首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydroxylation of aniline to p-aminophenol catalyzed by the cytochrome P-450-containing monooxygenase system of liver microsomes is inhibited by cyanide, but microsomal NADPH-cytochrome c reductase is insensitive to this inhibitor. The interaction of aniline with membrane-bound cytochrome P-450, according to spectrophotometric analyses, consists of two phases with respect to aniline concentration, and cyanide interferes differently with these two reaction phases. Noncompetitive and competitive (or mixed type) inhibitions of the aniline-binding reaction by cyanide are observed in reaction systems containing low and, high concentrations of aniline, respectively, a situation similar to the inhibitory action of cyanide on aniline hydroxylase activity. Abnormal aniline-induced difference spectra appeared when cyanide was added as the spectral modifier, and the magnitude of the spectral change in the presence of both aniline and cyanide was a nonadditive change. These results suggest the dissociation of the cytochrome P-450·cyanide complex by aniline. A similar result indicating dissociation of the complex was also obtained by epr spectroscopy. We therefore suggest that addition of a high concentration of substrate causes insensitivity of the microsomal hydroxylase system to cyanide.  相似文献   

2.
Synopsis A procedure is described for the histochemical demonstration of aniline hydroxylase activity in cryostat sections of rat liver. Tissue sections are incubated in a medium containing aniline; thep-aminophenol formed as a result of enzymatic action is coupledin situ with Fast Blue RR. The staining reaction is found to be confined to the cytoplasm of the hepatocytes. Confirmatory tests for true enzymatic staining reaction include the incubation of sections in medium from which aniline is omitted, and under conditions of enzyme inhibibition. A method for the quantitation of the histochemical staining reaction is also described.The histochemical reactions have been investigated on rat livers subjected to conditions eliciting microsomal enzyme stimulation and inhibition, bothin vitro andin vivo. A close correlation was found between the staining reactions observed and the results of the quantitative histochemical method and the biochemical estimations of aniline hydroxylase activity in liver microsomal fractions obtained by differential centrifugation.  相似文献   

3.
The activation of molecular oxygen by alkaline hemin (ferriprotoporphyrin IX) has been studied. In the presence of reductant nicotineamide adenine dinucleotide (NADH) or nicotineamide adenine dinucleotide phosphate (NADPH) and organic substrate, aniline, hemin activates oxygen to the hydroperoxide anion (HO2?) and subsequently mediates insertion of active oxygen into the benzene ring of the substrate to form p-aminophenol, with a high degree of regiospecificity. Oxygen activation does not occur in the absence of aniline. Stoichiometry of the reaction indicates that two electrons are required per molecule of oxygen activated or atom of oxygen inserted into the substrate aromatic ring system. Direct measurements of H2O2 and of the pKa for maximum rate of p-aminophenol formation (11.7 ± 0.1) indicate participation of the hydroperoxide anion as the active oxygen species in the rate-determining step of the insertion reaction. Powerful scavengers of the hydroxyl radical (OH′) have little effect on the formation of H2O2 or p-aminophenol by the system. Superoxide dismutase (10?7 mol dm?3) inhibited both p-aminophenol and H2O2 formation, when added to the system immediately prior to initiation of the reaction. Studies involving N-phenylhydroxylamine indicate that aromatic ring hydroxylation is occurring directly and not by rearrangement of an N-hydroxylated intermediate. Implications of hemin-mediated hydroxylation reactions for those of enzymatic mixed function oxidase activity are discussed.  相似文献   

