首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Proliferation of some cultured human tumor cell lines bearing high numbers of epidermal growth factor (EGF) receptors is paradoxically inhibited by EGF in nanomolar concentrations. In the present study, we have investigated the biochemical mechanism of growth inhibition in A431 human squamous carcinoma cells exposed to exogenous EGF. In parallel, we studied a selected subpopulation, A431-F, which is resistant to EGF-mediated growth inhibition. We observed a marked reduction in cyclin-dependent kinase-2 (CDK2) activity when A431 and A431-F cells were cultured with 20 nM EGF for 4 h. After further continuous exposure of A431 cells to EGF, the CDK2 activity remained at a low level and was accompanied by persistent G1 arrest. In contrast, the early reduced CDK2 activity and G1 accumulation in A431-F cells was only transient. We found that, at early time points (4-8 h), EGF induces p21Cip1/WAF1 mRNA and protein expression in both EGF-sensitive A431 cells and EGF-resistant A431-F cells. But only in A431 cells, was p21Cip1/WAF1 expression sustained at a significantly increased level for up to 5 d after addition of EGF. Induction of p21Cip1/WAF1 by EGF could be inhibited by a specific EGF receptor tyrosine kinase inhibitor, tyrphostin AG1478, suggesting that p21Cip1/WAF1 induction was a consequence of receptor tyrosine kinase activation by EGF. We also demonstrated that the increased p21Cip1/WAF1 was associated with both CDK2 and proliferating cell nuclear antigen (PCNA). Taken together, our results demonstrate that p21Cip1/WAF1 is an important mediator of EGF-induced G1 arrest and growth inhibition in A431 cells.  相似文献   

3.
Gadd45 is a p53-regulated protein and is involved in cell cycle arrest in the G2/M phase. In an effort to improve transient gene expression (TGE) in Chinese hamster ovary (CHO) cells, the effect of Gadd45-induced cell cycle arrest on TGE in CHO cells was investigated using the two different expression vectors encoding Fcfusion protein and recombinant antibody. To regulate the expression of Gadd45 in CHO cells, the CHO-TREx-gadd45 cell line was established using the T-REx system controlled by doxycycline. During the cultures for TGE, Gadd45 overexpression severely inhibited cell growth, but significantly enhanced TGE. Compared with the culture without Gadd45 overexpression, the TGE of Fc fusion protein and humanized antibody were increased by 111 and 93%, respectively. The enhanced TGE, despite the cell growth arrest induced by Gadd45 overexpression, was due to the significantly increased specific productivity, resulting from enhanced transfection efficiency, increased cell size, and active DNA demethylation. Taken together, the data obtained here demonstrate that Gadd45-induced cell cycle arrest in G2/M phase can significantly enhance TGE in CHO cells.  相似文献   

4.
Summary The A431 cell line is composed of malignant keratinocytes derived from a vulval epidermo?d carcinoma. These cells have the peculiarity to stop their proliferation when they are treated with physiological concentrations of EGF, which is a mitogen for normal keratinocytes. We reported earlier that EGF induces involucrin accumulation in A431 cells and proposed that the arrest of proliferation triggers differentiation as shown by the induction of this cornified envelope precursor protein. To test this hypothesis, we compared the A431 subclone 15, which is not growth arrested by EGF-treatment, to the parental A431 cells. We found indeed that EGF reduces the involucrin content of clone 15 cells in a dose dependent manner. These opposite effects of EGF on the expression of terminal differentiation marker involucrin in A431 and A431 clone 15 keratinocytes were observed in defined medium as well as in presence of fetal calf serum. Nevertheless, when growth of parental A431 cells was inhibited by treatment with TGF-β or simply when cultures reached confluency, no involucrin accumulation was observed. Therefore growth arrestper se is not directly correlated with the induction of differentiation. Editor's Statement These results in a well-defined model system support the accepted idea that growth arrest is associated with the processes of cell differentiation, but also indicate that growth arrest alone will not lead to differentiation.  相似文献   

