首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Polarized delivery of signaling and adhesion molecules to the leading edge is required for directional migration of cells. Here, we describe a role for the PIP(2)-synthesizing enzyme, PIPKIγi2, in regulation of exocyst complex control of cell polarity and polarized integrin trafficking during migration. Loss of PIPKIγi2 impaired directional migration, formation of cell polarity, and integrin trafficking to the leading edge. Upon initiation of directional migration, PIPKIγi2 via PIP(2) generation controls the integration of the exocyst complex into an integrin-containing trafficking compartment that requires the talin-binding ability of PIPKIγi2, and talin for integrin recruitment to the leading edge. A PIP(2) requirement is further emphasized by inhibition of PIPKIγi2-regulated directional migration by an Exo70 mutant deficient in PIP(2) binding. These results reveal how phosphoinositide generation orchestrates polarized trafficking of integrin in coordination with talin that links integrins to the actin cytoskeleton, processes that are required for directional migration.  相似文献   

2.
Integrins coordinate spatial signaling events essential for cell polarity and directed migration. Such signals from alpha4 integrins regulate cell migration in development and in leukocyte trafficking. Here, we report that efficient alpha4-mediated migration requires spatial control of alpha4 phosphorylation by protein kinase A, and hence localized inhibition of binding of the signaling adaptor, paxillin, to the integrin. In migrating cells, phosphorylated alpha4 accumulated along the leading edge. Blocking alpha4 phosphorylation by mutagenesis or by inhibition of protein kinase A drastically reduced alpha4-dependent migration and lamellipodial stability. alpha4 phosphorylation blocks paxillin binding in vitro; we now find that paxillin and phospho-alpha4 were in distinct clusters at the leading edge of migrating cells, whereas unphosphorylated alpha4 and paxillin colocalized along the lateral edges of those cells. Furthermore, enforced paxillin association with alpha4 inhibits migration and reduced lamellipodial stability. These results show that topographically specific integrin phosphorylation can control cell migration and polarization by spatial segregation of adaptor protein binding.  相似文献   

3.
Wirtz-Peitz F  Nishimura T  Knoblich JA 《Cell》2008,135(1):161-173
Drosophila neural precursor cells divide asymmetrically by segregating the Numb protein into one of the two daughter cells. Numb is uniformly cortical in interphase but assumes a polarized localization in mitosis. Here, we show that a phosphorylation cascade triggered by the activation of Aurora-A is responsible for the asymmetric localization of Numb in mitosis. Aurora-A phosphorylates Par-6, a regulatory subunit of atypical protein kinase C (aPKC). This activates aPKC, which initially phosphorylates Lethal (2) giant larvae (Lgl), a cytoskeletal protein that binds and inhibits aPKC during interphase. Phosphorylated Lgl is released from aPKC and thereby allows the PDZ domain protein Bazooka to enter the complex. This changes substrate specificity and allows aPKC to phosphorylate Numb and release the protein from one side of the cell cortex. Our data reveal a molecular mechanism for the asymmetric localization of Numb and show how cell polarity can be coupled to cell-cycle progression.  相似文献   

4.
In Drosophila, the partition defective (Par) complex containing Par3, Par6 and atypical protein kinase C (aPKC) directs the polarized distribution and unequal segregation of the cell fate determinant Numb during asymmetric cell divisions. Unequal segregation of mammalian Numb has also been observed, but the factors involved are unknown. Here, we identify in vivo phosphorylation sites of mammalian Numb and show that both mammalian and Drosophila Numb interact with, and are substrates for aPKC in vitro. A form of mammalian Numb lacking two protein kinase C (PKC) phosphorylation sites (Numb2A) accumulates at the cell membrane and is refractory to PKC activation. In epithelial cells, mammalian Numb localizes to the basolateral membrane and is excluded from the apical domain, which accumulates aPKC. In contrast, Numb2A is distributed uniformly around the cell cortex. Mutational analysis of conserved aPKC phosphorylation sites in Drosophila Numb suggests that phosphorylation contributes to asymmetric localization of Numb, opposite to aPKC in dividing sensory organ precursor cells. These results suggest a model in which phosphorylation of Numb by aPKC regulates its polarized distribution in epithelial cells as well as during asymmetric cell divisions.  相似文献   

