首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stockman AK  Bond JE 《Molecular ecology》2007,16(16):3374-3392
Species exhibiting morphological homogeneity and strong population structuring present challenging taxonomic problems: morphology-based approaches infer few species, whereas genetic approaches often indicate more. Morphologically cryptic, yet genetically divergent species groups require alternative approaches to delimiting species that assess adaptive divergence and ecological interchangeability of lineages. We apply such an approach to Promyrmekiaphila, a small genus (three nominal taxa) of trapdoor spiders endemic to northern California to define cohesion species (lineages that are genetically exchangeable and ecologically interchangeable). Genetic exchangeability is evaluated using standard phylogeographical techniques (e.g. nested clade analysis); ecological interchangeability is assessed using two GIS-based approaches. First, climatic values are extracted from layer data for each locality point and utilized in a principal components analysis followed by MANOVA. Second, niche-based distribution models of genetically divergent lineages are created using a maximum-entropy modelling approach; the amount of overlap among lineages is calculated and evaluated against a probability distribution of null overlap. Lineages that have significant amounts of predicted overlap are considered ecologically interchangeable. Based on a synthetic evaluation of ecological interchangeability, geographical concordance, and morphological differentiation, we conclude that Promyrmekiaphila comprises six cohesion species, five of which are cryptic (i.e. undetectable by conventional means).  相似文献   

2.
Niche conservatism and niche divergence are both important ecological mechanisms associated with promoting allopatric speciation across geographical barriers. However, the potential for variable responses in widely distributed organisms has not been fully investigated. For allopatric sister lineages, three patterns for the interaction of ecological niche preference and geographical barriers are possible: (i) niche conservatism at a physical barrier; (ii) niche divergence at a physical barrier; and (iii) niche divergence in the absence of a physical barrier. We test for the presence of these patterns in a transcontinentally distributed snake species, the common kingsnake ( Lampropeltis getula ), to determine the relative frequency of niche conservatism or divergence in a single species complex inhabiting multiple distinct ecoregions. We infer the phylogeographic structure of the kingsnake using a range-wide data set sampled for the mitochondrial gene cytochrome b . We use coalescent simulation methods to test for the presence of structured lineage formation vs. fragmentation of a widespread ancestor. Finally, we use statistical techniques for creating and evaluating ecological niche models to test for conservatism of ecological niche preferences. Significant geographical structure is present in the kingsnake, for which coalescent tests indicate structured population division. Surprisingly, we find evidence for all three patterns of conservatism and divergence. This suggests that ecological niche preferences may be labile on recent phylogenetic timescales, and that lineage formation in widespread species can result from an interaction between inertial tendencies of niche conservatism and natural selection on populations in ecologically divergent habitats.  相似文献   

3.
Ecological interactions are an important source of rapid evolutionary change and thus may generate a significant portion of novel biodiversity. Such changes may be particularly prevalent in parasites, where hosts can induce strong selection for adaptation. To understand the relative frequency at which host-associated divergences occur, it is essential to examine the evolutionary history of the divergence process, particularly when it is occurring over large geographical scales where both geographical and host-associated isolation may playa part. In this study, we use population genetics and phylogeography to study the evolutionary history of host-associated divergence in the seabird tick Ixodes uriae (Acari, Ixodidae). We compare results from microsatellite markers that reflect more ecological timescales with a conserved mitochondrial gene (COIII) that reflects more ancient divergence events. Population structure based on microsatellites showed clear evidence of host-associated divergence in all colonies examined. However, isolated populations of the same host type did not always group together in overall analyses and the genetic differentiation among sympatric host races was highly variable. In contrast, little host or geographical structure was found for the mitochondrial gene fragment. These results suggest that host race formation in I. uriae is a recent phenomenon, that it may have occurred several times and that local interactions are at different points in the divergence process. Rapid divergence in I. uriae implies a strong interaction with its local host species, an interaction that will alter the ecological dynamics of the system and modify the epidemiological landscape of circulating micropathogens.  相似文献   

