首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of Drosophila melanogaster rhodopsin   总被引:1,自引:0,他引:1  
A polypeptide present in Drosophila eye homogenates was identified as opsin. This polypeptide pI 7.8, with Mr 39,000 is a retina-specific protein. It has the spectral characteristics of rhodopsin contained in the R1-6 photoreceptors and decreases in amount with vitamin A deprivation. It contains a chromophore derived from vitamin A and linked to the protein moiety by a Schiff base. Moreover, the polypeptide identified corresponds to a retina-specific polypeptide that was shown previously to undergo light-dependent phosphorylation in living flies. These results indicate that many properties of Drosophila rhodopsin do not differ significantly from those reported for rhodopsins of other organisms. However, the isoelectric point of Drosophila opsin is considerably more basic than those reported for vertebrate rhodopsins.  相似文献   

2.
We studied the photochemical reaction cycle of sensory rhodopsin II (SRII) by flash photolysis of Halobacterium salinarum membranes genetically engineered to contain or to lack its transducer protein HtrII. Flash photolysis data from membranes containing HtrII were fit well in the 10 micros-10 s range by three rate constants and a linear unbranched pathway from the unphotolyzed state with 487 nm absorption maximum to a species with absorption maximum near 350 nm (M) followed by a species with maximum near 520 nm (O), as has been found in previous studies of wild-type membranes. Data from membranes devoid of HtrII exhibited similar M and O intermediates but with altered kinetics, and a third intermediate absorbing maximally near 470 nm (N) was present in an equilibrium mixture with O. The modulation of SRII photoreactions by HtrII indicates that SRII and HtrII are physically associated in a molecular complex. Arrhenius analysis shows that the largest effect of HtrII, the acceleration of O decay, is attributable to a large decrease in activation enthalpy. Based on comparison of SRII photoreactions to those of sensory rhodopsin I and bacteriorhodopsin, we interpret this kinetic effect to indicate that HtrII interacts with SRII so that it alters the reaction process involving deprotonation of Asp73, the proton acceptor from the Schiff base.  相似文献   

3.
Suzuki D  Sudo Y  Furutani Y  Takahashi H  Homma M  Kandori H 《Biochemistry》2008,47(48):12750-12759
Sensory rhodopsin I (SRI) is one of the most interesting photosensory receptors in nature because of its ability to mediate opposite signals depending on light color by photochromic one-photon and two-photon reactions. Recently, we characterized SRI from eubacterium Salinibacter ruber (SrSRI). This protein allows more detailed information about the structure and structural changes of SRI during its action to be obtained. In this paper, Fourier transform infrared (FTIR) spectroscopy is applied to SrSRI, and the spectral changes upon formation of the K and M intermediates are compared with those of other archaeal rhodopsins, SRI from Halobacterium salinarum (HsSRI), sensory rhodopsin II (SRII), bacteriorhodopsin (BR), and halorhodopsin (HR). Spectral comparison of the hydrogen out-of-plane (HOOP) vibrations of the retinal chromophore in the K intermediates shows that extended choromophore distortion takes place in SrSRI and HsSRI, as well as in SRII, whereas the distortion is localized in the Schiff base region in BR and HR. It appears that sensor and pump functions are distinguishable from the spectral feature of HOOP modes. The HOOP band at 864 cm(-1) in SRII, important for negative phototaxis, is absent in SrSRI, suggesting differences in signal transfer mechanism between SRI and SRII. The strongly hydrogen-bound water molecule, important for proton pumps, is observed at 2172 cm(-1) in SrSRI, as well as in BR and SRII. The formation of the M intermediate accompanies the appearance of peaks at 1753 (+) and 1743 (-) cm(-1), which can be interpreted as the protonation signal of the counterion (Asp72) and the proton release signal from an unidentified carboxylic acid, respectively. The structure and structural changes of SrSRI are discussed on the basis of the present infrared spectral comparisons with other rhodopsins.  相似文献   