5.
Cadherin trafficking controls tissue morphogenesis and cell polarity. The endocytic adaptor Numb participates in apicobasal polarity by acting on intercellular adhesions in epithelial cells. However, it remains largely unknown how Numb controls cadherin-based adhesion. Here, we found that Numb directly interacted with p120 catenin (p120), which is known to interact with E-cadherin and prevent its internalization. Numb accumulated at intercellular adhesion sites and the apical membrane in epithelial cells. Depletion of Numb impaired E-cadherin internalization, whereas depletion of p120 accelerated internalization. Expression of the Numb-binding fragment of p120 inhibited E-cadherin internalization in a dominant-negative fashion, indicating that Numb interacts with the E-cadherin/p120 complex and promotes E-cadherin endocytosis. Impairment of Numb induced mislocalization of E-cadherin from the lateral membrane to the apical membrane. Atypical protein kinase C (aPKC), a member of the PAR complex, phosphorylated Numb and inhibited its association with p120 and α-adaptin. Depletion or inhibition of aPKC accelerated E-cadherin internalization. Wild-type Numb restored E-cadherin internalization in the Numb-depleted cells, whereas a phosphomimetic mutant or a mutant with defective α-adaptin-binding ability did not restore the internalization. Thus, we propose that aPKC phosphorylates Numb to prevent its binding to p120 and α-adaptin, thereby attenuating E-cadherin endocytosis to maintain apicobasal polarity.  相似文献   

6.
Migrating cells acquire front-rear polarity with a leading edge and a trailing tail for directional movement. The Rac exchange factor Tiam1 participates in polarized cell migration with the PAR complex of PAR3, PAR6, and atypical protein kinase C. However, it remains largely unknown how Tiam1 is regulated and contributes to the establishment of polarity in migrating cells. We show here that Tiam1 interacts directly with talin, which binds and activates integrins to mediate their signaling. Tiam1 accumulated at adhesions in a manner dependent on talin and the PAR complex. The interactions of talin with Tiam1 and the PAR complex were required for adhesion-induced Rac1 activation, cell spreading, and migration toward integrin substrates. Furthermore, Tiam1 acted with talin to regulate adhesion turnover. Thus, we propose that Tiam1, with the PAR complex, binds to integrins through talin and, together with the PAR complex, thereby regulates Rac1 activity and adhesion turnover for polarized migration.  相似文献   

7.
Cell polarization is essential throughout development for proliferation, migration, and differentiation. However, it is not known how extracellular cues correctly orient cell polarity at distinct stages of development. Here, we show that the endocytic adaptor protein Numb, previously characterized for its role in cell proliferation, subsequently plays an important role in cell migration. In neural precursors stimulated with the chemotactic factor BDNF, Numb binds to activated TrkB, the BDNF receptor, and functions both as an endocytic regulator for TrkB and as a scaffold for aPKC (aPKC). Thus, Numb promotes BDNF-dependent aPKC activation. Interestingly, Numb is also a substrate of aPKC. When phosphorylated, Numb exhibits increased efficacy in binding TrkB and in promoting a chemotactic response to BDNF. Therefore, Numb functions in a feed-forward loop to promote chemotaxis of neural precursors, linking BDNF, an extracellular cue, to aPKC, a critical component of the intrinsic polarity machinery.  相似文献   

8.
Clathrin-associated endocytic adapters recruit cargoes to coated pits as a first step in endocytosis. We developed an unbiased quantitative proteomics approach to identify and quantify glycoprotein cargoes for an endocytic adapter, Dab2. Surface levels of integrins β1, α1, α2, and α3 but not α5 or αv chains were specifically increased on Dab2-deficient HeLa cells. Dab2 colocalizes with integrin β1 in coated pits that are dispersed over the cell surface, suggesting that it regulates bulk endocytosis of inactive integrins. Depletion of Dab2 inhibits cell migration and polarized movement of integrin β1 and vinculin to the leading edge. By manipulating intracellular and surface integrin β1 levels, we show that migration speed correlates with the intracellular integrin pool but not the surface level. Together, these results suggest that Dab2 internalizes integrins freely diffusing on the cell surface and that Dab2 regulates migration, perhaps by maintaining an internal pool of integrins that can be recycled to create new adhesions at the leading edge.  相似文献   

