首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently used orthopedic implants composed of titanium have a limited functional lifetime of only 10–15 years. One of the reasons for this persistent problem is the poor prolonged ability of titanium to remain bonded to juxtaposed bone. It has been proposed to modify titanium through anodization to create a novel nanotubular topography in order to improve cytocompatibility properties necessary for the prolonged attachment of orthopedic implants to surrounding bone. Additionally, electrical stimulation has been used in orthopedics to heal bone non-unions and fractures in anatomically difficult to operate sites (such as the spine). In this study, these two approaches were combined as the efficacy of electrical stimulation to promote osteoblast (bone forming cell) density on anodized titanium was investigated. To do this, osteoblast proliferation experiments lasting up to 5 days were conducted as cells were stimulated with constant bipolar pulses at a frequency of 20 Hz and a pulse duration of 0.4 ms each day for 1 hour. The stimulation voltages were 1 V, 5 V, 10 V, and 15 V. Results showed for the first time that under electrical stimulation, osteoblast proliferation on anodized titanium was enhanced at lower voltages compared to what was observed on conventional (nonanodized) titanium. In addition, compared to nonstimulated conventional titanium, osteoblast proliferation was enhanced 72% after 5 days of culture on anodized nanotubular titanium at 15 V of electrical stimulation. Thus, results of this study suggest that coupling the positive influences of electrical stimulation and nanotubular features on anodized titanium may improve osteoblast responses necessary for enhanced orthopedic implant efficacy.  相似文献   

2.
Bioactive coatings are in high demand to increase the functions of cells for numerous medical devices. The objective of this in vitro study was to characterize osteoblast (bone-forming cell) adhesion on several potential orthopedic polymeric materials (specifically, polyetheretherketone, ultra-high molecular weight polyethylene, and polytetrafluoroethylene) coated with either titanium or gold using a novel Ionic Plasma Deposition process which creates a surface-engineered nanostructure (with features below 100 nm). Results demonstrated that compared to currently-used titanium and uncoated polymers, polymers coated with either titanium or gold using Ionic Plasma Deposition significantly increased osteoblast adhesion. Qualitative cell morphology results supported quantitative adhesion results as increased osteoblast cell spreading was observed on coated polymers compared to uncoated polymers. In this manner, this in vitro study strongly suggests that Ionic Plasma Deposition should be further studied for creating nanometer surface features on a wide variety of materials to enhance osteoblast functions necessary for orthopedic applications.  相似文献   

3.
Natural bone consists of hard nanostructured hydroxyapatite (HA) in a nanostructured protein-based soft hydrogel template (ie, mostly collagen). For this reason, nanostructured HA has been an intriguing coating material on traditionally used titanium for improving orthopedic applications. In addition, helical rosette nanotubes (HRNs), newly developed materials which form through the self-assembly process of DNA base pair building blocks in body solutions, are soft nanotubes with a helical architecture that mimics natural collagen. Thus, the objective of this in vitro study was for the first time to combine the promising attributes of HRNs and nanocrystalline HA on titanium and assess osteoblast (bone-forming cell) functions. Different sizes of nanocrystalline HA were synthesized in this study through a wet chemical precipitation process following either hydrothermal treatment or sintering. Transmission electron microscopy images showed that HRNs aligned with nanocrystalline HA, which indicates a high affinity between both components. Some of the nanocrystalline HA formed dense coatings with HRNs on titanium. More importantly, results demonstrated enhanced osteoblast adhesion on the HRN/nanocrystalline HA-coated titanium compared with conventional uncoated titanium. Among all the HRN/nanocrystalline HA coatings tested, osteoblast adhesion was the greatest when HA nanometer particle size was the smallest. In this manner, this study demonstrated for the first time that biomimetic HRN/nanocrystalline HA coatings on titanium were cytocompatible for osteoblasts and, thus, should be further studied for improving orthopedic implants.  相似文献   

4.

