首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse liver mRNA enriched in sequence coding for fatty acid synthase by sucrose density gradient centrifugation was used as template for cDNA synthesis. Double-stranded cDNA sequences were inserted into pBR322 and lambda gt10 and cloned. Clones containing putative cDNA sequences for fatty acid synthase were identified by differential hybridization with [32P] cDNAs synthesized from sucrose gradient-purified liver mRNA from mice fasted or fasted and refed a high carbohydrate diet. Thirteen out of 45 differentially expressed clones were found to contain sequences complementary to fatty acid synthase mRNA. Northern blot analysis revealed that, unlike in avian and rat tissues, a single 8.2-kilobase (kb) mRNA codes for fatty acid synthase in mice. In addition to the fatty acid synthase cDNA clones, cDNA clones to two specific mRNAs of 5.1 and 7.2 kb were selected to study nutritional, hormonal, and developmental regulation at the level of mRNA abundance in mouse liver and in 3T3-L1 cells. The induction of fatty acid synthase in the livers of previously fasted mice fed a high carbohydrate diet was controlled pretranslationally by modulation of the fatty acid synthase mRNA content. The level of the two mRNAs with sizes of 5.1 and 7.2 kb were also elevated dramatically in the liver of mice fasted and refed a high carbohydrate diet. A detectable, but very low level of fatty acid synthase mRNA was found in 3T3-L1 preadipocytes. During the differentiation to adipocytes, both the rate of synthesis and relative mRNA level for fatty acid synthase increased in a parallel fashion to a maximum of 17-fold. The levels of 5.1- and 7.2-kb mRNAs, coding for proteins possibly involved in lipogenesis, increased 45- and 25-fold, respectively, during differentiation of 3T3-L1 adipocytes. Treatment of mature 3T3-L1 adipocytes with insulin elicited a 3-fold increase in both rate of synthesis and mRNA content of fatty acid synthase, while treatment with dibutyryl cAMP caused a 60% decrease in fatty acid synthase mRNA and an 80% decrease in the rate of the enzyme synthesis, indicating pretranslational control of fatty acid synthase expression by the lipogenic and lipolytic hormones. Similarly, insulin caused a 2- to 3-fold increase in both 7.2- and 5.1-kb mRNAs and dibutyryl cAMP decreased the levels of 7.2- and 5.1-kb mRNAs to 10 and 20% of control levels, respectively.  相似文献   

2.
3.
4.
5.
Inflammation occurs in adipose tissue in obesity. We have examined whether IL-33, a recently identified IL-1 gene family member, and its associated receptors are expressed in human adipocytes. IL-33, IL-1RL1 and IL-1RAP gene expression was observed in human visceral white fat, in preadipocytes and in adipocytes (SGBS cells). Treatment with TNFα for 24 h induced a 6-fold increase in IL-33 mRNA level in preadipocytes and adipocytes. Time-course studies with adipocytes showed that the increase in IL-33 mRNA with TNFα was maximal (>55-fold) at 12 h. This response was markedly different to IL-1β (peak mRNA increase at 2 h; 5.4-fold) and 1L-18 (peak mRNA increase at 6 h; >1500-fold). Exposure of adipocytes to hypoxia (1% O2, 24 h) did not alter IL-33 mRNA level; in preadipocytes, however, there was a 3-fold increase. Human adipocytes and preadipocytes express IL-33, but the various IL-1 family members exhibit major differences in responsiveness to TNFα.  相似文献   

6.
Sex steroid hormones are important factors in the determination of fat distribution and accumulation. The aim of this study was to investigate the effect of testosterone (T), 17beta-estradiol (17betaE), and progesterone (P) on adrenergic receptor (AR) gene expression in 3T3-L1 preadipocytes and adipocytes and their relation to the proliferation and differentiation processes. Our data clearly show that alpha(2A)-AR was the highest AR subtype expressed in preadipocytes, whereas in mature adipocytes was by far beta(3)-AR. In the differentiation process to adipocytes, alpha(2A)-AR expression was decreased to 0.3-fold (P < 0.01), whereas beta(3)-AR was upregulated 578-fold (P < 0.001) compared with preadipocytes. In addition, the expression of alpha(2A)-AR in preadipocytes was increased upon incubation with T, 17betaE, and P, and a stimulation of proliferation was also observed in 17betaE- and P-treated cells. In mature adipocytes, 17betaE and P enhanced both alpha(2A)- and beta(3)-AR gene expression (although the effects on beta(3)-AR mRNA levels could be more relevant, since beta(3)-AR was the most highly expressed), whereas T only increased alpha(2A)-AR mRNA levels. Leptin and adipocyte fatty acid-binding protein mRNA levels were higher after 17betaE and P treatment, possibly indicating a proadipogenic effect of these hormones. In conclusion, this study indicates that AR gene expression is affected by these hormones in both preadipocytes and adipocytes, which could have potential importance when considering the role of ARs in the mechanisms underlying the sex-related differences in adipose tissue regional distribution.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Hepatocyte growth factor (HGF) is a potent mitogenic and angiogenic factor produced in human adipose tissue. In this study, we use 3T3-F442A preadipocytes to study the contribution of HGF to angiogenesis in an in vivo fat pad development model. As observed for human adipocytes, HGF is synthesized and secreted by 3T3-F442A preadipocytes and mature adipocytes. HGF knockdown with small-interfering RNA reduced HGF mRNA expression 82.3 +/- 4.2% and protein secretion 82.9 +/- 1.4% from 3T3-F442A preadipocytes. Silencing of HGF resulted in a 70.5 +/- 19.0% reduction in endothelial progenitor cell migration to 3T3-F442A-conditioned medium in vitro. 3T3-F442A preadipocytes injected under the skin of mice form a fat pad containing mature, lipid-filled adipocytes and a functional vasculature. At 72 h postinjection, expression of the endothelial cell genes TIE-1 and platelet endothelial cell adhesion molecule (PECAM)-1 was decreased 94.4 +/- 2.2 and 91.5 +/- 2.5%, respectively, in 3T3-F442A fat pads with HGF silencing. Knockdown of HGF had no effect on differentiation of 3T3-F442A preadipocytes to mature adipocytes in vitro or in vivo. In developing fat pads under the skin of HGF overexpressing transgenic mice, TIE-1 and PECAM-1 mRNA was increased 16.5- and 21.4-fold, respectively, at 72 h postinjection. The increase in gene expression correlated with immunohistochemical evidence of endothelial cell migration in the developing fat pad. These data suggest that HGF has a central role in regulating angiogenesis in adipose tissue.  相似文献   