4.
Electrophysiological study of Drosophila rhodopsin mutants   总被引:6,自引:2,他引:4       下载免费PDF全文
Electrophysiological investigations were carried out on several independently isolated mutants of the ninaE gene, which encodes opsin in R1-6 photoreceptors, and a mutant of the ninaD gene, which is probably important in the formation of the rhodopsin chromophore. In these mutants, the rhodopsin content in R1-6 photoreceptors is reduced by 10(2)-10(6)-fold. Light-induced bumps recorded from even the most severely affected mutants are physiologically normal. Moreover, a detailed noise analysis shows that photoreceptor responses of both a ninaE mutant and a ninaD mutant follow the adapting bump model. Since any extensive rhodopsin-rhodopsin interactions are not likely in these mutants, the above results suggest that such interactions are not needed for the generation and adaptation of light-induced bumps. Mutant bumps are strikingly larger in amplitude than wild-type bumps. This difference is observed both in ninaD and ninaE mutants, which suggests that it is due to severe depletion of rhodopsin content, rather than to any specific alterations in the opsin protein. Lowering or buffering the intracellular calcium concentration by EGTA injection mimics the effects of the mutations on the bump amplitude, but, unlike the mutations, it also affects the latency and kinetics of light responses.  相似文献   

5.
Molecular defects in Drosophila rhodopsin mutants   总被引:6,自引:0,他引:6  
Four well characterized Drosophila rhodopsin (ninaE) mutants possess low levels of rhodopsin in their major class of photoreceptors. The molecular defect present in each strain was determined by isolating and sequencing the mutant genes. Two missense mutants encode proteins which have arginine residues positioned within membrane-spanning domains. The third missense mutant eliminates a proline found near an extracellular domain/membrane-spanning domain interface. Thus, the low levels of rhodopsin protein found in these mutants result directly from changes in protein structure which likely affect the positioning and stability of membrane-spanning domains. The fourth and most severe mutation is a nonsense mutation.  相似文献   

6.
Cao J  Li Y  Xia W  Reddig K  Hu W  Xie W  Li HS  Han J 《The EMBO journal》2011,30(18):3701-3713
Oligosaccharide chains of newly synthesized membrane receptors are trimmed and modified to optimize their trafficking and/or signalling before delivery to the cell surface. For most membrane receptors, the functional significance of oligosaccharide chain modification is unknown. During the maturation of Rh1 rhodopsin, a Drosophila light receptor, the oligosaccharide chain is trimmed extensively. Neither the functional significance of this modification nor the enzymes mediating this process are known. Here, we identify a dmppe (Drosophila metallophosphoesterase) mutant with incomplete deglycosylation of Rh1, and show that the retained oligosaccharide chain does not affect Rh1 localization or signalling. The incomplete deglycosylation, however, renders Rh1 more sensitive to endocytic degradation, and causes morphological and functional defects in photoreceptors of aged dmppe flies. We further demonstrate that the dMPPE protein functions as an Mn(2+)/Zn(2+)-dependent phosphoesterase and mediates in vivo dephosphorylation of α-Man-II. Most importantly, the dephosphorylated α-Man-II is required for the removal of the Rh1 oligosaccharide chain. These observations suggest that the glycosylation status of membrane proteins is controlled through phosphorylation/dephosphorylation, and that MPPE acts as the phosphoesterase in this regulation.  相似文献   

7.
Five different, well-characterized mutants of the R1–6 rhodopsin gene (ninaE), which corresponds to the rod opsin gene of vertebrates, have been examined morphologically as a function of age (up to 9 weeks) to determine whether or not the photoreceptors degenerate and to assess the pattern of degeneration. Structural deterioration of R1–6 photoreceptors with age has been found in all five mutants. The structural pattern of degeneration is similar in the five mutants, but the time course of degeneration is allele dependent and varies greatly among the five, with the strongest alleles causing the fastest degeneration. The degeneration appears to be independent of either the illumination cycle to which the animals are exposed or the presence of screening pigments in the eye. Although the degeneration first appears in R1–6 photoreceptors, eventually R7/8 photoreceptors, which correspond to cones of vertebrates, are also affected. In many of these mutants, striking proliferations of membrane processes have been observed in the subrhabdomeric region of R1–6 photoreceptors. It is hypothesized that (1) this accumulation of membranes may be caused by the failure of newly synthesized membranes that are inserted into the base of microvilli to be assembled into R1–6 rhabdomeres and (2) this failure may be caused by the extremely low concentration of normal R1–6 rhodopsin in the nina E mutants. © 1992 John Wiley & Sons, Inc.  相似文献   

