAs to selectively target GRK2 and GRK5, two of the primary GRKs expressed in HEK293 cells. A GRK2-specific small interfering RNA effectively reduced GRK2 expression and resulted in a significant increase in histamine-promoted calcium flux. In contrast, knockdown of GRK5 expression was without effect on H1HR signaling. These findings demonstrate that GRK2 is the principal kinase mediating H1 histamine receptor desensitization in HEK293 cells and suggest that rapid termination of H1HR signaling is mediated by both the kinase activity and RGS function of GRK2.  相似文献   

8.
Although the oxytocin receptor (OTR) mediates many important functions including uterine contractions, milk ejection, and maternal behavior, the mechanisms controlling agonist-induced OTR desensitization have remained unclear, and attempts to demonstrate involvement of a G protein-coupled receptor kinase (GRK) have so far failed. Using the OTR as a model, we demonstrate here directly for the first time the dynamics of agonist-induced interactions of a GRK with a G protein-coupled receptor in real time, using time-resolved bioluminescence resonance energy transfer. GRK2/receptor interactions started within 4 sec, peaked at 10 sec, and decreased to less than 40% within 8 min. By contrast, beta-arrestin/OTR interactions initiated only at 10 sec, reached plateau levels at 120 sec, but remained stable with little decrease thereafter. Physical GRK2/OTR association was further demonstrated by coimmunoprecipitation of endogenous GRK2 with activated OTR. In COS-7 cells, which express low levels of GRK2 and beta-arrestin, overexpression of GRK2 and beta-arrestin increased receptor phosphorylation, desensitization, and internalization to the high levels observed in human embryonic kidney 293 cells. By contrast, specific inhibition of endogenous GRK2 by dominant-negative mutants robustly inhibited OTR phosphorylation and internalization as well as arrestin/OTR interactions. These data characterize the temporal and causal relationship of GRK-2/OTR and beta-arrestin/OTR interactions and establish GRK/OTR interaction as a prerequisite for beta-arrestin-mediated OTR desensitization.  相似文献   

9.
G protein-coupled receptors (GPCRs) constitute an abundant family of membrane receptors of high pharmacological interest. Cell-based assays are the predominant means of assessing GPCR activation, but are limited by their inherent complexity. Functional molecular assays that directly and specifically report G protein activation by receptors could offer substantial advantages. We present an approach to immobilize receptors stably and with defined orientation to substrates. By surface plasmon resonance (SPR), we were able to follow ligand binding, G protein activation, and receptor deactivation of a representative GPCR, bovine rhodopsin. Microcontact printing was used to produce micrometer-sized patterns with high contrast in receptor activity. These patterns can be used for local referencing to enhance the sensitivity of chip-based assays. The immobilized receptor was stable both for hours and during several activation cycles. A ligand dose-response curve with the photoactivatable agonist 11-cis-retinal showed a half-maximal signal at 120 nM. Our findings may be useful to develop novel assay formats for GPCRs based on receptor immobilization to solid supports, particularly to sensor surfaces.  相似文献   

10.
Struthers M  Yu H  Oprian DD 《Biochemistry》2000,39(27):7938-7942
G protein-coupled receptor (GPCR) activation is generally assumed to result in a significant structural rearrangement of the receptor, presumably involving the rigid body movement of transmembrane helices. We have investigated the activation of the GPCR rhodopsin by the construction and analysis of a mutant which contains a total of four disulfide bonds connecting the cytoplasmic ends of helices 1 and 7, and 3 and 5, and the extracellular ends of helices 3 and 4, and 5 and 6. Despite the constraints imposed by four disulfides, this "straitjacketed" receptor retains the ability to activate the G protein transducin and, therefore, provides insight into the molecular mechanism of the initial step in signal transduction of this important class of receptors.  相似文献   

