首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Giant axonal neuropathy (GAN), an autosomal recessive disorder caused by mutations in GAN, is characterized cytopathologically by cytoskeletal abnormality. Based on its sequence, gigaxonin contains an NH2-terminal BTB domain followed by six kelch repeats, which are believed to be important for protein-protein interactions (Adams, J., R. Kelso, and L. Cooley. 2000. Trends Cell Biol. 10:17-24.). Here, we report the identification of a neuronal binding partner of gigaxonin. Results obtained from yeast two-hybrid screening, cotransfections, and coimmunoprecipitations demonstrate that gigaxonin binds directly to microtubule-associated protein (MAP)1B light chain (LC; MAP1B-LC), a protein involved in maintaining the integrity of cytoskeletal structures and promoting neuronal stability. Studies using double immunofluorescent microscopy and ultrastructural analysis revealed physiological colocalization of gigaxonin with MAP1B in neurons. Furthermore, in transfected cells the specific interaction of gigaxonin with MAP1B is shown to enhance the microtubule stability required for axonal transport over long distance. At least two different mutations identified in GAN patients (Bomont, P., L. Cavalier, F. Blondeau, C. Ben Hamida, S. Belal, M. Tazir, E. Demir, H. Topaloglu, R. Korinthenberg, B. Tuysuz, et al. 2000. Nat. Genet. 26:370-374.) lead to loss of gigaxonin-MAP1B-LC interaction. The devastating axonal degeneration and neuronal death found in GAN patients point to the importance of gigaxonin for neuronal survival. Our findings may provide important insights into the pathogenesis of neurodegenerative disorders related to cytoskeletal abnormalities.  相似文献   

2.
Wang W  Ding J  Allen E  Zhu P  Zhang L  Vogel H  Yang Y 《Current biology : CB》2005,15(22):2050-2055
Gigaxonin is mutated in human giant axonal neuropathy (GAN), an autosomal recessive neurodegenerative disorder. The presence of generalized cytoskeletal abnormalities , including few microtubules and accumulated intermediate filaments (IFs), in GAN suggests an essential role of gigaxonin in cytoskeletal organization and dynamics. However, the molecular mechanisms underlying the cytoskeletal pathology remain to be elucidated. Over the years, the ubiquitin-proteasome system (UPS) of intracellular protein degradation has been implicated in the control of many fundamental cellular processes. Defects in this system seem to be directly linked to the development of human diseases, including cancers and neurodegenerative diseases . Here, we show that gigaxonin controls protein degradation of tubulin folding cofactor B (TBCB) , a function disrupted by GAN-associated mutations. The substantial TBCB protein accumulation caused by impaired UPS may be a causative factor of cytoskeletal pathology in GAN. Our study provides important insight into pathogenesis of neurodegenerative diseases associated with cytoskeletal abnormalities.  相似文献   

3.
Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility.  相似文献   

4.
Patients with giant axonal neuropathy (GAN) show progressive loss of motor and sensory function starting in childhood and typically live for less than 30 years. GAN is caused by autosomal recessive mutations leading to low levels of gigaxonin (GIG), a ubiquitously-expressed BTB/Kelch cytoplasmic protein believed to be an E3 ligase substrate adaptor. GAN pathology is characterized by aggregates of intermediate filaments (IFs) in multiple tissues. To delineate the molecular pathway between GIG deficiency and IF pathology, we undertook a proteomic screen to identify the normal binding partners of GIG. Prominent among them were several classes of IFs, including the neurofilament subunits whose accumulation leads to the axonal swellings for which GAN is named. We showed these interactions were dependent on the Kelch domain of GIG. Furthermore, we identified the E3 ligase MYCBP2 and the heat shock proteins HSP90AA1/AB1 as interactors with the BTB domain that may result in the ubiquitination and subsequent degradation of intermediate filaments. Our open-ended proteomic screen provides support to GIG’s role as an adaptor protein, linking IF proteins through its Kelch domain to the ubiquitin pathway proteins via its BTB domain, and points to future approaches for reversing the phenotype in human patients.  相似文献   