5.
6.
The regulation of protein phosphorylation by sphingosine in A431 human epidermoid carcinoma cells was examined. Sphingosine is a competitive inhibitor of phorbol ester binding to protein kinase C (Ca2+/phospholipid-dependent enzyme) and potently inhibits phosphotransferase activity in vitro. Addition of sphingosine to intact A431 cells caused an inhibition of the phorbol ester-stimulated phosphorylation of two protein kinase C substrates, epidermal growth factor (EGF) receptor threonine 654 and transferrin receptor serine 24. We conclude that sphingosine inhibits the activity of protein kinase C in intact A431 cells. However, further experiments demonstrated that sphingosine-treatment of A431 cells resulted in the regulation of the EGF receptor by a mechanism that was independent of protein kinase C. First, sphingosine caused an increase in the threonine phosphorylation of the EGF receptor on a unique tryptic peptide. Second, sphingosine caused an increase in the affinity of the EGF receptor in A431 and in Chinese hamster ovary cells expressing wild-type (Thr654) and mutated (Ala654) EGF receptors. Sphingosine was also observed to cause an increase in the number of EGF-binding sites expressed at the surface of A431 cells. Examination of the time course of sphingosine action demonstrated that the effects on EGF binding were rapid (maximal at 2 mins) and were observed prior to the stimulation of receptor phosphorylation (maximal at 20 mins). We conclude that sphingosine is a potently bioactive molecule that modulates cellular functions by: 1) inhibiting protein kinase C; 2) stimulating a protein kinase C-independent pathway of protein phosphorylation; and 3) increasing the affinity and number of cell surface EGF receptors.  相似文献   

7.
When human A431 cells, which carry high numbers of epidermal growth factor (EGF) receptors, are exposed to EGF, the total content of phosphotyrosine in cell protein is increased, the EGF receptor becomes phosphorylated at tyrosine, and new phosphotyrosine-containing 36,000- and 81,000-dalton proteins are detected. We examined the properties of A431 cells infected with Snyder-Theilen feline sarcoma virus, whose transforming protein has associated tyrosine protein kinase activity, and Harvey and Kirsten sarcoma viruses, whose transforming proteins do not. In all cases, the infected cells were more rounded and more capable of anchorage-independent growth than the uninfected cells. EGF receptors were assayed functionally by measuring EGF binding and structurally by metabolic labeling and immunoprecipitation. In no case did infection appear to alter the rate of EGF receptor synthesis, but infection reduced EGF receptor stability by about 50% for cloned Harvey sarcoma virus-infected cells and by 80% for cloned feline sarcoma virus-infected cells. The corresponding reductions in EGF binding were 70 and 90%, respectively. The proteins of feline sarcoma virus-infected A431 cells contained an increased amount of phosphotyrosine, and the 36,000- and 81,000-dalton phosphoproteins were detected. The EGF receptor was not detectably phosphorylated at tyrosine, however, unless the cells were exposed to EGF. The Harvey and Kirsten sarcoma virus-infected cells did not exhibit elevated levels of phosphotyrosine either in the total cell proteins or in the EGF receptor, nor were the 36,000- and 81,000-dalton proteins detectable. However, these phosphoproteins were found in the infected cells after EGF treatment. Thus, all of the infected A431 cells exhibited reduced EGF binding and increased degradation of EGF receptors, yet their patterns of protein phosphorylation were distinct from those of EGF-treated A431 cells.  相似文献   