9.
During asymmetric stem cell division, polarization of the cell cortex targets fate determinants unequally into the sibling daughters, leading to regeneration of a stem cell and production of a progenitor cell with restricted developmental potential. In mitotic neural stem cells (neuroblasts) in fly larval brains, the antagonistic interaction between the polarity proteins Lethal (2) giant larvae (Lgl) and atypical Protein Kinase C (aPKC) ensures self-renewal of a daughter neuroblast and generation of a progenitor cell by regulating asymmetric segregation of fate determinants. In the absence of lgl function, elevated cortical aPKC kinase activity perturbs unequal partitioning of the fate determinants including Numb and induces supernumerary neuroblasts in larval brains. However, whether increased aPKC function triggers formation of excess neuroblasts by inactivating Numb remains controversial. To investigate how increased cortical aPKC function induces formation of excess neuroblasts, we analyzed the fate of cells in neuroblast lineage clones in lgl mutant brains. Surprisingly, our analyses revealed that neuroblasts in lgl mutant brains undergo asymmetric division to produce progenitor cells, which then revert back into neuroblasts. In lgl mutant brains, Numb remained localized in the cortex of mitotic neuroblasts and failed to segregate exclusively into the progenitor cell following completion of asymmetric division. These results led us to propose that elevated aPKC function in the cortex of mitotic neuroblasts reduces the function of Numb in the future progenitor cells. We identified that the acyl-CoA binding domain containing 3 protein (ACBD3) binding region is essential for asymmetric segregation of Numb in mitotic neuroblasts and suppression of the supernumerary neuroblast phenotype induced by increased aPKC function. The ACBD3 binding region of Numb harbors two aPKC phosphorylation sites, serines 48 and 52. Surprisingly, while the phosphorylation status at these two sites directly impinged on asymmetric segregation of Numb in mitotic neuroblasts, both the phosphomimetic and non-phosphorylatable forms of Numb suppressed formation of excess neuroblasts triggered by increased cortical aPKC function. Thus, we propose that precise regulation of cortical aPKC kinase activity distinguishes the sibling cell identity in part by ensuring asymmetric partitioning of Numb into the future progenitor cell where Numb maintains restricted potential independently of regulation by aPKC.  相似文献   

10.
Integrins are major receptors for cell adhesion to the extracellular matrix (ECM). As transmembrane proteins, the levels of integrins at the plasma membrane or the cell surface are ultimately determined by the balance between two vesicle trafficking events: endocytosis of integrins at the plasma membrane and exocytosis of the vesicles that transport integrins. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, is involved in the trafficking of α5β1 integrin. VAMP2 was present on vesicles containing endocytosed β1 integrin. Small interfering RNA (siRNA) silencing of VAMP2 markedly reduced cell surface α5β1 and inhibited cell adhesion and chemotactic migration to fibronectin, the ECM ligand of α5β1, without altering cell surface expression of α2β1 integrin or α3β1 integrin. By contrast, silencing of VAMP8, another SNARE protein, had no effect on cell surface expression of the integrins or cell adhesion to fibronectin. In addition, VAMP2-mediated trafficking is involved in cell adhesion to collagen but not to laminin. Consistent with disruption of integrin functions in cell proliferation and survival, VAMP2 silencing diminished proliferation and triggered apoptosis. Collectively, these data indicate that VAMP2 mediates the trafficking of α5β1 integrin to the plasma membrane and VAMP2-dependent integrin trafficking is critical in cell adhesion, migration and survival.  相似文献   

11.
Shin K  Wang Q  Margolis B 《EMBO reports》2007,8(2):158-164
Directional migration is important in wound healing by epithelial cells. Recent studies have shown that polarity proteins such as mammalian Partitioning-defective 6 (Par6), atypical protein kinase C (aPKC) and mammalian Discs large 1 (Dlg1) are crucial not only for epithelial apico-basal polarity, but also for directional movement. Here, we show that the protein associated with Lin seven 1 (PALS1)-associated tight junction protein (PATJ), another evolutionarily conserved polarity protein, is also required for directional migration by using a wound-induced migration assay. In addition, we found that aPKC and Par3 localize to the leading edge during migration of epithelia and that PATJ regulates their localization. Furthermore, our results show that microtubule-organizing centre orientation is disrupted in PATJ RNA interference (RNAi) MDCKII (Madin-Darby canine kidney II) cells during migration. Together, our data indicate that PATJ controls directional migration by regulating the localization of aPKC and Par3 to the leading edge. The migration defect in PATJ RNAi cells seems to be due to the disorganization of the microtubule network induced by mislocalization of polarity proteins.  相似文献   