16.
17.
18.
Based on recent evidence that fatty acid synthase and endogenously produced fatty acid derivatives are required for adipogenesis in 3T3-L1 adipocytes, we conducted a small interfering RNA-based screen to identify other fatty acid-metabolizing enzymes that may mediate this effect. Of 24 enzymes screened, stearoyl-CoA desaturase 2 (SCD2) was found to be uniquely and absolutely required for adipogenesis. Remarkably, SCD2 also controls the maintenance of adipocyte-specific gene expression in fully differentiated 3T3-L1 adipocytes, including the expression of SCD1. Despite the high sequence similarity between SCD2 and SCD1, silencing of SCD1 did not down-regulate 3T3-L1 cell differentiation or gene expression. SCD2 mRNA expression was also uniquely elevated 44-fold in adipose tissue upon feeding mice a high fat diet, whereas SCD1 showed little response. The inhibition of adipogenesis caused by SCD2 depletion was associated with a decrease in peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA and protein, whereas in mature adipocytes loss of SCD2 diminished PPARgamma protein levels, with little change in mRNA levels. In the latter case, SCD2 depletion did not change the degradation rate of PPARgamma protein but decreased the metabolic labeling of PPARgamma protein using [(35)S]methionine/cysteine, indicating protein translation was decreased. This requirement of SCD2 for optimal protein synthesis in fully differentiated adipocytes was verified by polysome profile analysis, where a shift in the mRNA to monosomes was apparent in response to SCD2 silencing. These results reveal that SCD2 is required for the induction and maintenance of PPARgamma protein levels and adipogenesis in 3T3-L1 cells.  相似文献   

19.
Exposure of preadipocytes to long-chain fatty acids induces the expression of several markers of adipocyte differentiation. In an attempt to identify novel genes and proteins that are regulated by fatty acids in preadipocytes, we performed a substractive hybridization screening and identified PTX3, a protein of the pentraxin family. PTX3 mRNA expression is transient during adipocyte differentiation of clonal cell lines and is absent in fully differentiated cells. Stable overexpression of PTX3 in preadipocytes has no effect on adipocyte differentiation. In line with this, PTX3 mRNA is expressed in the stromal-vascular fraction of adipose tissue, but not in the adipocyte fraction; however, in 3T3-F442A adipocytes, the PTX3 gene can be reinduced by tumor necrosis factor alpha (TNFalpha) in a dose-dependent manner. This effect is accompanied by PTX3 protein secretion from both 3T3-F442A adipocytes and explants of mouse adipose tissue. PTX3 mRNA levels are found to be higher in adipose tissue of genetically obese mice versus control mice, consistent with their increased TNFalpha levels. In conclusion, PTX3 appears as a TNFalpha-induced protein that provides a new link between chronic low-level inflammatory state and obesity.  相似文献   

20.
The biosynthesis and degradation of two lipogenic enzymes were studied during the differentiation of 3T3-L1 preadipocytes into adipocytes. The activity and mass of malic enzyme, rose by an order of magnitude during adipocyte development and the enzyme accounted for 0.3% of the cytosol protein in mature fat cells. Similarly, the activity and amount of ATP-citrate lyase increased approximately 7-fold during the adipose conversion. The relative rates of synthesis of the two enzymes were less than or equal to 0.02% in preadipocytes, but increased sharply as the cells began to differentiate. Maximal steady state rates of malic enzyme and ATP-citrate lyase synthesis in 3T3-L1 adipocytes were 13- and 8-fold higher, respectively, than the basal rates in preadipocytes. In contrast, the half-lives of malic enzyme (67 h) and ATP-citrate lyase (47 h) were not altered during adipocyte development. Thus, accelerated rates of enzyme synthesis account for the differentiation-dependent accumulation of the two lipogenic enzymes. Increased rates of malic enzyme, ATP-citrate lyase, and fatty acid synthetase biosynthesis are expressed in a highly coordinated manner during adipocyte differentiation and are associated with parallel elevations in the levels of translatable mRNAs for these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号