11.
In response to extracellular signals, G protein-coupled receptors (GPCRs) catalyze guanine nucleotide exchange on Galpha subunits, enabling both activated Galpha and Gbetagamma subunits to target downstream effector enzymes. One target of Gbetagamma is G protein-coupled receptor kinase 2 (GRK2), an enzyme that initiates homologous desensitization by phosphorylating activated GPCRs. GRK2 consists of three distinct domains: an RGS homology (RH) domain, a protein kinase domain, and a pleckstrin homology (PH) domain, through which it binds Gbetagamma. The crystal structure of the GRK2-Gbetagamma complex revealed that the domains of GRK2 are intimately associated and left open the possibility for allosteric regulation by Gbetagamma. In this paper, we report the 4.5 A structure of GRK2, which shows that the binding of Gbetagamma does not induce large domain rearrangements in GRK2, although small rotations of the RH and PH domains relative to the kinase domain are evident. Mutation of residues within the larger domain interfaces of GRK2 generally leads to diminished expression and activity, suggesting that these interfaces are important for stability and remain intact upon activation of GRK2. Geranylgeranylated Gbetagamma, but not a soluble mutant of Gbetagamma, protects GRK2 from clostripain digestion at a site within its kinase domain that is 80 A away from the Gbetagamma binding site. Equilibrium ultracentrifugation experiments indicate that neither abnormally large detergent micelles nor protein oligomerization can account for the observed protection. The Gbetagamma-mediated binding of GRK2 to CHAPS micelles or lipid bilayers therefore appears to rigidify the kinase domain, perhaps by encouraging stable contacts between the RH and kinase domains.  相似文献   

12.
13.
14.
G protein-coupled receptor kinase 2 (GRK2) is a key modulator of G protein-coupled receptors (GPCR). Altered expression of GRK2 has been described to occur during pathological conditions characterized by impaired GPCR signaling. We have reported recently that GRK2 is rapidly degraded by the proteasome pathway and that beta-arrestin function and Src-mediated phosphorylation are involved in targeting GRK2 for proteolysis. In this report, we show that phosphorylation of GRK2 by MAPK also triggers GRK2 turnover by the proteasome pathway. Modulation of MAPK activation alters the degradation of transfected or endogenous GRK2, and a GRK2 mutant that mimics phosphorylation by MAPK shows an enhanced degradation rate, thus indicating a direct effect of MAPK on GRK2 turnover. Interestingly, MAPK-mediated modulation of wild-type GRK2 stability requires beta-arrestin function and is facilitated by previous phosphorylation of GRK2 on tyrosine residues by c-Src. Consistent with an important physiological role, interfering with this GRK2 degradation process results in altered GPCR responsiveness. Our data suggest that both c-Src and MAPK-mediated phosphorylation would contribute to modulate GRK2 degradation, and put forward the existence of new feedback mechanisms connecting MAPK cascades and GPCR signaling.  相似文献   

15.
Structural characterization of membrane proteins is hampered by the instability of the isolated proteins in detergent solutions. Here, we describe a new class of phospholipid-like surfactants that stabilize the G protein-coupled receptor, BLT1. These compounds, called C(13)U(9), C(13)U(19), C(15)U(25) and C(17)U(16), were synthesized by radical polymerization of Tris(hydroxymethyl) acrylamidomethane in the presence of thioglycerol, first endowed with two hydrocarbon chains with variable lengths (13-17 carbon atoms), as transfer reagent. C(13)U(19), C(17)U(16) or C(15)U(25) significantly enhanced the stability of BLT1 in solution compared to what was obtained with common detergents. These molecules therefore represent a promising step towards the structural characterization of BLT1 and possibly other membrane proteins.  相似文献   