Background

High strength porous titanium implants are widely used for the reconstruction of craniofacial defects because of their similar mechanical properties to those of bone. The recent introduction of electron beam melting (EBM) technique allows a direct digitally enabled fabrication of patient specific porous titanium implants, whereas both their in vitro and in vivo biological performance need further investigation.

Methods

In the present study, we fabricated porous Ti6Al4V implants with controlled porous structure by EBM process, analyzed their mechanical properties, and conducted the surface modification with biomimetic approach. The bioactivities of EBM porous titanium in vitro and in vivo were evaluated between implants with and without biomimetic apatite coating.

Results

The physical property of the porous implants, containing the compressive strength being 163 - 286 MPa and the Young’s modulus being 14.5–38.5 GPa, is similar to cortical bone. The in vitro culture of osteoblasts on the porous Ti6Al4V implants has shown a favorable circumstance for cell attachment and proliferation as well as cell morphology and spreading, which were comparable with the implants coating with bone-like apatite. In vivo, histological analysis has obtained a rapid ingrowth of bone tissue from calvarial margins toward the center of bone defect in 12 weeks. We observed similar increasing rate of bone ingrowth and percentage of bone formation within coated and uncoated implants, all of which achieved a successful bridging of the defect in 12 weeks after the implantation.

Conclusions

This study demonstrated that the EBM porous Ti6Al4V implant not only reduced the stress-shielding but also exerted appropriate osteoconductive properties, as well as the apatite coated group. The results opened up the possibility of using purely porous titanium alloy scaffolds to reconstruct specific bone defects in the maxillofacial and orthopedic fields.  相似文献   

5.
Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP) has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES), and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs) and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants. Both physisorption and covalent coupling of BSP are similarly effective, feasible methods, although a higher BSP concentration is recommended.  相似文献   

6.
Collagen, the main organic component of bone, is used as a coating on titanium implants and as a scaffold material in bone tissue engineering. Surface modifications of titanium which promote osteoblast adhesion, proliferation and synthesis of collagen by osteoblasts are desirable. One biomimetic approach is the coating of titanium with collagen in fibrillar form. Other organic components of bone may be bound to fibrils and exert additional effects. In this study, the collagen types I-III were compared regarding their ability to bind the proteoglycans decorin and biglycan, which are found in bone. More collagen was bound to collagen II fibrils than to those of types I and III. Therefore, titanium surfaces were coated with fibrils of collagen type II containing biglycan or decorin or neither to investigate the effect of the proteoglycans on human primary osteoblast behaviour. In addition, the growth factor TGF-beta1 was adsorbed onto surfaces coated with fibrils of collagen type II containing biglycan or decorin or neither to investigate the influence of decorin and biglycan on the effect of TGF-beta1 on osteoblasts. Fibril-bound biglycan and decorin influence primary osteoblast behaviour by themselves. The presence of substrate-bound biglycan or decorin influences the effect of TGF-beta1. These results may be important when designing collagen-based coatings or scaffolds for tissue engineering, including those loaded with growth factors.  相似文献   

7.
Effect of antibiotics on development in vitro of hamster pronucleate ova   总被引:1,自引:0,他引:1  
Antibiotics are commonly added to embryo culture media, but effects on embryo development have not been examined thoroughly. Hamster ova were used to investigate whether penicillin, streptomycin or gentamicin affect embryo development in vitro. Ova were collected 10 h post activation by spermatozoa in vivo and cultured in five treatments: 1) Control: chemically-defined medium HECM-9 with no antibiotics; 2) HECM-9 with 100 IU/mL penicillin; 3) HECM-9 with 50 microg/mL streptomycin; 4) HECM-9 with 10 microg/mL gentamicin and 5) HECM-9 with both 100 IU/mL penicillin and 50 microg/mL streptomycin. Individually, penicillin, streptomycin and gentamicin did not affect embryo development to the 8-cell stage at 58 h post oocyte activation, or morula/blastocyst stages, or blastocysts alone at 82 h post activation. However, when penicillin and streptomycin were both present in the culture medium the percentages of 8-cell embryos at 58 h and blastocysts at 82 h were significantly lower than the control. No antibiotic treatment improved hamster embryo development in vitro. We caution against the use of penicillin and streptomycin together for hamster embryo culture, and show that it is not necessary to include any antibiotics in embryo culture media for up to 72 h if proper sterile technique is used with an oil overlay.  相似文献   