4.
The ecological theory of adaptive radiation predicts that the evolution of phenotypic diversity within species is generated by divergent natural selection arising from different environments and competition between species. Genetic connectivity among populations is likely also to have an important role in both the origin and maintenance of adaptive genetic diversity. Our goal was to evaluate the potential roles of genetic connectivity and natural selection in the maintenance of adaptive phenotypic differences among morphs of Arctic charr, Salvelinus alpinus, in Iceland. At a large spatial scale, we tested the predictive power of geographic structure and phenotypic variation for patterns of neutral genetic variation among populations throughout Iceland. At a smaller scale, we evaluated the genetic differentiation between two morphs in Lake Thingvallavatn relative to historically explicit, coalescent-based null models of the evolutionary history of these lineages. At the large spatial scale, populations are highly differentiated, but weakly structured, both geographically and with respect to patterns of phenotypic variation. At the intralacustrine scale, we observe modest genetic differentiation between two morphs, but this level of differentiation is nonetheless consistent with strong reproductive isolation throughout the Holocene. Rather than a result of the homogenizing effect of gene flow in a system at migration-drift equilibrium, the modest level of genetic differentiation could equally be a result of slow neutral divergence by drift in large populations. We conclude that contemporary and recent patterns of restricted gene flow have been highly conducive to the evolution and maintenance of adaptive genetic variation in Icelandic Arctic charr.  相似文献   

5.
Being able to efficiently and accurately delimit species is one of the most basic and important aspects of systematics because species are the fundamental unit of analysis in biogeography, ecology, and conservation. We present a rationale and approach for combining ecological niche modeling, spatially explicit analyses of environmental data, and phylogenetics in species delimitation, and we use our methodology in an empirical example focusing on Aneides flavipunctatus, the black salamander (Caudata: Plethodontidae), in California. We assess the relationships between genetic, environmental, and geographic distance among populations. We use 11 climatic variables and point locality data from public databases to create ecological niche models. The suitability of potential contact zones between parapatric lineages is also assessed using the data from ecological niche modeling. Phylogenetic analyses of portions of the mitochondrial genome reveal morphologically cryptic mitochondrial lineages in this species. In addition, we find that patterns of genetic divergence are strongly associated with divergence in the ecological niche. Our work demonstrates the ease and utility of using spatial analyses of environmental data and phylogenetics in species delimitation, especially for groups displaying fine-scaled endemism and cryptic species.  相似文献   

6.
Investigating the properties of ecological landscapes that influence gene flow among populations can provide key insights into the earliest stages of biological divergence. Both ecological and geographical factors can reduce gene flow, which can lead to population divergence, but we know little of the relative strengths of these phenomena in nature. Here, we use a novel application of structural equation modelling to quantify the contributions of ecological and geographical isolation to spatial genetic divergence in 17 species of Anolis lizards. Our comparative analysis shows that although both processes contributed significantly, geographical isolation explained substantially more genetic divergence than ecological isolation (36.3 vs. 17.9% of variance respectively), suggesting that despite the proposed ubiquity of ecological divergence, non‐ecological factors play the dominant role in the evolution of spatial genetic divergence.  相似文献   

7.
The relative importance of ecological selection and geographical isolation in promoting and constraining genetic and phenotypic differentiation among populations is not always obvious. Interacting with divergent selection, restricted opportunity for gene flow may in some cases be as much a cause as a consequence of adaptation, with the latter being a hallmark of ecological speciation. Ecological speciation is well studied in parts of the native range of the three‐spined stickleback. Here, we study this process in a recently invaded part of its range. Switzerland was colonized within the past 140 years from at least three different colonization events involving different stickleback lineages. They now occupy diverse habitats, ranging from small streams to the pelagic zone of large lakes. We use replicated systems of parapatric lake and stream populations, some of which trace their origins to different invasive lineages, to ask (i) whether phenotypic divergence occurred among populations inhabiting distinct habitats, (ii) whether trajectories of phenotypic divergence follow predictable parallel patterns and (iii) whether gene flow constrains divergent adaptation or vice versa. We find consistent phenotypic divergence between populations occupying distinct habitats. This involves parallel evolution in several traits with known ecological relevance in independent evolutionary lineages. Adaptive divergence supersedes homogenizing gene flow even at a small spatial scale. We find evidence that adaptive phenotypic divergence places constraints on gene flow over and above that imposed by geographical distance, signalling the early onset of ecological speciation.  相似文献   