4.
The effects of pretreatment with toluene, o-, m-, p-xylene and mesitylene were investigated on the microsomal enzymes of liver, kidney and lung in rats. The activities of aminopyrine N-demethylase, aryl hydrocarbon hydroxylase, aniline hydroxylase, NADPH-cytochrome c reductase, as well as the concentrations of cytochrome P-450 and cytochrome b5 were determined. The effects were most marked in the liver, where toluene caused increase in aniline hydroxylase and cytochrome P-450; o-xylene in aminopyrine N-demethylase and cytochrome b5; m-xylene and mesitylene in all the enzymes investigated. In kidneys, all the compounds increased the activity of aniline hydroxylase; m-xylene induced cytochrome P-450 and b5 as well as NADPH-cytochrome c reductase; p-xylene induced cytochrome P-450, and mesitylene cytochrome P-450 and b5. Aminopyrine N-demethylase activity was decreased by toluene. In lungs, only mesitylene caused any significant differences from the controls: increase in aminopyrine N-demethylase and aryl hydrocarbon hydroxylase, decrease in aniline hydroxylase. The methylbenzenes tested induced the microsomal enzymes in a rough correlation to the number of their methyl groups and their hydrophobic properties.  相似文献   

5.
1. The glucuronide conjugation of p-nitrophenol, phenolphthalein, o-aminophenol and 4-methylumbelliferone by rat liver microsomes has been studied. The detergent Triton X-100 activated UDP-glucuronyltransferase activity towards all these substrates, therefore the optimum activating concentration was added in all experiments. 2. Mg2+ enhanced the conjugation of the substrates. 3. With phenolphthalein substrate inhibition occurred but this could be relieved by adding albumin, which binds excess of phenolphthalein. 4. Kinetic constants of the substrates and UDP-glucuronate have been determined. Mutual inhibition was found with the substrates p-nitrophenol, 4-methylumbelliferone and phenolphthalein. p-Nitrophenol conjugation was inhibited competitively by phenolphthalein and 4-methylumbelliferone. 5. o-Aminophenol did not inhibit the conjugation of the other three substrates because these are conjugated preferentially to o-aminophenol. 6. It is concluded that the four substrates are conjugated by one enzyme at the same active site.  相似文献   

6.
As part of a continuing effort to investigate various metabolic activation procedures in the L5178Y TK+/− → TK−/− mutation assay, a series of 18 chemicals including both carcinogens and non-carcinogens selected from 7 chemical classes were tested in the presence of 5% (v/v) 9000 × g postmitochondrial supernatant fraction (S9) prepared from the livers of untreated Sprague-Dawley rats. Excepting ethyl carbamate and thioacetamide, 8 of 10 carcinogens tested produced mutant counts significantly greater than controls when the results were analyzed by a 2-sample loget-test. Of 8 non-carcinogens assayed, treatment with p-aminophenol and chloroacetic acid yielded mutant counts significantly greater than control levels in at least one test with S9 while styrene oxide, an Ames positive mutagen, produced mutagenic activity in the absence of S9. These results indicate the L5178Y TK+/− → TK−/− mutation assay coupled with 5% (v/v) liver homogenate from normal rodent liver and applied to 18 chemicals correctly distinguished the majority of carcinogens from structurally related non-carcinogens on the basis of chemically-induced gene mutations.  相似文献   