8.
In anoxic semi-closed systems, the survival time of the clam Macoma balthica was compared to clams which were incubated in the presence of several antibiotics (chloramphenicol, 5-oxytetracycline hydrochloride, penicillin, streptomycin, a mix of penicillin and streptomycin and a mix of chloramphenicol, polymyxin, neomycin and penicillin), sulphide and chloramphenicol at pH 6.8 and 8.2 and molybdate (specific inhibitor of the process of sulphate reduction). The aim was to detect maximum survival times of this clam and indications for the cause of mortality under the conditions tested. Median survival time (LT(50)) of the clam was 4.8 days (at 19 degrees C) in incubations without any addition. Added sulphide (200 μM) decreased survival time. At pH 8.2, LT(50) decreased by 20.8% and at pH 6.8 by 35.2%. However, added molybdate, which suppressed biotic sulphide formation, did not improve survival time (LT(50)=4.4 days). Biotic sulphide probably did not speed up mortality rate, but indicated excessive growth of sulphate reducing bacteria once mortality started. The presence of different antibiotics increased significantly survival time (LT(50)) from 8.9 to 14.9 days. Qualitative estimations were made of the numbers of bacteria present in the systems. Compared to a seawater control, highest numbers were observed in the incubation of clams without additions and in the presence of molybdate. Nevertheless, due to the presence of molybdate, bacteria numbers were significantly lower. However, very low numbers of bacteria were observed in the incubations of clams in the presence of chloramphenicol. These data demonstrated that the presence and proliferation of bacteria was probably the cause of death of the clams.  相似文献   

9.
The gold standard for implant metals is titanium, and coatings such as collagen-I, RGD-peptide, chondroitin sulfate, and calcium phosphate have been used to modify its biocompatibility. We investigated how titanium coated with pectins, adaptable bioactive plant polysaccharides with anti-inflammatory effects, supports osteoblast differentiation. MC3T3-E1 cells, primary murine osteoblasts, and human mesenchymal cells (hMC) were cultured on titanium coated with rhamnogalacturonan-rich modified hairy regions (MHR-A and MHR-B) of apple pectin. Alkaline phosphatase (ALP) expression and activity, calcium deposition, and cell spreading were investigated. MHR-B, but not MHR-A, supports osteoblast differentiation. The MHR-A surface was not mineralized, but on MHR-B, the average mineralized area was 14.0% with MC3T3-E1 cells and 26.6% with primary osteoblasts. The ALP activity of hMCs on MHR-A was 58.3% at day 7 and 9.3% from that of MHR-B at day 10. These data indicate that modified pectin nanocoatings may enhance the biocompatibility of bone and dental implants.  相似文献   

10.
Hatten, Betty A. (The University of Texas Southwestern Medical School, Dallas), and S. Edward Sulkin. Intracellular production of Brucella L forms. II. Induction and survival of Brucella abortus L forms in tissue culture. J. Bacteriol. 91:14-20. 1966.-Intracellular survival of altered brucellae, possibly L forms, was not greatly affected by penicillin or streptomycin in concentrations ranging from 5.0 to 40 mug/ml, but a combination of these two antibiotics (2.5 to 20 mug/ml each) reduced the number of positive L-form cultures. Tetracycline (2.0 mug/ml) decreased the number of positive L-form cultures at about the same rate as combinations of the higher concentrations of penicillin and streptomycin. Various concentrations of tetracycline (0.1 to 2.0 mug/ml) with 5.0 mug/ml of penicillin or streptomycin significantly reduced the number of positive L-form cultures. L forms were recovered for several days after elimination of bacteria from the cultures by all of the antibiotics tested. L-form production was not dependent upon the presence of antibiotics in the culture medium, but they were recovered in greater numbers when bacteria were still present in the hamster kidney cells. Addition of thallium acetate to infected cells (at varying intervals of time after infection) to control bacterial growth and conversion to the L phase during cellular disintegration decreased the number of positive L-form cultures obtained over a 10-day period. Comparison of the antibiotic sensitivity of bacteria recovered from infected tissue culture cells with the stock strain of Brucella abortus indicated that some resistance to penicillin and tetracycline had developed. A marked resistance to streptomycin was observed in those bacteria recovered from cells maintained in the presence of this antibiotic.  相似文献   