5.
MAP1B and MAP2 are major members of neuronal microtubule-associated proteins (MAPs). To gain insights into the function of MAP2 in vivo, we generated MAP2-deficient (map2(-/-)) mice. They developed without any apparent abnormalities, which indicates that MAP2 is dispensable in mouse survival. Because previous reports suggest a functional redundancy among MAPs, we next generated mice lacking both MAP2 and MAP1B to test their possible synergistic functions in vivo. Map2(-/-)map1b(-/-) mice died in their perinatal period. They showed not only fiber tract malformations but also disrupted cortical patterning caused by retarded neuronal migration. In spite of this, their cortical layer maintained an "inside-out" pattern. Detailed observation of primary cultures of hippocampal neurons from map2(-/-)map1b(-/-) mice revealed inhibited microtubule bundling and neurite elongation. In these neurons, synergistic effects caused by the loss of MAP2 and MAP1B were more apparent in dendrites than in axons. The spacing of microtubules was reduced significantly in map2(-/-)map1b(-/-) mice in vitro and in vivo. These results suggest that MAP2 and MAP1B have overlapping functions in neuronal migration and neurite outgrowth by organizing microtubules in developing neurons both for axonal and dendritic morphogenesis but more dominantly for dendritic morphogenesis.  相似文献   

6.
Myofibroblasts, also known as activated fibroblasts, constitute an important niche for tumor development through the promotion of angiogenesis. However, the mechanism of stromal fibroblast activation in tumor tissues has not been fully understood. A gastric cancer mouse model (Gan mice) was recently constructed by simultaneous activation of prostaglandin (PG) E2 and Wnt signaling in the gastric mucosa. Because both the PGE2 and Wnt pathways play a role in human gastric tumorigenesis, the Gan mouse model therefore recapitulates the molecular etiology of human gastric cancer. Microvessel density increased significantly in Gan mouse tumors. Moreover, the expression of vascular endothelial growth factor A (VEGFA) was predominantly induced in the stromal cells of gastric tumors. Immunohistochemistry suggested that VEGFA-expressing cells in the stroma were alpha-smooth muscle actin-positive myofibroblasts. Bone marrow transplantation experiments indicated that a subset of gastric myofibroblasts is derived from bone marrow. Importantly, the alpha-smooth muscle actin index in cultured fibroblasts increased significantly when stimulated with the conditioned medium of Gan mouse tumor cells, indicating that gastric tumor cells activate stromal fibroblasts. Furthermore, conditioned medium of Gan mouse tumor cells induced VEGFA expression both in embryonic and gastric fibroblasts, which further accelerated the tube formation of human umbilical vein endothelial cells in vitro. Notably, stimulation of fibroblasts with PGE2 and/or Wnt1 did not induce VEGFA expression, thus suggesting that factors secondarily induced by PGE2 and Wnt signaling in the tumor cells are responsible for activation of stromal fibroblasts. Such tumor cell-derived factors may therefore be an effective target for chemoprevention against gastric cancer.  相似文献   

7.
Microtubule-associated protein 1B (MAP1B) is prominently expressed during early stages of neuronal development, and it has been implicated in axonal growth and guidance. MAP1B expression is also found in the adult brain in areas of significant synaptic plasticity. Here, we demonstrate that MAP1B is present in dendritic spines, and we describe a decrease in the density of mature dendritic spines in neurons of MAP1B-deficient mice that was accompanied by an increase in the number of immature filopodia-like protrusions. Although these neurons exhibited normal passive membrane properties and action potential firing, AMPA receptor-mediated synaptic currents were significantly diminished. Moreover, we observed a significant decrease in Rac1 activity and an increase in RhoA activity in the post-synaptic densities of adult MAP1B(+/-) mice when compared with wild type controls. MAP1B(+/-) fractions also exhibited a decrease in phosphorylated cofilin. Taken together, these results indicate a new and important role for MAP1B in the formation and maturation of dendritic spines, possibly through the regulation of the actin cytoskeleton. This activity of MAP1B could contribute to the regulation of synaptic activity and plasticity in the adult brain.  相似文献   