16.
17.
The lysophospholipids, lysophosphatidic acid, sphingosine-1-phosphate, and sphingosylphosphorylcholine (SPC), are bioactive lipid molecules that regulate diverse biological processes. Although the specific G protein-coupled receptors for lysophosphatidic acid and sphingosine-1-phosphate have been well-characterized, much less is known of the SPC receptors. It has been reported that ovarian cancer G protein-coupled receptor 1 (OGR1) is a high affinity receptor for SPC, and its closely related homologue GPR4 is a high affinity receptor for SPC with low affinity for lysophosphatidylcholine (LPC). However, in a functional assay to examine the specificity of ligand binding, we found that neither SPC nor LPC, or other related lysophospholipids, induced internalization of GPR4 from the plasma membrane. In agreement, these lysolipids also did not induce translocation of beta-arrestin2-GFP from the cytosol to the plasma membrane in GPR4 expressing cells. However, when these cells were cotransfected with G protein-coupled receptor kinase 2, in the absence of added ligands, beta-arrestin2-GFP accumulated in cytoplasmic vesicles, reminiscent of vesicular labeling usually observed after agonist stimulation of GPCRs. In addition, neither SPC nor LPC stimulated the binding of GTPgammaS to membranes prepared from GPR4 expressing cells and did not activate ERK1/2. Surprisingly, enforced expression of GPR4 inhibited activation of ERK1/2 induced by several stimuli, including SPC, sphingosine-1-phosphate, and even EGF. Collectively, our results suggest that SPC and LPC are not the ligands for GPR4 and that this receptor may constitutively inhibit ERK1/2 activation.  相似文献   

18.
G protein-coupled receptor kinases (GRKs) control the signaling and activation of G protein-coupled receptors through phosphorylation. In this study, consensus substrate motifs for GRK2 were identified from the sequences of GRK2 protein substrates, and 17 candidate peptides were synthesized to identify peptide substrates with high affinity for GRK2. GRK2 appears to require an acidic amino acid at the −2, −3, or −4 positions and its consensus phosphorylation site motifs were identified as (D/E)X1–3(S/T), (D/E)X1–3(S/T)(D/E), or (D/E)X0–2(D/E)(S/T). Among the 17 peptide substrates examined, a 13-amino-acid peptide fragment of β-tubulin (DEMEFTEAESNMN) showed the highest affinity for GRK2 (Km, 33.9 μM; Vmax, 0.35 pmol min−1 mg−1), but very low affinity for GRK5. This peptide may be a useful tool for investigating cellular signaling pathways regulated by GRK2.  相似文献   

19.
beta(1)-Adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. However, beta(1)AR can internalize as G protein-coupled receptor kinase 2 (GRK2) is fused to its carboxyl terminus. Internalization of the beta(1)AR and GRK2 fusion protein (beta(1)AR/GRK2) is dependent on dynamin but independent of beta-arrestin and phosphorylation. The beta(1)AR/GRK2 fusion protein internalizes via clathrin-coated pits and is found to co-localize with the endosome that contains transferrin. The fusion proteins consisting of beta(1)AR and various portions of GRK2 reveal that the residues 498-502 in the carboxyl-terminal domain of GRK2 are critical to promote internalization of the fusion proteins. This domain contains a consensus sequence of a clathrin-binding motif defined as a clathrin box. In vitro binding assays show that the residues 498-502 of GRK2 bind the amino-terminal domain of clathrin heavy chain to almost the same extent as beta-arrestin1. The mutation of the clathrin box in the carboxyl-terminal domain of GRK2 results in the loss of the ability to promote internalization of the fusion protein. GRK2 activity increases and then decreases as the concentration of clathrin heavy chain increases. Taken together, these results imply that GRK2 contains a functional clathrin box and directly interacts with clathrin to modulate its function.  相似文献   

20.
We have identified novel G protein-coupled receptors (GPCRs) with no introns in the coding region from the human genome sequence: 322 olfactory receptors; 22 taste receptors; 128 registered GPCRs for endogenous ligands; 50 novel GPCR candidates homologous to registered GPCRs for endogenous ligands; and 59 novel GPCR candidates not homologous to registered GPCRs. The total number of GPCRs with and without introns in the human genome was estimated to be approximately 950, of which 500 are odorant or taste receptors and 450 are receptors for endogenous ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号