11.
《IRBM》2008,29(1):1-6
Titanium is widely used in orthopedic and dental implants for its excellent resistance to corrosion and its biocompatibility. In order to improve the long-term osteointegration of titanium, bioactive polymers bearing ionics groups such as sulfonates (sodium polysytrene sulfonate, polyNaSS) are grafted by a covalent way onto titanium surface. The surface is chemically modified and then bioactive polymers are grafted by radical polymerization. The chemical composition of grafted surfaces is given by ATR/FTIR and XPS which certified the presence of sulfonate groups at the surface of grafted titanium. Quantitative grafting of polyNaSS is determined by a colorimetric method and evaluated at 5 μg/cm2.In vitro study is performed in order to see the effect of these bioactive polymers on the mineralization of human osteoblast (line MG63). After 28 days of cultured cells on grafted titanium surfaces and non-grafted ones, the amount of calcium onto surfaces is quantified. The results show that the mineralization of these cells is improved with the presence of polyNaSS. The amount of calcium is increased on grafted surfaces compared to non-grafted ones. Cell adhesion was evaluated. Cells were seeded onto grafted and non-grafted titanium and then subjected to detachment forces. The results show that the attachment of human osteoblasts-like cells is increased for grafted titanium with polyNaSS. A study on titanium surface grafted by polymers bearing ionics groups such as carboxylate and phosphate is in progress.  相似文献   

12.
In recent time, vanadium compounds are being used as antidiabetic drug and in orthopedic implants. However, the exact role of this incorporated vanadium in improving the quality of bone structure and morphology is not known. The impact of vanadium ion was studied and compared to other trace metal ions with respect to the proliferation and osteoblast differentiation of C3H10t1/2 cells. Toxicity profile of these trace metal ions revealed a descending toxicity trend of Fe2+ > Zn2+ > Cu2+ > Co2+ > Mn2+ > V5+ > Cr2+. The effect of vanadium and other trace metal ions on osteoblast differentiation was evaluated by culturing the cells for 10 days in osteoblastic medium supplemented with different trace ions at concentrations lower than their cytotoxic doses. The results indicated that vanadium has maximum impact on the induction of osteoblast differentiation by upregulating alkaline phosphatase activity and mineralization by up to 145 and 150 %, respectively (p?<?0.05), over control. Cu2+ and Zn2+ had a mild inhibitory effect, while Mn2+, Fe2+, and Co2+ demonstrated a clear decrease in osteoblast differentiation when compared to the control. The data as presented here demonstrate that orthopedic implants, if supplemented with trace metals like vanadium, may provide a source of better model for bone formation and its turnover.  相似文献   

13.
Due to oxidation and adsorption of chloride and hydroxyl anions, the surface of titanium (Ti) implants is negatively charged. A possible mechanism of the attractive interaction between the negatively charged Ti surface and the negatively charged osteoblasts is described theoretically. It is shown that adhesion of positively charged proteins with internal charge distribution may give rise to attractive interaction between the Ti surface and the osteoblast membrane. A dynamic model of the osteoblast attachment is presented in order to study the impact of geometrically structured Ti surfaces on the osteoblasts attachment. It is indicated that membrane-bound protein complexes (PCs) may increase the membrane protrusion growth between the osteoblast and the grooves on titanium (Ti) surface and thereby facilitate the adhesion of osteoblasts to the Ti surface. On the other hand, strong local adhesion due to electrostatic forces may locally trap the osteoblast membrane and hinder the further spreading of osteointegration boundary. We suggest that the synergy between these two processes is responsible for successful osteointegration along the titanium surface implant.  相似文献   