8.
Giant axonal neuropathy (GAN) is a severe autosomal recessive disease affecting both the peripheral and central nervous systems. It is characterized by segmental axonal ballooning due to large neurofilamentous masses and abnormal aggregation of filaments in other cell types including glial cells. Coomassie blue staining of the detergent-resistant cytoskeleton of cultured skin fibroblasts from three patients with GAN revealed the presence of large cytoplasmic filamentous aggregates in the great majority of cells. The aggregates were birefringent when viewed under polarization microscopy and electron microscopy showed that they were composed of aggregates of 8 to 10 nm intermediate filaments. The aggregates stained with antisera specific for vimentin but did not stain with antibodies to actin, tubulin, or the high molecular weight (HMW) microtubule associated protein. Examination of the fibroblasts containing the vimentin aggregates with antibodies to tubulin and the HMW protein showed that they had a normal distribution of microtubules and that the microtubules present were normally associated with the HMW protein. The results suggest that giant axonal neuropathy is a generalized inborn error of organization of intermediate filaments and that a defect in microtubules or their association with HMW protein is not responsible for the observed aggregation of intermediate filaments in this disease. Further study of GAN may be useful in understanding the function of intermediate filaments.  相似文献   

9.
The functions of microtubule‐associated protein 1B (MAP1B) have historically been linked to the development of the nervous system, based on its very early expression in neurons and glial cells. Moreover, mice in which MAP1B is genetically inactivated have been used extensively to show its role in axonal elongation, neuronal migration, and axonal guidance. In the last few years, it has become apparent that MAP1B has other cellular and molecular functions that are not related to its microtubule‐stabilizing properties in the embryonic and adult brain. In this review, we present a systematic review of the canonical and novel functions of MAP1B and propose that, in addition to regulating the polymerization of microtubule and actin microfilaments, MAP1B also acts as a signaling protein involved in normal physiology and pathological conditions in the nervous system. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 953–971, 2014  相似文献   

10.
The subcellular localization of microtubule proteins in the neurons of squid (Doryteuthis bleekeri) was immunologically studied using monoclonal antibodies against the microtubule proteins. We found that (1) the squid neurons contained three kinds of high-molecular-weight microtubule-associated proteins [MAP A of approximately 300 kilodaltons (kD), MAP B of 260 kD, and axolinin of 260 kD] and two kinds of beta-tubulin isotypes (beta 1 and beta 2); (2) the cell body of the squid giant neuron contained MAP A, MAP B, and the two beta-tubulin isotypes (beta 1 and beta 2); (3) axolinin and the beta 1 isotype were present exclusively in the peripheral axoplasm of the giant axon; and (4) a small amount of axolinin, MAP A, and the beta 1 isotype was found in the insoluble aspect of the central axoplasm, whereas the soluble aspect of the central axoplasm contained an abundant amount of MAP A along with the modified form of the beta 1 isotype. The regional difference of the distribution of the microtubule protein components may explain the differences in stability among axonal microtubules. Microtubules in the soluble aspect of the central axoplasm are sensitive to any treatment with colchicine, cold temperature, and high ionic strength but those both in the insoluble aspect of the central axoplasm and in the peripheral axoplasm are highly insensitive to the treatment.  相似文献   

11.
BACKGROUND: The signaling cascades governing neuronal migration and axonal guidance link extracellular signals to cytoskeletal components. MAP1B is a neuron-specific microtubule-associated protein implicated in the crosstalk between microtubules and actin filaments. RESULTS: Here we show that Netrin 1 regulates, both in vivo and in vitro, mode I MAP1B phosphorylation, which controls MAP1B activity, in a signaling pathway that depends essentially on the kinases GSK3 and CDK5. We also show that map1B-deficient neurons from the lower rhombic lip and other brain regions have reduced chemoattractive responses to Netrin 1 in vitro. Furthermore, map1B mutant mice have severe abnormalities, similar to those described in netrin 1-deficient mice, in axonal tracts and in the pontine nuclei. CONCLUSIONS: These data indicate that MAP1B phosphorylation is controlled by Netrin 1 and that the lack of MAP1B impairs Netrin 1-mediated chemoattraction in vitro and in vivo. Thus, MAP1B may be a downstream effector in the Netrin 1-signaling pathway.  相似文献   

12.
To test the hypothesis that inhibition of axonal transport is sufficient to cause motor neuron degeneration such as that observed in amyotrophic lateral sclerosis (ALS), we engineered a targeted disruption of the dynein-dynactin complex in postnatal motor neurons of transgenic mice. Dynamitin overexpression was found to disassemble dynactin, a required activator of cytoplasmic dynein, resulting in an inhibition of retrograde axonal transport. Mice overexpressing dynamitin demonstrate a late-onset progressive motor neuron degenerative disease characterized by decreased strength and endurance, motor neuron degeneration and loss, and denervation of muscle. Previous transgenic mouse models of ALS have shown abnormalities in microtubule-based axonal transport. In this report, we describe a mouse model that confirms the critical role of disrupted axonal transport in the pathogenesis of motor neuron degenerative disease.  相似文献   