12.
Cell migration is a physiological process that requires endocytic trafficking and polarization of adhesion molecules and receptor tyrosine kinases (RTKs) to the leading edge. Many growth factors are able to induce motility by binding to specific RTK on target cells. Among them, keratinocyte growth factor (KGF or FGF7) and fibroblast growth factor 10 (FGF10), members of the FGF family, are motogenic for keratinocytes, and exert their action by binding to the keratinocyte growth factor receptor (KGFR), a splicing variant of FGFR2, exclusively expressed on epithelial cells. Here we analyzed the possible role of cortactin, an F-actin binding protein which is tyrosine phosphorylated by Src and is involved in KGFR-mediated cell migration, in the KGFR endocytosis and polarization to the leading edge of migrating cells upon ligand-induced stimulation. Biochemical phosphorylation study revealed that both KGF and FGF10 were able to induce tyrosine phosphorylation of Src and in turn of cortactin, as demonstrated by using the specific pharmacological Src-inhibitor SU6656, although FGF10 effect was delayed with respect to that promoted by KGF. Immunofluorescence analysis demonstrated the polarized localization of KGFR upon ligand stimulation to the leading edge of migrating keratinocytes, process that was regulated by Src. Moreover, we showed that the colocalization of cortactin with KGFR at the plasma membrane protrusions and on early endosomes after KGF and FGF10 treatment was Src-dependent. Further, by using a RNA interference approach through microinjection, we showed that cortactin is required for KGFR endocytosis and that the clathrin-dependent internalization of the receptor is a critical event for its polarization. Finally, KGFR expression and polarization enhanced cell migration in a scratch assay. Our results indicate that both Src and cortactin play a key role in the KGFR endocytosis and polarization at the leading edge of migrating keratinocytes, supporting the crucial involvement of RTK trafficking in cell motility.  相似文献   

13.
Integrin alphavbeta3 has an important role in the proliferation, survival, invasion and migration of vascular endothelial cells. Like other integrins, alphavbeta3 can exist in different functional states with respect to ligand binding. These changes involve both affinity modulation, by which conformational changes in the integrin heterodimer govern affinity for individual extracellular matrix proteins, and avidity modulation, by which changes in lateral mobility and integrin clustering affect the binding of cells to multivalent matrices. Here we have used an engineered monoclonal antibody Fab (antigen-binding fragment) named WOW-1, which binds to activated integrins alphavbeta3 and alphavbeta5 from several species, to investigate the role of alphavbeta3 activation in endothelial cell behaviour. Because WOW-1 is monovalent, it is insensitive to changes in integrin clustering and therefore reports only changes in affinity. WOW-1 contains an RGD tract in its variable region and binds only to unoccupied, high-affinity integrins. By using WOW-1, we have identified the selective recruitment of high-affinity integrins as a mechanism by which lamellipodia promote formation of new adhesions at the leading edge in cell migration.  相似文献   