8.
9.
Cell cycle growth arrest is an important cellular response to genotoxic stress. Gadd45, a p53-regulated stress protein, plays an important role in the cell cycle G(2)-M checkpoint following exposure to certain types of DNA-damaging agents such as UV radiation and methylmethane sulfonate. Recent findings indicate that Gadd45 interacts with Cdc2 protein and inhibits Cdc2 kinase activity. In the present study, a series of Myc-tagged Gadd45 deletion mutants and a Gadd45 overlapping peptide library were used to define the Gadd45 domains that are involved in the interaction of Gadd45 with Cdc2. Both in vitro and in vivo studies indicate that the interaction of Gadd45 with Cdc2 involves a central region of the Gadd45 protein (amino acids 65-84). The Cdc2-binding domain of Gadd45 is also required for Gadd45 inhibition of Cdc2 kinase activity. Sequence analysis of the central Gadd45 region reveals no homology to inhibitory motifs of known cyclin-dependent kinase inhibitors, indicating that the Cdc2-binding and -inhibitory domains on Gadd45 are a novel motif. The peptide containing the Cdc2-binding domain (amino acids 65-84) disrupted the Cdc2-cyclin B1 protein complex, suggesting that dissociation of this complex results from a direct interaction between the Gadd45 and Cdc2 proteins. GADD45-induced cell cycle G(2)-M arrest was abolished when its Cdc2 binding motif was disrupted. Importantly, a short term survival assay demonstrated that GADD45-induced cell cycle G(2)-M arrest correlates with GADD45-mediated growth suppression. These findings indicate that the cell cycle G(2)-M growth arrest mediated by GADD45 is one of the major mechanisms by which GADD45 suppresses cell growth.  相似文献   

10.
It is well established that exposure to high levels of oxygen (hyperoxia) injures and kills microvascular endothelial and alveolar type I epithelial cells. In contrast, significant death of airway and type II epithelial cells is not observed at mortality, suggesting that these cell types may express genes that protect against oxidative stress and damage. During a search for genes induced by hyperoxia, we previously reported that airway and alveolar type II epithelial cells uniquely express the growth arrest and DNA damage (Gadd)45a gene. Because Gadd45a has been implicated in protection against genotoxic stress, adult Gadd45a (+/+) and Gadd45a (-/-) mice were exposed to hyperoxia to investigate whether it protected epithelial cells against oxidative stress. During hyperoxia, Gadd45a deficiency did not affect loss of airway epithelial expression of Clara cell secretory protein or type II epithelial cell expression of pro-surfactant protein C. Likewise, Gadd45a deficiency did not alter recruitment of inflammatory cells, edema, or overall mortality. Consistent with Gadd45a not affecting the oxidative stress response, p21(Cip1/WAF1) and heme oxygenase-1 were comparably induced in Gadd45a (+/+) and Gadd45a (-/-) mice. Additionally, Gadd45a deficiency did not affect oxidative DNA damage or apoptosis as assessed by oxidized guanine and terminal deoxyneucleotidyl transferase-mediated dUTP nick-end labeling staining. Overexpression of Gadd45a in human lung adenocarcinoma cells did not affect viability or survival during exposure, whereas it was protective against UV-radiation. We conclude that increased tolerance of airway and type II epithelial cells to hyperoxia is not attributed solely to expression of Gadd45a.  相似文献   

11.
Gadd45alpha is shown to be induced by a wide spectrum of DNA-damaging agents and implicated in negative regulation of cell growth by causing G2-M arrest or induction of apoptosis. In the present study, we explored the involvement of p53 in the promoter activation of Gadd45alpha as well as the role of Gadd45alpha in carboplatin (Carb) or 5-fluorouracil (5-FU)-induced apoptosis in human papillomavirus virus (HPV)-positive HEp-2 and HeLa cells. We report that Carb or 5-FU upregulate Gadd45alpha and p53 in both these cells. Transient transfection of chloramphenicol acetyl transferase (CAT)-reporter construct driven by Gadd45alpha promoter clearly indicated that Gadd45alpha upregulation was mediated through activation of its promoter. Inhibition of p53 function by dominant-negative-p53 expression partially suppressed the activation of Gadd45alpha promoter. Further, the induction of apoptosis was assessed by detection of poly (ADP-ribose) polymerase (PARP) cleavage by Western blot analysis. Inhibition of upregulated Gadd45alpha expression by antisense expression vector did not modulate the Carb or 5-FU-induced apoptosis. Overall, we conclude that Gadd45alpha promoter activation partially depends on p53 function in HPV-positive cells. Moreover, Gadd45alpha protein does not modulate Carb or 5-FU-induced apoptosis in these cells.  相似文献   