13.
14.
Giant axonal neuropathy (GAN) results from autosomal recessive mutations (gan-) that affect cytoskeletal organization; specifically, intermediate filaments (IFs) are found collapsed into massive bundles in a variety of different cell types. We studied the gan- fibroblast lines WG321 and WG139 derived from different GAN patients. Although previous studies implied that the gan- IF phenotype was constitutive, we find that it is conditional. That is, when cells were grown under the permissive condition of medium containing over 2% fetal calf serum, most cells had normal IF organization. IF bundles formed when gan- cells were transferred to the nonpermissive condition of low (0.1%) serum. Microtubule organization appeared normal in the presence or absence of serum. The effect of serum starvation was largely blocked or reversed by the addition of BSA to the culture media. We found no evidence that the gan- phenotype depends upon progress through the cell cycle. We discuss the possible role of serum effects in the etiology of GAN and speculate as to the molecular nature of the gan- defect.  相似文献   

15.
Microtubule-associated proteins of the MAP1 family (MAP1A, MAP1B, and MAP1S) share, among other features, a highly conserved COOH-terminal domain approximately 125 amino acids in length. We conducted a yeast 2-hybrid screen to search for proteins interacting with this domain and identified α1-syntrophin, a member of a multigene family of adapter proteins involved in signal transduction. We further demonstrate that the interaction between the conserved COOH-terminal 125-amino acid domain (which is located in the light chains of MAP1A, MAP1B, and MAP1S) and α1-syntrophin is direct and occurs through the pleckstrin homology domain 2 (PH2) and the postsynaptic density protein 95/disk large/zonula occludens-1 protein homology domain (PDZ) of α1-syntrophin. We confirmed the interaction of MAP1B and α1-syntrophin by co-localization of the two proteins in transfected cells and by co-immunoprecipitation experiments from mouse brain. In addition, we show that MAP1B and α1-syntrophin partially co-localize in Schwann cells of the murine sciatic nerve during postnatal development and in the adult. However, intracellular localization of α1-syntrophin and other Schwann cell proteins such as ezrin and dystrophin-related protein 2 (DRP2) and the localization of the axonal node of Ranvier-associated protein Caspr1/paranodin were not affected in MAP1B null mice. Our findings add to a growing body of evidence that classical MAPs are likely to be involved in signal transduction not only by directly modulating microtubule function, but also through their interaction with signal transduction proteins.  相似文献   

16.
Cultured neurons obtained from MAP1B-deficient mice have a delay in axon outgrowth and a reduced rate of axonal elongation compared with neurons from wild-type mice. Here we show that MAP1B deficiency results in a significant decrease in Rac1 and cdc42 activity and a significant increase in Rho activity. We found that MAP1B interacted with Tiam1, a guanosine nucleotide exchange factor for Rac1. The decrease in Rac1/cdc42 activity was paralleled by decreases in the phosphorylation of the downstream effectors of these proteins, such as LIMK-1 and cofilin. The expression of a constitutively active form of Rac1, cdc42, or Tiam1 rescued the axon growth defect of MAP1B-deficient neurons. Taken together, these observations define a new and crucial function of MAP1B that we show to be required for efficient cross-talk between microtubules and the actin cytoskeleton during neuronal polarization.  相似文献   

17.
Mosquito-borne alphaviruses are a significant cause of both encephalitic and arthritic disease in humans worldwide. In contrast to the encephalitic alphaviruses, the pathogenesis of alphavirus-induced arthritic disease is not well understood. Utilizing a mouse model of Ross River virus (RRV) disease, we found that the primary targets of RRV infection are bone, joint, and skeletal muscle tissues of the hind limbs in both outbred CD-1 mice and adult C57BL/6J mice. Moreover, histological analyses demonstrated that RRV infection resulted in severe inflammation of these tissues. Characterization of the inflammatory infiltrate within the skeletal muscle tissue identified inflammatory macrophages, NK cells, and CD4+ and CD8+ T lymphocytes. To determine the contribution of the adaptive immune system, the outcome of RRV-induced disease was examined in C57BL/6J RAG-1(-/-) mice, which lack functional T and B lymphocytes. RAG-1(-/-) and wild-type mice developed similar disease signs, infiltration of inflammatory macrophages and NK cells, and muscle pathology, suggesting that the adaptive immune response does not play a critical role in the development of disease. These results establish the mouse model of RRV disease as a useful system for the identification of viral and host factors that contribute to alphavirus-induced arthritis and myositis.  相似文献   