8.
The Northern Fulmar (Fulmarus glacialis) is a common tube‐nosed seabird with a disjunct Holarctic range. Taxonomic divisions within the Northern Fulmar have historically been muddled by geographical variation notably including highly polymorphic plumage. Recent molecular analyses (i.e., DNA barcoding) have suggested that genetic divergence between Atlantic and Pacific populations could be on par with those typically observed between species. We employ a multigene phylogenetic analysis to better explore the level of genetic divergence between these populations and to test an old hypothesis on the origin of the modern distribution of color morphs across their range. Additionally, we test whether mutations in the melanocortin‐1 receptor gene (MC1R) are associated with dark plumage in the Northern Fulmar. We confirmed that mitochondrial lineages in the Atlantic and Pacific populations are highly divergent, but nuclear markers revealed incomplete lineage sorting. Genetic divergence between these populations is consistent with that observed between many species of Procellariiformes and we recommend elevating these two forms to separate species. We also find that MC1R variation is not associated with color morph but rather is better explained by geographical divergence.  相似文献   

9.
Movement is a prominent process shaping genetic population structure. In many northern mammal species, population structure is formed by geographic distance, geographical barriers and various ecological factors that influence movement over the landscape. The Arctic fox Vulpes lagopus is a highly mobile, opportunistic carnivore of the Arctic that occurs in two main ecotypes with different ecological adaptations. We assembled microsatellite data in 7 loci for 1834 Arctic foxes sampled across their entire distribution to describe the circumpolar population structure and test the impact of (1) geographic distance, (2) geographical barriers and (3) ecotype designation on the population structure. Both Structure and Geneland demonstrated distinctiveness of Iceland and Scandinavia whereas low differentiation was observed between North America–northern Greenland, Svalbard and Siberia. Genetic differentiation was significantly correlated to presence of sea ice on a global scale, but not to geographical distance or ecotype designation. However, among areas connected by sea ice, we recorded a pattern of isolation by distance. The maximum likelihood approach in Migrate suggested that connectivity across North America–northern Greenland and Svalbard was particularly high. Our results demonstrate the importance of sea ice for maintaining connectivity between Arctic fox populations and we therefore predict that climate change will increase genetic divergence among populations in the future.  相似文献   

10.
Combining molecular analyses with geological and palaeontological data may reveal timing and modes for the divergence of lineages within species. The Mediterranean Basin is particularly appropriate for this kind of multidisciplinary studies, because of its complex geological history and biological diversity. Here, we investigated chloroplast DNA of Quercus suber populations in order to detect possible relationships between their geographical distribution and the palaeogeographical history of the western Mediterranean domain. We analysed 110 cork oak populations, covering the whole distribution range of the species, by 14 chloroplast microsatellite markers, among which eight displayed variation among populations. We identified five haplotypes whose distribution is clearly geographically structured. Results demonstrated that cork oak populations have undergone a genetic drift geographically consistent with the Oligocene and Miocene break-up events of the European-Iberian continental margin and suggested that they have persisted in a number of separate microplates, currently found in Tunisia, Sardinia, Corsica, and Provence, without detectable chloroplast DNA modifications for a time span of over 15 million years. A similar distribution pattern of mitochondrial DNA of Pinus pinaster supports the hypothesis of such long-term persistence, in spite of Quaternary climate oscillations and of isolation due to insularity, and suggests that part of the modern geographical structure of Mediterranean populations may be traced back to the Tertiary history of taxa.  相似文献   