14.
Anodization and sol-gel treatments of titanium (Ti) were evaluated as biofilm control measures on surfaces exposed to seawater exposed to ultraviolet light. Anodized and sol-gel treated specimens were characterized using Raman spectroscopy to confirm the presence of TiO(2). The single anatase phase was observed at the anodized surfaces whereas the anatase/rutile mixed phase was detected on the sol-gel coated surfaces. After exposure of the specimens to seawater, biofilms were characterized by total viable counts, and epifluorescence and Raman microscopy. These techniques confirmed the reduction in biofilm formation on both the anodized and sol-gel coated Ti specimens compared to the untreated specimens. Biofilm control by anodization was found to be more effective than by sol-gel treatment of the specimens. The higher particle size and the inhomogeneity at the sol-gel coated surfaces produced less effective biofilm control.  相似文献   

15.
Growth of exocrine acinar cells on a reconstituted basement membrane gel   总被引:8,自引:0,他引:8  
Summary Methods have been developed for culturing a dividing population of morphologically differentiated rat parotid, lacrimal, and pancreatic acinar cells in vitro. Isolated acinar cells were plated onto tissue culture dishes coated with a three-dimensional, reconstituted basement membrane gel. After attachment in Ham’s nutrient mixture F12, the cells were cultured at 35°C in F12 supplemented with 10% heat inactivated rat serum, epidermal growth factor, dexamethasone, insulin, transferrin, selenium, putrescine, reduced glutathione, ascorbate, penicillin, streptomycin, and the appropriate secretagogue. Under these conditions, the cells attached rapidly and DNA synthesis was initiated within 2 to 3 d. Although the cells flattened on the substratum, they continued to maintain their differentiated morphology. The cells contained secretory granules, and the secretory enzymes peroxidase and amylase could be detected. The use of a reconstituted basement membrane gel proved critical for the attachment and growth of exocrine acinar cells.  相似文献   

16.
Anodization and sol-gel treatments of titanium (Ti) were evaluated as biofilm control measures on surfaces exposed to seawater exposed to ultraviolet light. Anodized and sol-gel treated specimens were characterized using Raman spectroscopy to confirm the presence of TiO2. The single anatase phase was observed at the anodized surfaces whereas the anatase/rutile mixed phase was detected on the sol-gel coated surfaces. After exposure of the specimens to seawater, biofilms were characterized by total viable counts, and epifluorescence and Raman microscopy. These techniques confirmed the reduction in biofilm formation on both the anodized and sol-gel coated Ti specimens compared to the untreated specimens. Biofilm control by anodization was found to be more effective than by sol-gel treatment of the specimens. The higher particle size and the inhomogeneity at the sol-gel coated surfaces produced less effective biofilm control.  相似文献   

17.
The biomimetic approach mimicking in vivo micro environment is the key for developing functional tissue engineered constructs. In this study, we used a tripolymer combination consisting of a natural polymer, chitosan and two extracellular matrix components; collagen type 1 and hyaluronic acid to coat tissue culture plate to evaluate their effect on osteogenic differentiation of human bone marrow derived mesenchymal stem cells (hMSCs). The polymers were blended at different mixing ratios and the tissue culture plates were coated either by polyblend method or by surface modification method. hMSCs isolated from adult bone marrow were directed to osteoblast differentiation on the coated plates. Our results showed that the tripolymer coating of the tissue culture plate enhanced mineralization as evidenced by calcium quantification exhibiting significantly higher amount of calcium compared to the untreated or individual polymer coated plates. We found that the tripolymer coated plates having a 1:1 mixing ratio of chitosan and collagen type 1, surface modified with hyaluronic acid is an ideal combination to achieve the synergistic effect of these polymers on in vitro osteogenic differentiation of hMSCs. These results thus, establish a novel biomimetic approach of surface modification to enhance osteoblast differentiation and mineralization. Our findings hold great promise in implementing a biomimetic surface coating to improve osteoconductivity of implants and scaffolds for various orthopaedic and bone tissue engineering applications.  相似文献   