7.
The ability of trout to metabolize aniline in vitro in the presence of some divalent metal ions was investigated in the liver microsomes of rainbow trout, Salmo gairdneri. Trout liver microsomes were highly capable of catalyzing aniline hydroxylation to p-aminophenol with a specific activity of 0.068 nmoles/min per mg of microsomal protein in potassium phosphate buffer, pH 7.4 at 25°C. The activity of the aniline hydroxylase system was competitively inhibited by Hg+2, Ni+2, Cd+2, and Zn+2, while Cu+2 and Fe+3 seemed to inhibit the activity noncompetitively at 1 mM aniline concentrations. IC50 values at fixed aniline concentration were estimated to be 0.45 mM for Hg+2, Ni+2, and Cd+2, 1.8 mM for Zn+2 and Fe+3, and 1.3 mM for Cu+2. Eadie-Hofstee plots gave identical Vmax values of approximately 0.046 nmol/min per mg of protein while Km values were increased in the presence of Hg+2, Ni+2, CD+2, and Zn+2, indicating competitive inhibition. Both Km and Vmax values were affected by Fe+3 and Cu+2, suggesting noncompetitive inhibition. Ki values extracted from the Dixon plots were determined t be 0.23, 0.43, and 0.65 mM for Hg+2, Ni+2, and Cd+2, respectively, providing the most effective inhibition on the aniline hydroxylase system among studied metal ions. The Ki values were much higher in the presence of others. The results indicate a selective inhibition of the aniline hydroxylase system of trout liver microsomes by divalent metal ions. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
The mechanism of the aniline hydroxylase activity of methaemoglobin in a monooxygenase system consisting of NADH as electron donor, riboflavin, FAD, FMN or methylene blue as electron carrier and methaemoglobin as the terminal oxidase has been studied. Hydrogen peroxide is produced from oxygen in a methaemoglobin-independent process. 4-Aminophenol is subsequently produced peroxidatively by an NADH-dependent process; NADH prevents a further oxidation of 4-aminophenol in the presence of haemoglobin. In the absence of electron carrier, NADH slowly reduces haemoglobin and then oxyhaemoglobin reacts with aniline to give 4-aminophenol. In the absence of electron donor and electron carrier, oxyhaemoglobin and aniline give rise to the reversible production of 4-aminophenol.  相似文献   

9.
The ability of phenobarbital and 3-methylcholanthrene (3MC) to induce liver microsomal and soluble enzymes was compared in Sprague-Dawley and Long-Evans rats. 3MC increased the V for the aniline hydroxylase and stimulated the formation of the hemoprotein P448 to a similar extent in the 2 strains of rats. On the other hand phenobarbital increased the V for the microsomal enzyme aniline hydroxylase and aminopyrine demethylase and enhanced the activity of the soluble enzyme aldehyde dehydrogenase only in Sprague-Dawley rats. It induced a more marked increase of cytochrome P450 in the Sprague-Dawley than in the Long-Evans strain.  相似文献   

10.
In this paper, we have developed and characterized a microfluidic magnetic immunosensor coupled to a gold electrode for the rapid and sensitive quantification of human serum IgG antibodies to Helicobacter pylori. This microorganism cause peptic ulcers and chronic gastritis, affecting around the 10% of the world population. The sensor was completely automated and the antibodies detection in serum samples was carried out using a non-competitive immunoassay based on the use of purified H. pylori antigens that are immobilized on magnetic microspheres 3-aminopropyl-modified. The magnetic microbeads were injected into microchannel devices and manipulated for an external removable magnet. The IgG antibodies in human serum sample are allowed to react immunologically with the immobilized antigens, and the bounded antibodies are quantified by alkaline phosphatase (AP) enzyme-labeled second antibodies specific to human IgG. The p-aminophenyl phosphate (p-APP) was converted to p-aminophenol (p-AP) by AP and an electroactive product was detected on gold layer electrode at 0.250 V. The response current obtained from the product of enzymatic reaction is directly proportional to the activity of the enzyme and, consequently, to the amount of IgG antibodies to H. pylori in serum samples. The electrochemical detection can be done within 1 min and total assay time was 25 min. The calculated detection limits for electrochemical detection and the ELISA procedure were 0.37 and 2.1 U mL−1, respectively, and the within- and between-assay coefficients of variation were below 5%. Our results indicate the potential usefulness of our fabricated microbiochip for the early assessment of human serum immunoglobulin G (IgG) antibodies to H. pylori.  相似文献   

11.
The induction and mechanism of fatty liver in the rat by the synthetic carcinogen 2-acetylaminofluorene (AAF) were investigated.

The induction of this fatty liver was dose and time dependent, being gradually increased by the intake of a 0.05% AAF diet for 3 weeks. The AAF dosage was found to increase the activity of drug-metabolizing enzymes (p-nitroanisol demethylase and aniline hydroxylase) and to decrease the activity of pyruvate kinase and α-glycerophosphate dehydrogenase. The AAF dosage had no effect on the incorporation of [l-14C]acetate into the lipid fraction during in vitro incubation of liver slices. The supplement of adenine to the AAF diet had no effect on the accumulation of liver lipid.