11.
Species formation during adaptive radiation often occurs in the context of a changing environment. The establishment and arrangement of populations, in space and time, sets up ecological and genetic processes that dictate the rate and pattern of differentiation. Here, we focus on how a dynamic habitat can affect genetic structure, and ultimately, differentiation among populations. We make use of the chronology and geographical history provided by the Hawaiian archipelago to examine the initial stages of population establishment and genetic divergence. We use data from a set of 6 spider lineages that differ in habitat affinities, some preferring low elevation habitats with a longer history of connection, others being more specialized for high elevation and/or wet forest, some with more general habitat affinities. We show that habitat preferences associated with lineages are important in ecological and genetic structuring. Lineages that have more restricted habitat preferences are subject to repeated episodes of isolation and fragmentation as a result of lava flows and vegetation succession. The initial dynamic set up by the landscape translates over time into discrete lineages. Further work is needed to understand how genetic changes interact with a changing set of ecological interactions amongst a shifting mosaic of landscapes to achieve species formation.  相似文献   

12.
1. One important goal in conservation biology is to characterise evolutionary lineages within endangered species before management decisions are taken. Here, we assess population differentiation in the freshwater crayfish Austropotamobius pallipes, an endangered species endemic to western Europe and provide valuable information for the conservation of French populations. 2. Analysis of five microsatellite loci in 44 populations revealed very different within population levels of genetic diversity (0.000 < H0 < 0.564). Two groups, corresponding to northern and southern French populations, showed a high degree of genetic differentiation in both allele frequencies and allele sizes. Comparison of these results with previous studies of A. pallipes strongly suggests that the divergence between northern and southern populations could have occurred during the last glaciation period of the Pleistocene from one Atlantic and one Mediterranean refuge. 3. Evidence for genetic admixture between these two lineages was revealed by correspondence analyses in southern populations, probably as the result of artificial translocations. 4. French populations appeared significantly differentiated among the different river drainages and were highly structured within rivers. The impact of population size, population bottlenecks and founder events on the population genetic differentiation are discussed. 5. Based on these results, we propose the designation of two evolutionarily significant units for A. pallipes in France. Our data also support the maintenance of separate demographic management strategies for crayfish inhabiting different river systems. However, genetic analyses will have to be combined with demographic and ecological data for sustainable conservation programmes.  相似文献   

13.
Although similar patterns of phenotypic diversification are often observed in phylogenetically independent lineages, differences in the magnitude and direction of phenotypic divergence have been also observed among independent lineages, even when exposed to the same ecological gradients. The stickleback family is a good model with which to explore the ecological and genetic basis of parallel and nonparallel patterns of phenotypic evolution, because there are a variety of populations and species that are locally adapted to divergent environments. Although the patterns of phenotypic divergence as well as the genetic and ecological mechanisms have been well characterized in threespine sticklebacks, Gasterosteus aculeatus, we know little about the patterns of phenotypic diversification in other stickleback lineages. In eastern Hokkaido, Japan, there are three species of ninespine sticklebacks, Pungitius tymensis and the freshwater type and the brackish‐water type of the P. pungitiusP. sinensis species complex. They utilize divergent habitats along coast–stream gradients of rivers. Here, we investigated genetic, ecological and phenotypic divergence among three species of Japanese ninespine sticklebacks. Divergence in trophic morphology and salinity tolerance occurred in the direction predicted by the patterns observed in threespine sticklebacks. However, the patterns of divergence in armour plate were different from those previously found in threespine sticklebacks. Furthermore, the genetic basis of plate variation may differ from that in threespine sticklebacks. Because threespine sticklebacks are well‐established model for evolutionary research, the sympatric trio of ninespine sticklebacks will be an invaluable resource for ecological and genetic studies on both common and lineage‐specific patterns of phenotypic diversification.  相似文献   

14.
Divergence in phenotypic traits often contributes to premating isolation between lineages, but could also promote isolation at postmating stages. Phenotypic differences could directly result in mechanical isolation or hybrids with maladapted traits; alternatively, when alleles controlling these trait differences pleiotropically affect other components of development, differentiation could indirectly produce genetic incompatibilities in hybrids. Here, we determined the strength of nine postmating and intrinsic postzygotic reproductive barriers among 10 species of Jaltomata (Solanaceae), including species with highly divergent floral traits. To evaluate the relative importance of floral trait diversification for the strength of these postmating barriers, we assessed their relationship to floral divergence, genetic distance, geographical context, and ecological differences, using conventional tests and a new linear‐mixed modeling approach. Despite close evolutionary relationships, all species pairs showed moderate to strong isolation. Nonetheless, floral trait divergence was not a consistent predictor of the strength of isolation; instead this was best explained by genetic distance, although we found evidence for mechanical isolation in one species, and a positive relationship between floral trait divergence and fruit set isolation across species pairs. Overall, our data indicate that intrinsic postzygotic isolation is more strongly associated with genome‐wide genetic differentiation, rather than floral divergence.  相似文献   