8.
The kinetics of recombination of 11-cis-retinal with bleached rod outer segments and sodium cholate solubilized rhodopsin have been investigated. At neutral pH, it was found that bleached rod outer segments in the presence of an excess of 11-cis-retinal follow pseudo-first-order kinetics. The results suggest the second-order formation of an intermediate addition compound followed by a first-order dehydration step to form a protonated aldimine linkage. In addition, at pH values above 7.5 or below 6.5 the kinetics of recombination are complex, indicating the formation of a molecular species inactive in recombination which is in equilibrium with the active form of opsin. Based upon the observed rate constants as a function of pH, a scheme is presented to describe the recombination reaction in bleached rod outer segments. The kinetics of recombination of sodium cholate solubilized opsin were also analyzed. In terms of formation of an intermediate addition compound and subsequent dehydration, the values for the individual rate constants for both bleached rod outer segments and cholate-solubilized opsin were found to compare very favorably. These results demonstrate that the sodium cholate (2 mg/ml) maintains opsin in a conformation very similar to that in the rod outer segment membrane and suggest that the cholate-opsin complex is an excellent model system for studies on opsin-membrane interactions.  相似文献   

9.
Rhodopsin kinase activity of Musca domestica was characterized in a reconstitution assay, using urea-treated eye membranes as substrate and a purified fraction of eye cytosol as the enzyme. Analysis of kinase activity in fly eye, brain and abdomen extracts by reconstitution assays revealed that fly rhodopsin kinase is an eye-specific enzyme. It preferentially phosphorylates the light-activated form of rhodopsin (metarhodopsin) and has little activity with other protein substrates. Rhodopsin kinase binds to metarhodopsin and is released from rhodopsin-containing membranes. Metarhodopsin is a poor substrate for kinases from tissues other than the eye, making it a unique substrate for rhodopsin kinase. Rhodopsin kinase is inhibited by heparin, but not by the protein inhibitor of cAMP-dependent protein kinase. Its Km for ATP is 9 microM. Since fly rhodopsin is coupled to phospholipase C, studies of the interaction of rhodopsin with rhodopsin kinase can be useful in analysis of the reactions that lead to termination of the inositol-phospholipid-signaling pathway.  相似文献   

10.
Five different, well-characterized mutants of the R1-6 rhodopsin gene (ninaE), which corresponds to the rod opsin gene of vertebrates, have been examined morphologically as a function of age (up to 9 weeks) to determine whether or not the photoreceptors degenerate and to assess the pattern of degeneration. Structural deterioration of R1-6 photoreceptors with age has been found in all five mutants. The structural pattern of degeneration is similar in the five mutants, but the time course of degeneration is allele dependent and varies greatly among the five, with the strongest alleles causing the fastest degeneration. The degeneration appears to be independent of either the illumination cycle to which the animals are exposed or the presence of screening pigments in the eye. Although the degeneration first appears in R1-6 photoreceptors, eventually R7/8 photoreceptors, which correspond to cones of vertebrates, are also affected. In many of these mutants, striking proliferations of membrane processes have been observed in the subrhabdomeric region of R1-6 photoreceptors. It is hypothesized that (1) this accumulation of membranes may be caused by the failure of newly synthesized membranes that are inserted into the base of microvilli to be assembled into R1-6 rhabdomeres and (2) this failure may be caused by the extremely low concentration of normal R1-6 rhodopsin in the ninaE mutants.  相似文献   

11.
The visual pigment rhodopsin has been extensively studied for the kinetics of its photointermediates by various spectroscopic methods. Unlike such archaeal retinal proteins as bacteriorhodopsin, visual rhodopsin does not thermally recover its dark state after photoexcitation, which precludes repeated excitation of a single sample and thereby complicates time-resolved experiments. Kinetic data on the late rhodopsin photointermediates have so far been available mainly from time-resolved ultraviolet (UV)-visible spectroscopy, but not from Fourier transform infrared (FTIR) spectroscopy. The latter has the advantage of being informative of structural changes of both chromophore and protein, but does not allow the highly reproducible, automated sample exchange procedures available to UV-visible spectroscopy. Using rapid-scan FTIR difference spectroscopy, we obtained time-resolved data sets that were analyzed by a maximum entropy inverse Laplace-transform. Covering the time range from 8 ms to 15 s at temperatures of 0 and -7 degrees C, the transitions from the Lumi to the Meta I and from the Meta I to the Meta II photoproduct states could be resolved. In the transition from Meta I to Meta II, our data reveal a partial deprotonation of the retinal Schiff base preceding the conformational change of the receptor protein to Meta II. The technique and the results are discussed in regard to its advantages as well as its limitations.  相似文献   