It is suggested from the result of treatment with Triton WR-1339 that a block in the secretion of triglyceride from the liver is a major cause of the induction of fatty liver by AAF.  相似文献   

12.
A direct, radioisotopic assay is described for the uridine diphosphate glucuronic acid (UDPGA): p-aminophenol glucuronyltransferase. The assay uses solid phase p-aminophenol-Sephadex as the glucuronyl acceptor and UDP-[14C]GA as the glucuronyl donor. After incubation with the enzyme, the derivatized Sephadex beads are washed in SDS-urea or with high salt concentrations to remove all labeled material except for that covalently attached to the beads. Sonicated livers from chick embryos exposed to phenobarbital for at least 5 days transfer more than ten times the glucuronic acid to derivatized beads than do uninduced livers of the same developmental age. Glucuronyl-transferase activity can be detected on intact, living cells after 5 days of phenobarbital induction, whereas sonicate activity is detectable within 3 days of induction. Suspensions of living cells can show 25% the activity found in the same suspension after all the cells are lysed by sonication.  相似文献   

13.
1. Induction of the formation of lipid peroxide in suspensions of liver microsomal preparations by incubation with ascorbate or NADPH, or by treatment with ionizing radiation, leads to a marked decrease of the activity of glucose 6-phosphatase. 2. The effect of peroxidation can be imitated by treating microsomal suspensions with detergents such as deoxycholate or with phospholipases. 3. The substrate, glucose 6-phosphate, protects the glucose 6-phosphatase activity of microsomal preparations against peroxidation or detergents. 4. The loss of glucose 6-phosphatase activity is not due to the formation of hydroperoxide or formation of malonaldehyde or other breakdown products of peroxidation, all of which are not toxic to the enzyme. 5. All experiments lead to the conclusion that the loss of activity of glucose 6-phosphatase resulting from peroxidation is a consequence of loss of membrane structure essential for the activity of the enzyme. 6. In addition to glucose 6-phosphatase, oxidative demethylation of aminopyrine or p-chloro-N-methylaniline, hydroxylation of aniline, NADPH oxidation and menadione-dependent NADPH oxidation are also strongly inhibited by peroxidation. However, another group of enzymes separated with the microsomal fraction, including NAD+/NADP+ glycohydrolase, adenosine triphosphatase, esterase and NADH–cytochrome c reductase are not inactivated by peroxidation. This group is not readily inactivated by treatment with detergents. 7. Lipid peroxidation, by controlling membrane integrity, may exert a regulating effect on the oxidative metabolism and carbohydrate metabolism of the endoplasmic reticulum in vivo.  相似文献   

14.
A Delftia tsuruhatensis strain capable of consuming aniline as the sole source of carbon, nitrogen, and energy at concentrations of up to 3200 mg/l was isolated from activated sludge of the sewage disposal plants of OAO Volzhskii Orgsintez. The strain grew on catechol and p-hydroxybenzoic acid but did not consume phenol, 2-aminophenol, 3-chloroaniline, 4-chloroaniline, 2,3-dichloroaniline, 2,4-dichloroaniline, 3,4-dichloroaniline, 2-nitroaniline, 2-chlorophenol, or aminobenzoate. Aniline is degraded by cleavage of the catechol aromatic ring at the ortho position. Cells were immobilized on polycaproamide fiber. It was shown that the strain degraded aniline at 1000 mg/l in a continuous process over a long period of time.  相似文献   