18.
The related high molecular mass microtubule-associated proteins (MAPs) MAP1A and MAP1B are predominantly expressed in the nervous system and are involved in axon guidance and synaptic function. MAP1B is implicated in fragile X mental retardation, giant axonal neuropathy, and ataxia type 1. We report the functional characterization of a novel member of the microtubule-associated protein 1 family, which we termed MAP1S (corresponding to sequence data bank entries for VCY2IP1 and C19ORF5). MAP1S contains the three hallmark domains of the microtubule-associated protein 1 family but hardly any additional sequences. It decorates neuronal microtubules and copurifies with tubulin from brain. MAP1S is synthesized as a precursor protein that is partially cleaved into heavy and light chains in a tissue-specific manner. Heavy and light chains interact to form the MAP1S complex. The light chain binds, bundles, and stabilizes microtubules and binds to actin. The heavy chain appears to regulate light chain activity. In contrast to MAP1A and MAP1B, MAP1S is expressed in a wide range of tissues in addition to neurons and represents the non-neuronal counterpart of this cytolinker family.  相似文献   

19.
Tau and MAP1B are the main members of neuronal microtubule-associated proteins (MAPs), the functions of which have remained obscure because of a putative functional redundancy (Harada, A., K. Oguchi, S. Okabe, J. Kuno, S. Terada, T. Ohshima, R. Sato-Yoshitake, Y. Takei, T. Noda, and N. Hirokawa. 1994. Nature. 369:488-491; Takei, Y., S. Kondo, A. Harada, S. Inomata, T. Noda, and N. Hirokawa. 1997. J. Cell Biol. 137:1615-1626). To unmask the role of these proteins, we generated double-knockout mice with disrupted tau and map1b genes and compared their phenotypes with those of single-knockout mice. In the analysis of mice with a genetic background of predominantly C57Bl/6J, a hypoplastic commissural axon tract and disorganized neuronal layering were observed in the brains of the tau+/+map1b-/- mice. These phenotypes are markedly more severe in tau-/-map1b-/- double mutants, indicating that tau and MAP1B act in a synergistic fashion. Primary cultures of hippocampal neurons from tau-/-map1b-/- mice showed inhibited axonal elongation. In these cells, a generation of new axons via bundling of microtubules at the neck of the growth cones appeared to be disturbed. Cultured cerebellar neurons from tau-/-map1b-/- mice showed delayed neuronal migration concomitant with suppressed neurite elongation. These findings indicate the cooperative functions of tau and MAP1B in vivo in axonal elongation and neuronal migration as regulators of microtubule organization.  相似文献   

20.
Dysfunction of plectin, a 500-kD cytolinker protein, leads to skin blistering and muscular dystrophy. Using conditional gene targeting in mice, we show that plectin deficiency results in progressive degenerative alterations in striated muscle, including aggregation and partial loss of intermediate filament (IF) networks, detachment of the contractile apparatus from the sarcolemma, profound changes in myofiber costameric cytoarchitecture, and decreased mitochondrial number and function. Analysis of newly generated plectin isoform-specific knockout mouse models revealed that IF aggregates accumulate in distinct cytoplasmic compartments, depending on which isoform is missing. Our data show that two major plectin isoforms expressed in muscle, plectin 1d and 1f, integrate fibers by specifically targeting and linking desmin IFs to Z-disks and costameres, whereas plectin 1b establishes a linkage to mitochondria. Furthermore, disruption of Z-disk and costamere linkages leads to the pathological condition of epidermolysis bullosa with muscular dystrophy. Our findings establish plectin as the major organizer of desmin IFs in myofibers and provide new insights into plectin- and desmin-related muscular dystrophies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号