15.
Populations of annual killifish of the genus Nothobranchius occur in patchily distributed temporary pools in the East African savannah. Their fragmented distribution and low dispersal ability result in highly structured genetic clustering of their populations. In this study, we examined body shape variation in a widely distributed species, Nothobranchius orthonotus with known phylogeographic structure. We tested whether genetic divergence of major mitochondrial lineages forming two candidate species is congruent with phenotypic diversification, using linear and geometric morphometry analyses of body shape in 23 wild populations. We also conducted a common‐garden experiment with two wild‐derived populations to control for the effect of local environmental conditions on body shape. We identified different allometric trajectories for different mitochondrial lineages and candidate species in both sexes. However, in a principal components analysis of population‐level body shape, the separation among mitochondrial lineages was incomplete. Higher similarity of mitochondrial lineages belonging to different candidate species than that of same candidate species prevented distinction of the two candidate species on the basis of body shape. Analysis at the individual level demonstrated that N. orthonotus express high intrapopulation variability, with major overlap among individuals from all populations. In conclusion, we suggest that N. orthonotus be considered as a single species with an extensive geographic range, strong population genetic structure and high morphological variability.  相似文献   

16.
Hormogastridae earthworms are highly important for the functioning of the Mediterranean soil system. However, little is known about the species distribution and genetic diversity of these soil invertebrates. In the present study, the genetic differentiation and gene flow were studied among populations of hormogastrids from the central Iberian Peninsula. A 648-bp portion of the mitochondrial cytochrome c oxidase I gene was sequenced for 82 individuals from 7 localities, resulting in the identification of 38 haplotypes exclusive to localities. All of the individuals were morphologically identified as Hormogaster elisae , but the high genetic divergence found among populations (up to 20.20%) suggests the occurrence of more than one cryptic species within this region. Further analysis of the phylogenetic relationships revealed six different evolutionary lineages coincident with geographical location, including the two nearest populations Molar and Redueña as one evolutionary unit. From these results, at least three new species could be inferred, in addition to the morphospecies H. elisae s.s . Partitioning of genetic variance among populations indicated that isolation by distance was the primary agent for differentiation of the investigated hormogastrid populations. Our data suggest that the evolutionary lineages for H. elisae s.l. originated between the late Miocene and the early Pleistocene, but that mtDNA genealogies coalesce on a more recent scale of a few thousand years.  相似文献   

17.
Sweet chestnut (Castanea sativa Mill.) is a multipurpose species of great ecological and economic importance in southwest Bulgaria. Bulgarian chestnut forests are severely degraded, however, due to the intensive exploitation and bad management that have occurred over the last 2000 years. Given the urgent need to define conservation strategies to preserve the biodiversity of Bulgarian chestnut, we estimated its genetic variability. A set of eight microsatellite primers were used to analyze the genetic diversity and structure of six C. sativa populations distributed throughout the range of species in Bulgaria. Results showed a generally high level of genetic diversity but little divergence among populations. A significant, positive, within-population inbreeding coefficient (Fis) was observed in four populations. A STRUCTURE analysis revealed three genetic clusters. Using a landscape approach, significant genetic barriers among populations were found by integrating genetics with geographical distance. We hypothesize that one population is a relict from a glacial refugium; the structure of the remaining populations is probably the result of a combination of natural events and human impacts. For the purposes of conservation planning, we have identified populations that are particularly rich in diversity and private alleles that are good candidates for preservation.  相似文献   