15.
1. A study of the catalysis of the formation of the glucuronides of o-aminophenol and p-nitrophenol by the uridine diphosphate transglucuronylase of homogenates of female mouse liver has been made, with reference to the effect of reagents reacting with thiol groups. 2. The synthesis of both glucuronides was completely inhibited by organic mercurials and N-ethylmaleimide. The inhibition was only partial with arsenite and the arsenoxides, iodoacetamide and o-iodosobenzoate. 3. The o-aminophenol system was much more sensitive than that for p-nitrophenol to all the thiol reagents, except N-ethylmaleimide, which was equally active in both systems. 4. At very low concentrations of the organic mercurials, the o-aminophenol system was activated. 5. With o-aminophenyl glucuronide formation, complete protection was given by glutathione and cysteine against the organic mercurials, N-ethylmaleimide and iodoacetamide, and partial protection against the arsenicals. Reversal was complete against the mercurials, and very limited against the arsenicals and iodoacetamide. The effects of N-ethylmaleimide and o-iodosobenzoate were irreversible. Results with p-nitrophenol were very similar. 6. Uridine diphosphate transglucuronylase was partially protected against p-chloromercuribenzoate and lewisite oxide by uridine diphosphate glucuronate, but not by o-aminophenol. 7. Glutathione did not prevent the decline in the rate of conjugation of o-aminophenol when homogenates were aged by incubation at 30°. Cysteine was unable to prevent or reverse inactivation by ultrasonic radiation.  相似文献   

16.
1. A study of the catalysis of the formation of the glucuronides of o-aminophenol and p-nitrophenol by the uridine diphosphate transglucuronylase of homogenates of female mouse liver has been made, with reference to the effect of reagents reacting with thiol groups. 2. The synthesis of both glucuronides was completely inhibited by organic mercurials and N-ethylmaleimide. The inhibition was only partial with arsenite and the arsenoxides, iodoacetamide and o-iodosobenzoate. 3. The o-aminophenol system was much more sensitive than that for p-nitrophenol to all the thiol reagents, except N-ethylmaleimide, which was equally active in both systems. 4. At very low concentrations of the organic mercurials, the o-aminophenol system was activated. 5. With o-aminophenyl glucuronide formation, complete protection was given by glutathione and cysteine against the organic mercurials, N-ethylmaleimide and iodoacetamide, and partial protection against the arsenicals. Reversal was complete against the mercurials, and very limited against the arsenicals and iodoacetamide. The effects of N-ethylmaleimide and o-iodosobenzoate were irreversible. Results with p-nitrophenol were very similar. 6. Uridine diphosphate transglucuronylase was partially protected against p-chloromercuribenzoate and lewisite oxide by uridine diphosphate glucuronate, but not by o-aminophenol. 7. Glutathione did not prevent the decline in the rate of conjugation of o-aminophenol when homogenates were aged by incubation at 30°. Cysteine was unable to prevent or reverse inactivation by ultrasonic radiation.  相似文献   

17.
The sodium salt of 6-hydroxy-5-(phenylazo)-2-naphthalenesulfonic acid (SS-AN), which is a subsidiary color present in Food Yellow No. 5 [Sunset Yellow FCF, disodium salt of 6-hydroxy-5-(4-sulfophenylazo)-2-naphthalenesulfonic acid], was orally administered to Sprague–Dawley rats. Metabolite A, metabolite B, and unaltered SS-AN were detected as colored metabolites in the rat urine. Analysis of the chemical structures showed that metabolite A (major peak) was 6-hydroxy-5-(4-sulfooxyphenylazo)-2-naphthalenesulfonic acid, the sulfuric acid conjugate of SS-AN, and metabolite B (minor peak) was 6-hydroxy-5-(4-hydroxyphenylazo)-2-naphthalenesulfonic acid (SS-PAP), which is a derivative of metabolite A without the sulfuric acid. The colorless metabolites p-aminophenol, o-aminophenol, and aniline present in the urine were analyzed by liquid chromatography–mass spectrometry. The orally administered SS-AN had been metabolized to the colorless metabolites (p-aminophenol 45.3%, o-aminophenol 9.4%, aniline 0.4%) in the 24-h urine samples. Analysis of the colored metabolites by high-performance liquid chromatography with detection at 482 nm indicated the presence of metabolite A (0.29%), SS-PAP (0.01%), and SS-AN (0.02%) were detected in the 24-h urine samples. Approximately 56% of SS-AN was excreted into the urine and the rest is probably excreted into feces.  相似文献   