12.
Previous studies have reported that the proliferation of A431 cells, a human squamous cell carcinoma cell line, was stimulated by picomolar epidermal growth factor (EGF) but inhibited by nanomolar EGF. This biphasic dose-response phenomenon is not observed in normal human epithelial cells where nanomolar EGF is usually mitogenic. We have examined the effects of inhibitory and stimulatory concentrations of EGF on the growth and differentiation of A431 cells. In the presence of 100 pM EGF, A431 cells showed a mild increase in growth rate (129% of control) compared to cells grown in the absence of EGF. At 10 nM EGF, growth inhibition to 63% of control was observed. EGF at 10 nM stimulates a twofold increase both in cornified envelope formation and in epidermal transglutaminase activity, suggesting that high concentrations of EGF induce terminal differentiation in A431 cells. Mitogenic concentrations of EGF (100 pM) had no significant effect on these differentiation markers. Chronic exposure of A431 cells to 20 or 50 nM EGF resulted in EGF-resistant A431 variants that are neither growth arrested nor induced to terminally differentiate by 10 nM EGF. Removal of EGF from the growth medium of the EGF-resistant cells resulted in the reversion of these cells back to the wild-type A431 biphasic response pattern within 2 weeks. Our results suggest that A431 cells have the capacity to non-mutatively alter their response pattern to EGF in vitro to maintain themselves in a state of optimum proliferation and away from terminal differentiation. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Epidermal growth factor receptor (EGFR) activation is negatively regulated by protein kinase C (PKC) signaling. Stimulation of A431 cells with EGF, bradykinin or UTP increased EGFR phosphorylation at Thr654 in a PKC-dependent manner. Inhibition of PKC signaling enhanced EGFR activation, as assessed by increased phosphorylation of Tyr845 and Tyr1068 residues of the EGFR. Diacylglycerol is a physiological activator of PKC that can be removed by diacylglycerol kinase (DGK) activity. We found, in A431 and HEK293 cells, that the DGKθ isozyme translocated from the cytosol to the plasma membrane, where it co-localized with the EGFR and subsequently moved into EGFR-containing intracellular vesicles. This translocation was dependent on both activation of EGFR and PKC signaling. Furthermore, DGKθ physically interacted with the EGFR and became tyrosine-phosphorylated upon EGFR stimulation. Overexpression of DGKθ attenuated the bradykinin-stimulated, PKC-mediated EGFR phosphorylation at Thr654, and enhanced the phosphorylation at Tyr845 and Tyr1068. SiRNA-induced DGKθ downregulation enhanced this PKC-mediated Thr654 phosphorylation. Our data indicate that DGKθ translocation and activity is regulated by the concerted activity of EGFR and PKC and that DGKθ attenuates PKC-mediated Thr654 phosphorylation that is linked to desensitisation of EGFR signaling.  相似文献   

14.
Addition of epidermal growth factor (EGF) to serum-free or serum-supplemented cultures of A431 cells stimulates protein breakdown without affecting rates of protein synthesis. These effects are atypical because in other cell lines, including AG2804-transformed human fibroblasts examined for comparison, EGF inhibits protein breakdown and stimulates protein synthesis. The response to EGF in A431 cells does not reflect a general post-receptor modification in growth factor action, since addition of insulin to the cells leads to the normal inhibition of protein breakdown. These findings indicate that the unusual growth inhibition produced by EGF in A431 cells can be explained by an increased rate of intracellular protein breakdown.  相似文献   