12.
Visual signal transduction is initiated by the photoisomerization of 11-cis retinal upon rhodopsin ligation. Unlike vertebrate rhodopsin, which interacts with Gt-type G-protein to stimulate the cyclic GMP signaling pathway, invertebrate rhodopsin interacts with Gq-type G-protein to stimulate a signaling pathway that is based on inositol 1,4,5-triphosphate. Since the inositol 1,4,5-triphosphate signaling pathway is utilized by mammalian nonvisual pigments and a large number of G-protein-coupled receptors, it is important to elucidate how the activation mechanism of invertebrate rhodopsin differs from that of vertebrate rhodopsin. Previous crystallographic studies of squid and bovine rhodopsins have shown that there is a profound difference in the structures of the retinal-binding pockets of these photoreceptors. Here, we report the crystal structures of all-trans bathorhodopsin (Batho; the first photoreaction intermediate) and the artificial 9-cis isorhodopsin (Iso) of squid rhodopsin. Upon the formation of Batho, the central moiety of the retinal was observed to move largely towards the cytoplasmic side, while the Schiff base and the ionone ring underwent limited movements (i.e., the all-trans retinal in Batho took on a right-handed screwed configuration). Conversely, the 9-cis retinal in Iso took on a planar configuration. Our results suggest that the light energy absorbed by squid rhodopsin is mostly converted into the distortion energy of the retinal polyene chain and surrounding residues.  相似文献   

13.
14.
A Drosophila mutant (ninaAP228) that is low in rhodopsin concentration but identical to the wild-type fly in photoreceptor morphology has been isolated. R1-6 photoreceptors of the mutant differ from those of wild type in that (a) the prolonged depolarizing afterpotential (PDA) is absent, (b) concentrations of rhodopsin and opsin are substantially reduced, and (c) intramembrane particle density in the membranes of the rhabdomeres is low. Each of these traits is mimicked by depriving wild- type flies of vitamin A. The ninaAP228 mutation differs from vitamin A deprivation in that in the mutant (a) the rhabdomeric membrane particle density is reduced only in the R1-6 photoreceptors and not in R7 or R8, (b) the PDA can be elicited from the R7 photoreceptors, and (c) photoconversion of R1-6 rhodopsin to metarhodopsin by ultraviolet (UV) light is considerably more efficient than in vitamin A-deprived flies. The absorption properties of the mutant rhodopsin in the R1-6 photoreceptors appear to be identical to those of wild type as judged from rhodopsin difference spectra. The results suggest that the mutation affects the opsin, rather than the chromophore, component of rhodopsin molecules in the R1-6 photoreceptors. The interaction between the chromophore and R1-6 opsin, however, appears to be normal.  相似文献   

15.
A striking diversity of compound eye size and shape has evolved among insects. The number of ommatidia and their size are major determinants of the visual sensitivity and acuity of the compound eye. Each ommatidium is composed of eight photoreceptor cells that facilitate the discrimination of different colours via the expression of various light sensitive Rhodopsin proteins. It follows that variation in eye size, shape, and opsin composition is likely to directly influence vision. We analyzed variation in these three traits in D. melanogaster, D. simulans and D. mauritiana. We show that D. mauritiana generally has larger eyes than its sibling species, which is due to a combination of larger ommatidia and more ommatidia. In addition, intra- and inter-specific differences in eye size among D. simulans and D. melanogaster strains are mainly caused by variation in ommatidia number. By applying a geometric morphometrics approach to assess whether the formation of larger eyes influences other parts of the head capsule, we found that an increase in eye size is associated with a reduction in the adjacent face cuticle. Our shape analysis also demonstrates that D. mauritiana eyes are specifically enlarged in the dorsal region. Intriguingly, this dorsal enlargement is associated with enhanced expression of rhodopsin 3 in D. mauritiana. In summary, our data suggests that the morphology and functional properties of the compound eyes vary considerably within and among these closely related Drosophila species and may be part of coordinated morphological changes affecting the head capsule.  相似文献   