18.
Aim To examine the phylogeography and population structure of three dung beetle species of the genus Trypocopris (Coleoptera, Geotrupidae). We wanted to test whether genetic differences and genealogies among populations were in accordance with morphologically described subspecies and we aimed to establish times of divergence among subspecies to depict the appropriate temporal framework of their phylogeographical differentiation. We also wished to investigate the historical demographic events and the relative influences of gene flow and drift on the distribution of genetic variability of the different populations. Location Europe (mostly Italy). Methods We collected adult males from dung pats from 15 Italian localities over the period 2000–2002. For sequence analysis, some dried specimens from Albania, Croatia, Slovakia and Spain were also used. We applied cytochrome oxidase I mitochondrial DNA sequencing and the amplified fragment length polymorphism (AFLP) technique to determine whether phylogeographical patterns within the three species support the proposed hypotheses of subspecies designations, and to detect further structure among populations that might mediate diversification. Results and main conclusions The results show a high concordance between the distribution of mtDNA variation and the main morphological groups recognized as subspecies, which thus may represent independent evolutionary units. The degree of mitochondrial divergence suggests that speciation events occurred during the Pliocene, while diversification of the main subspecific lineages took place in the Pleistocene, from c. 0.3 to 1.5 Ma. Mitochondrial and nuclear data also reveal that there is phylogeographical structuring among populations within each of the main groups and that both contemporary and historical processes determined this pattern of genetic structure. Geographical populations form monophyletic clades in both phylogenetic and network reconstructions. Despite the high levels of intrapopulational diversity, FST values indicate moderate but significant genetic differentiation among populations, and a Bayesian clustering analysis of the AFLP data clearly separates the geographical populations. Nucleotide and gene diversity estimates reveal interspecific differences in the degree of diversification among populations that may be related to the different ecological requirements of the three species.  相似文献   

19.
The genetic consequences of climate-driven range fluctuation during the Pleistocene have been well studied for temperate species, but cold-adapted (e.g., alpine, arctic) species that may have responded uniquely to past climatic events have received less attention. In particular, we have no a priori expectation for long-term evolutionary consequences of elevation shifts into and out of sky islands by species adapted to alpine habitats. Here, we examined the influence of elevation shifts on genetic differentiation and historical demography in an alpine specialist, the American pika ( Ochotona princeps ). Pika populations are divided into five genetic lineages that evolved in association with separate mountain systems, rather than lineages that reflect individual sky islands. This suggests a role for glacial-period elevation shifts in promoting gene flow among high-elevation populations and maintaining regional cohesion of genetic lineages. We detected a signature of recent demographic decline in all lineages, consistent with the expectation that Holocene climate warming has driven range retraction in southern lineages, but unexpected for northern populations that presumably represent postglacial expansion. An ecological niche model of past and future pika distributions highlights the influence of climate on species range and indicates that the distribution of genetic diversity may change dramatically with continued climate warming.  相似文献   

20.
Many pathogens undergo both sexual and asexual reproduction to varying degrees, yet the ecological, genetic and evolutionary consequences of different reproductive strategies remain poorly understood. Here we investigate the population genetic structure of wild populations of the plant pathogen Melampsora lini on its host Linum marginale , using amplified fragment length polymorphism (AFLP) markers, two genes underlying pathogen virulence, and phenotypic variation in virulence. In Australia, M. lini occurs as two genetically and geographically divergent lineages (AA and AB), one of which is completely asexual (AB), and the other able to reproduce both clonally and sexually (AA). To quantify the genetic and evolutionary consequences of these different life histories, we sampled five populations in each of two biogeographical regions. Analysis of AFLP data obtained for 275 isolates revealed largely disjunct geographical distributions for the two different lineages, low genetic diversity within lineages, and strong genetic structure among populations within each region. We also detected significant divergence among populations for both Avr genes and virulence phenotypes, although generally these values were lower than those obtained with AFLP markers. Furthermore, isolates belonging to lineage AA collectively harboured significantly higher genotypic and phenotypic diversity than lineage AB isolates. Together these results illustrate the important roles of reproductive modes and geographical structure in the generation and maintenance of virulence diversity in populations of M. lini .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号