18.
Hydroxylamino aromatic compounds are converted to either the corresponding aminophenols or protocatechuate during the bacterial degradation of nitroaromatic compounds. The origin of the hydroxyl group of the products could be the substrate itself (intramolecular transfer mechanism) or the solvent water (intermolecular transfer mechanism). The conversion of hydroxylaminobenzene to 2-aminophenol catalyzed by a mutase from Pseudomonas pseudoalcaligenes JS45 proceeds by an intramolecular hydroxyl transfer. The conversions of hydroxylaminobenzene to 2- and 4-aminophenol by a mutase from Ralstonia eutropha JMP134 and to 4-hydroxylaminobenzoate to protocatechuate by a lyase from Comamonas acidovorans NBA-10 and Pseudomonas sp. strain 4NT were proposed, but not experimentally proved, to proceed by the intermolecular transfer mechanism. GC-MS analysis of the reaction products formed in H218O did not indicate any 18O-label incorporation during the conversion of hydroxylaminobenzene to 2- and 4-aminophenols catalyzed by the mutase from R. eutropha JMP134. During the conversion of 4-hydroxylaminobenzoate catalyzed by the hydroxylaminolyase from Pseudomonas sp. strain 4NT, only one of the two hydroxyl groups in the product, protocatechuate, was 18O labeled. The other hydroxyl group in the product must have come from the substrate. The mutase in strain JS45 converted 4-hydroxylaminobenzoate to 4-amino-3-hydroxybenzoate, and the lyase in Pseudomonas strain 4NT converted hydroxylaminobenzene to aniline and 2-aminophenol but not to catechol. The results indicate that all three types of enzyme-catalyzed rearrangements of hydroxylamino aromatic compounds proceed via intramolecular transfer of hydroxyl groups.  相似文献   

19.
A single dose of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) (160 mg/kg i.p.) enhanced the monooxygenase step of drug biotransformation in rat liver. The O-demethylation of p-nitroanisole was especially increased, a peak in activity approximately 5-fold compared with controls being attained in 7 days. On the other hand, there was only a 2-fold increase in aryl hydrocarbon hydroxylase activity.DDT increased the cytochrome P-450 content of the liver, this increase coincided well with that in p-nitroanisole O-demethylation activity.The UDPglucuronosyltransferase activity of liver microsomes was not enhanced by DDT administration, unless the microsomes were pretreated to reveal latent activity prior to assay. After trypsin digestion of microsomes a maximum increase in activity of approximately 3-fold was observed as a result of DDT dosage. The canonic surfactant cetylpyridinium chloride was less active in revealing the latent UDP-glucuronosyltransferase activity, and two other membrane perturbants, the detergent digitonin and phospholipase A, were unable to show enhancement in UDPglucuronosyltransferase as a result of DDT dosage.  相似文献   

20.
We report here the identification of a cultured human hepatoma cell line which possesses an active phenylalanine hydroxylase system. Phenylalanine hydroxylation was established by growth of cells in a tyrosine-free medium and by the ability of a cell-free extract to convert [14C]phenylalanine to [14C]tyrosine in an enzyme assay system. This enzyme activity was abolished by the presence in the assay system of p-chlorophenylalanine but no significant effect on the activity was observed with 3-iodotyrosine and 6-fluorotryptophan. Use of antisera against pure monkey or human liver phenylalanine hydroxylase has detected a cross-reacting material in this cell line which is antigenically identical to the human liver enzyme. Phenylalanine hydroxylase purified from this cell line by affinity chromatography revealed a multimeric molecular weight (estimated 275,000) and subunit molecular weights (estimated 50,000 and 49,000) which are similar to those of phenylalanine hydroxylase purified from a normal human liver. This cell line should be a useful tool for the study of the human phenylalanine hydroxylase system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号