15.
Transforming growth factor beta (TGF-beta) increased the phosphorylation of the epidermal growth factor (EGF) receptor and inhibited the growth of A431 cells. Incubation with TGF-beta induced maximal EGF receptor phosphorylation to levels 1.5-fold higher than controls. Phosphorylation increased more prominently (4-5-fold) on tyrosine residues as determined by phosphoamino acid analysis and antiphosphotyrosine antibody immunoblotting. The kinase activity of EGF receptor was also elevated 2.5-fold when cells were cultured in the presence of TGF-beta. The antiproliferative effect of TGF-beta on A431 cells was accompanied by prolongation of G0-G1 phase and by morphological changes. TGF-beta augmented the growth inhibition of A431 cells which could be induced by EGF. In parallel, the specific EGF-induced increase in total phosphorylation of the EGF receptor was also augmented in the presence of TGF-beta. In cells cultured with TGF-beta, the phosphorylation of EGF receptor tyrosines induced by 20-min exposure to EGF was further increased 2-3-fold, suggesting additive effects upon receptor phosphorylation. EGF receptor activation by TGF-beta is characterized by kinetics quite distinct from that induced by EGF and therefore appears to take place through an independent mechanism. The TGF-beta-induced elevation in the phosphorylation of the EGF receptor may have a role in the augmented growth inhibition of A431 cells observed in the presence of EGF and TGF-beta.  相似文献   

16.
HDAC inhibitors (HDIs) induce irreversible cell cycle arrest and senescence in E1A+Ras expressing cells. Furthermore, HDIs activate Gadd45α/NF-κB signaling pathway to suppress apoptosis thereby promoting the cell survival. Here, to clarify the role of Gadd45α in realization of the antiapoptotic program, we compared wild-type E1A+Ras cells and the cells with knockout of gadd45α gene (Gadd45α−/− cells). As in Gadd45α-expressing E1A+Ras cells, HDIs induce irreversible cell cycle arrest in Gadd45α−/− cells, but the arrested cells do not senesce and eventually die due to activation of the apoptotic death program. These data suggest that the expression of Gadd45α is involved in maintaining the balance of pro- and anti-apoptotic stimuli, while lack or loss of Gadd45 directs the cells to apoptosis after HDIs treatment. Appropriately Gadd45α-deficient cells demonstrate a higher level of pro-apoptotic signals, whereas the anti-apoptotic program is suppressed. The elevated apoptotic background of Gadd45α−/− cells is accompanied by higher levels of Ser15-phosphorylated p53 and p21/Waf1 proteins that additionally commit the cells to HDIs-induced apoptosis. Additionally, loss of Gadd45α protein activates the DDR signaling pathway as demonstrated by nuclear pATM staining, accumulation of γH2AX foci and an increase of single-strand DNA breaks. Thus, in wild-type E1A+Ras cells the p53-dependent expression of Gadd45α is necessary not only for DNA repair and HDI-induced cellular senescence, but also to withstand to apoptosis after DNA damage and stress. Therefore the use of HDIs in combination with agents that block Gadd45α function may have promise for cancer therapy.  相似文献   

17.
We constructed photo-reactive epidermal growth factor (EGF) bearing p-azido phenylalanine at the C-terminal (HEGFP) by genetic engineering to investigate the possibility of immobilized EGF as a novel artificial extracellular matrix (ECM). The constructed recombinant protein was immobilized to glass surface by ultraviolet irradiation. A431 cells adhered both to HEGFP-immobilized and collagen-coated surfaces. Interaction between immobilized HEGFP and EGF receptors in the A431 cells was independent of Mg(2+) although integrin-mediated cell adhesion to natural ECMs is dependent on Mg(2+). Phosphorylation of EGF receptors in A431 cells was induced by immobilized HEGFP as same as soluble EGF. DNA uptake of hepatocytes decreased by immobilized HEGFP whereas it increased by soluble EGF. Liver-specific functions of hepatocytes were maintained for 3 days by immobilized HEGFP whereas they were not maintained by soluble EGF, indicating that immobilized HEGFP follows different signal transduction pathway from soluble EGF.  相似文献   