18.
There are more than 30,000 orthopedic implant revision surgeries necessary each year in part due to poor implant fixation with juxtaposed bone. A further emphasis on the current problems associated with insufficient bone implant performance is the fact that many patients are receiving hip implants earlier in life, remaining active older, and that the human lifespan is continuously increasing. Collectively, it is clear that there is a strong clinical need to improve implant performance through proper, prolonged fixation. For these reasons, the objective of the present in vitro study was to improve the performance of titanium (Ti), one of the most popular orthopedic implant materials. Accordingly, the proliferative response of osteoblasts (bone-forming cells) on novel nanostructured Ti/PLGA (poly-lactic-co-glycolic acid) composites was examined. This study showed that nano-topography can be easily applied to Ti (through anodization) and porous PLGA (through NaOH chemical etching) to enhance osteoblast cell proliferation which may lead to better orthopedic implant performance. This straight forward application of nano-topography on current bone implant materials represents a new direction in the design of enhanced biomaterials for the orthopedic industry.  相似文献   

19.
Many challenges exist in improving early osseointegration, one of the most critical factors in the long-term clinical success of dental implants. Recently, ultraviolet (UV) light-mediated photofunctionalization of titanium as a new potential surface treatment has aroused great interest. This study examines the bioactivity of titanium surfaces treated with UV light of different wavelengths and the underlying associated mechanism. Micro-arc oxidation (MAO) titanium samples were pretreated with UVA light (peak wavelength of 360 nm) or UVC light (peak wavelength of 250 nm) for up to 24 h. UVC treatment promoted the attachment, spread, proliferation and differentiation of MG-63 osteoblast-like cells on the titanium surface, as well as the capacity for apatite formation in simulated body fluid (SBF). These biological influences were not observed after UVA treatment, apart from a weaker effect on apatite formation. The enhanced bioactivity was substantially correlated with the amount of Ti-OH groups, which play an important role in improving the hydrophilicity, along with the removal of hydrocarbons on the titanium surface. Our results showed that both UVA and UVC irradiation altered the chemical properties of the titanium surface without sacrificing its excellent physical characteristics, suggesting that this technology has extensive potential applications and merits further investigation.  相似文献   

20.
Titanium is biocompatible with bodily tissues. However, the formation of ROS on the titanium surfaces might have negative response of the activity of the surroundings cells. Terrein was isolated from Penicullium sp. 20135 and found to reduce the effects of LPS-induced inflammation. This study examined the role of Terrein on the biocompatibility of titanium to determine if it can help improve osseointegration. MC-3T3 E1 cells were grown on titanium surfaces. The biocompatibility of Terrein was examined by adding it directly to the culture media at the indicated concentration. The cells on the titanium surface produced excessive ROS and decreased the activity of Cu/Zn SOD and Mn SOD. Moreover, the cells had higher activity towards oxidative stress molecules, such as MAPK, FAK and iNOS expression. In addition, MC-3T3 E1 osteoblast-like cells promoted osteoclast differentiation but reduced osteoblast differentiation and mineralization on the titanium surface. Interestingly, the cells given the Terrein treatment showed higher resistance towards oxidative stress through the up-regulation of ERK1/2 and FAK activity but the down-regulation of SAPK/JNK and iNOS activity. Moreover, Terrein promoted osteoblast differentiation and bone mineralization to elevate the activity of ALP, SPARC and down-regulate RANKL expression after blocking NF-κB translocation from the cytosol to the nucleus. In conclusion, the presence of Terrein on titanium surfaces increases osteoblast cell growth without inflammation. Moreover, Terrein, as a putative antioxidant agent, may enhance osseointegration by decreasing the level of ROS and having a potentially synergistic effect on osteoblast differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号