14.
The small GTP-binding protein Rab4 has been involved in the recycling of alphavbeta3 integrins in response to platelet-derived growth factor (PDGF) stimulation suggesting a role for Rab4 in cell adhesion and migration. In this study, we explored the role of Rabip4 and Rabip4', two Rab4 effector proteins, in migration of NIH 3T3 fibroblasts. In these cells, Rabip4 and Rabip4', collectively named Rabip4s, were partially co-localized with the early endosomal marker EEA1. PDGF treatment re-distributed endogenous Rabip4s toward the cell periphery where they colocalized with F-actin. In cells expressing green fluorescent protein (GFP)-Rabip4 or GFP-Rabip4', constitutive appearance of GFP-Rabip4s at the cell periphery was accompanied by local increase in cortical F-actin in membrane ruffles at the leading edge. The expression of GFP-Rabip4 induced an increased migration compared with control cells expressing GFP alone, even in the absence of PDGF stimulation. On the contrary, in cells expressing a mutated form of Rabip4s unable to interact with Rab4, lack of typical leading edge was observed. Furthermore, PDGF treatment did not stimulate the migration of these cells. Furthermore, down-regulation of the expression of Rabip4s inhibited PDGF-stimulated cell migration. Endogenous Rabip4s were localized with alphav integrins at the leading edge following PDGF treatment, whereas in cells expressing GFP-Rabip4s, alphav integrins, together with GFP-Rabip4s, were constitutively localized at the leading edge. In contrast, reduction in Rabip4s expression levels using small interfering RNA was associated with impaired PDGF-induced translocation of alphav integrins toward the leading edge. Taken together, our data provide evidence that Rabip4s, possibly via their interaction with Rab4, regulate integrin trafficking and are involved in the migration of NIH 3T3 fibroblasts.  相似文献   

15.
Cell migration occurs as a highly-regulated cycle of cell polarization, membrane extension at the leading edge, adhesion, contraction of the cell body, and release from the extracellular matrix at the trailing edge. In this study, we investigated the involvement of SNARE-mediated membrane trafficking in cell migration. Using a dominant-negative form of the enzyme N-ethylmaleimide-sensitive factor as a general inhibitor of SNARE-mediated membrane traffic and tetanus toxin as a specific inhibitor of VAMP3/cellubrevin, we conducted transwell migration assays and determined that serum-induced migration of CHO-K1 cells is dependant upon SNARE function. Both VAMP3-mediated and VAMP3-independent traffic were involved in regulating this cell migration. Inhibition of SNARE-mediated membrane traffic led to a decrease in the protrusion of lamellipodia at the leading edge of migrating cells. Additionally, the reduction in cell migration resulting from the inhibition of SNARE function was accompanied by perturbation of a Rab11-containing alpha(5)beta(1) integrin compartment and a decrease in cell surface alpha(5)beta(1) without alteration to total cellular integrin levels. Together, these observations suggest that inhibition of SNARE-mediated traffic interferes with the intracellular distribution of integrins and with the membrane remodeling that contributes to lamellipodial extension during cell migration.  相似文献   

16.
Directional cell motility is a complex process requiring orchestration of signals from diverse cell adhesion receptors for proper organization of neuronal groups in the brain. The L1 cell adhesion molecule potentiates integrin-dependent migration of neuronal cells and stimulates integrin endocytosis but its mechanism of action is unclear. The hypothesis was investigated that L1 stimulates cell motility by modulating surface levels of integrins through intracellular trafficking using a model cell system. Antibody-induced clustering of L1, which mimics ligand binding, induced formation of cell surface complexes of L1 and beta1 integrins in L1-expressing HEK293 cells. L1 formed cell surface complexes with integrin beta1 and alpha3 subunits but not with integrin alpha1. Following cell surface clustering, beta1 integrins and L1 became rapidly internalized into Rab5+ early endosomes. Internalization of L1 and beta1 integrins was prevented by treatment with monodansyl cadaverine (MDC), an inhibitor of clathrin-dependent endocytosis, and by deletion of the AP2/clathrin binding motif (RSLE) from the L1 cytoplasmic domain. MDC treatment coordinately inhibited L1-potentiated haptotactic migration of HEK293 cells to fibronectin in Transwell assays. These results suggested that downregulation of adhesive complexes of L1 and beta1 integrin at the plasma membrane by clathrin-mediated endocytosis is a potential mechanism for enhancing cell motility.  相似文献   