18.
The Gadd45 family of proteins, which includes α, β, and γ isoforms, has recently been shown to play a role in the G2/M cell cycle checkpoint in response to DNA damage; however, the mechanisms by which Gadd45 proteins inhibit cell cycle control are not fully understood. Using immunohistochemical analysis, we found that protein expression of Gadd45γ, but not Gadd45α, was down-regulated in hepatocellular carcinoma. We thus investigated possible mechanisms by which Gadd45α and Gadd45γ might differentially induce G2/M arrest in the human hepatoma Hep-G2 cell line. Flow cytometric analysis revealed significant G2/M arrest in cells transfected with either Gadd45α or Gadd45γ. Importantly, we found that expression of either Gadd45α or Gadd45γ activated the P38 and JNK kinase pathways to induce G2/M arrest. Taken together, these findings suggest that the induction of G2/M arrest by Gadd45α or Gadd45γ involves activation of two distinct signaling pathways in Hep-G2 hepatoma cell lines.  相似文献   

19.
Apoptosis plays an essential role in ischemic stroke pathogenesis. Research on the process of neuronal apoptosis in models of ischemic brain injury seems promising. The role of growth arrest and DNA-damage-inducible protein 45 beta (Gadd45b) in brain ischemia has not been fully examined to date. This study aims to investigate the function of Gadd45b in ischemia-induced apoptosis. Adult male Sprague-Dawley rats were subjected to brain ischemia by middle cerebral artery occlusion (MCAO). RNA interference (RNAi) system, which is mediated by a lentiviral vector (LV), was stereotaxically injected into the ipsilateral lateral ventricle to knockdown Gadd45b expression. Neurologic scores and infarct volumes were assessed 24 h after reperfusion. Apoptosis-related molecules were studied using immunohistochemistry and Western blot analysis. We found that Gadd45b-RNAi significantly increased infarct volumes and worsened the outcome of transient focal cerebral ischemia. Gadd45b-RNAi also significantly increased neuronal apoptosis as indicated by increased levels of Bax and active caspase-3, and decreased levels of Bcl-2. These results indicate that Gadd45b is a beneficial mediator of neuronal apoptosis.  相似文献   

20.
While a cAMP-dependent protein kinase (protein kinase A) has been suggested to phosphorylate epidermal growth factor (EGF) receptor in vitro, both intrinsic and EGF- or potent phorbol tumor promoter-induced phosphorylation of EGF receptor were found to be depressed in human epidermoid carcinoma A431 cells by prior incubation of the cells with various protein kinase A activators (e.g. cholera toxin, forskolin, cAMP analogues, or a combination of prostaglandin E1 and 3-isobutyl-1-methylxanthine). Protein kinase A activators did not change significantly either the number of EGF receptors or their affinity for EGF. The tryptic phosphopeptide map of EGF receptors from cells treated with cholera toxin alone or cholera toxin followed by EGF revealed unique peptides whose serine phosphorylation was preferentially depressed. However, the catalytic subunit of protein kinase A phosphorylated no threonine and little serine in the EGF receptors in the plasma membranes of isolated A431 cells in vitro, while serine residues in an unidentified 170-kDa membrane protein(s) other than EGF receptor were heavily phosphorylated. Pretreatment of the cells with forskolin blocked 1,2-diacylglycerol induction by EGF; growth inhibition by nanomolar levels of EGF could be partially restored by the presence of forskolin. These results indicate that an increase in intracellular cAMP modulates the EGF receptor signal transduction system by reducing EGF-induced production of diacylglycerol without direct phosphorylation of EGF receptors by protein kinase A in A431 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号