17.
Atypical protein kinase C (aPKC) isoforms have been implicated in cell polarisation and migration through association with Cdc42 and Par6. In distinct migratory models, the Exocyst complex has been shown to be involved in secretory events and migration. By RNA interference (RNAi) we show that the polarised delivery of the Exocyst to the leading edge of migrating NRK cells is dependent upon aPKCs. Reciprocally we demonstrate that aPKC localisation at the leading edge is dependent upon the Exocyst. The basis of this inter-dependence derives from two-hybrid, mass spectrometry, and co-immunoprecipitation studies, which demonstrate the existence of an aPKC–Exocyst interaction mediated by Kibra. Using RNAi and small molecule inhibitors, the aPKCs, Kibra, and the Exocyst are shown to be required for NRK cell migration and it is further demonstrated that they are necessary for the localized activation of JNK at the leading edge. The migration associated control of JNK by aPKCs determines JNK phosphorylation of the plasma membrane substrate Paxillin, but not the phosphorylation of the nuclear JNK substrate, c-jun. This plasma membrane localized JNK cascade serves to control the stability of focal adhesion complexes, regulating migration. The study integrates the polarising behaviour of aPKCs with the pro-migratory properties of the Exocyst complex, defining a higher order complex associated with the localised activation of JNK at the leading edge of migrating cells that determines migration rate.  相似文献   

18.
Regulation of cell migration is an important feature of tetraspanin CD151. Although it is well established that CD151 physically associates with integrins, the mechanism by which CD151 regulates integrin-dependent cell migration is basically unknown. Given the fact that CD151 is localized in both the plasma membrane and intracellular vesicles, we found that CD151 and its associated alpha3beta1, alpha5beta1, and alpha6beta1 integrins undergo endocytosis and accumulate in the same intracellular vesicular compartments. CD151 contains a YRSL sequence, a YXXvarphi type of endocytosis/sorting motif, in its C-terminal cytoplasmic domain. Mutation of this motif markedly attenuated CD151 internalization. The loss of CD151 trafficking completely abrogated CD151-promoted cell migration on extracellular matrices such as laminin and diminished the internalization of its associated integrins, indicating a critical role for integrin trafficking in regulating cell motility. In conclusion, the YXXvarphi motif-mediated internalization of CD151 promotes integrin-dependent cell migration by modulating the endocytosis and/or vesicular trafficking of its associated integrins.  相似文献   

19.
Formation of a stable lamellipodium at the front of migrating cells requires localization of Rac activation to the leading edge. Restriction of alpha4 integrin phosphorylation to the leading edge limits the interaction of alpha4 with paxillin to the sides and rear of a migrating cell. The alpha4-paxillin complex inhibits stable lamellipodia, thus confining lamellipod formation to the cell anterior. Here we report that binding of paxillin to the alpha4 integrin subunit inhibits adhesion-dependent lamellipodium formation by blocking Rac activation. The paxillin LD4 domain mediates this reduction in Rac activity by recruiting an ADP-ribosylation factor GTPase-activating protein (Arf-GAP) that decreases Arf activity, thereby inhibiting Rac. Finally, the localized formation of the alpha4-paxillin-Arf-GAP complex mediates the polarization of Rac activity and promotes directional cell migration. These findings establish a mechanism for the spatial localization of Rac activity to enhance cell migration.  相似文献   

20.
In egress routes of malignancy, cancer cells are constantly subjected to shear stress imposed by blood/lymph flow. Increasing evidence points toward the regulatory roles of shear stress in tumor cell adhesion and motility. Although it is known that integrin endocytic trafficking governs focal adhesion (FA) turnover and cell migration, the effect and biological consequences of low shear stress (LSS) on integrin trafficking remain unclear. Here, we identified the critical role of integrin β1 trafficking and caveolin-1 (Cav-1) mediated endocytosis in LSS-induced cell directional migration. LSS altered the distribution of integrin β1 in MDA-MB-231 cells and significantly promoted its internalization and recycling, which in turn facilitated FA turnover and directional cell migration. Furthermore, LSS induced cytoskeleton remodeling, which was required for internalization of integrin β1. LSS down-regulated the acetylation level of microtubules (MTs) via activating ROCK/HDAC6 pathway, resulting in elevation of MTs dynamics, Cav-1 motility, and Cav-1-dependent integrin β1 recycling. We also showed that high HDAC6 expression was a ROCK-dependent prognostic factor, which was correlated with poor outcomes in breast cancer patients. Taken together, these results defined a novel mechanism by which LSS enhanced integrin β1 trafficking via actin cytoskeleton remodeling and ROCK/HDAC6 mediated deacetylation of MTs, thereby promoting FAs turnover and directional cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号