16.
Dobi KC  Metzger T  Baylies MK 《Fly》2011,5(2):68-75
Myogenesis in Drosophila embryos requires fusion between Founder cells (FCs) and Fusion Competent myoblasts (FCMs) to form multinucleate myotubes. Myoblast fusion is well characterized in embryos, and many factors required for this process have been identified; however, a number of questions pertaining to the mechanisms of fusion remain and are challenging to answer in the embryo. We have developed a modified primary cell culture protocol to address these questions in vitro. Using this system, we determined the optimal time for examining fusion in culture and confirmed that known fusion proteins are expressed and localized as in embryos. Importantly, we disrupted the actin and microtubule networks with the drugs latrunculin B and nocodazole, respectively, confirming that actin is required for myoblast fusion and showing for the first time that microtubules are also required for this process in Drosophila. Finally, we show that myotubes in culture adopt and maintain specific muscle identities.  相似文献   

17.
Molecular Characterization of the Drosophila Genome   总被引:8,自引:3,他引:5       下载免费PDF全文
  相似文献   

18.
The properties of the major visual pigment of Drosophila melanogaster were evaluated. The visual pigment was isolated from other protein components using acrylamide gel electrophoresis and spectral identification. Sodium dodecyl sulfate (SDS) acrylamide gels of the isolated visual pigment gave a single protein subunit with a mol wt of 37,000 daltons. The rhodopsin480 molar extinction coefficient was 35,000 liter/mol-cm (+/- 2,700 SE). The metarhodopsin580 molar extinction coefficient was approximately 56,000 liter/mol-cm. Microspectrophotometry was used to compare the rhodopsin concentrations in wild-type flies and norpA vision transduction mutants. At 2 days of age (12 h dark-12 h light cycle, 19 degrees C) all of the norpA flies exhibited a similar rhodopsin concentration (75% of the wild-type strain). By 21 days of age some of the norpA alleles showed substantially reduced rhodopsin concentrations (16-43% of normal), whereas others showed no major age-dependent decreases (68-77%). Temperature and light-dark cycle affected the reduction. Alleles with no receptor potential exhibited the largest decreases in rhodopsin concentration. The data indicate that the norpA phototransduction mutant has a defect in the system responsible for maintaining the rhodopsin480 concentration. This defect in the rhodopsin maintenance system does not appear to be the cause of the reduced electroretinogram (ERG) amplitude observed in some of these mutants, but instead is a consequence of the decrease in ERG amplitude, or the flaw(s) responsible for the decrease in ERG amplitude.  相似文献   

19.
Characterization of Drosophila heterochromatin   总被引:11,自引:0,他引:11  
A number of preliminary experiments have shown that the fluorescence pattern of Hoechst 33258, as opposed to that of quinacrine, varies with the concentration of dye. The metaphase chromosomes of D. melanogaster, D. simulans, D. virilis, D. texana, D. hydei and D. ezoana have therefore been stained with two concentrations of H 33258 (0.05 and 0.5 mug/ml in phosphate buffer at pH 7) and with a single concentration of quinacrine (0.5% in absolute alcohol). The three fluorescence patterns so obtained were shown to be somewhat different in some of the species and the coincide in others. All three stainings gave an excellent longitudinal differentiation of heterochromatin while euchromatin fluoresced homogeneously. Living ganglion cells of the six species mentioned above were treated with quinacrine and H 33258. Quinacrine induced a generalized lengthening and swelling of the chromosomes and H 33258 the decondensation of specific heterochromatic regions. A correlation of the base composition of the satellite DNAs contained in the heterochromatin of the species studied with the relative fluorescence and decondensation patterns showed that: 1) the extremely fluorochrome bright areas and those decondensed are present only in species containing AT rich satellite DNA; 2) the opposite is not true since some AT-rich satellite DNAs are neither fluorochrome bright nor decondensed; 3) there is no good correspondence between Hoechst bright areas and the decondensed ones. AT richness therefore appears to be a necessary but not sufficient condition both for bright fluorescence and decondensation. Some cytological evidence suggests that similarly AT rich satellite DNAs respond differently in fluorescence and decondensation because they are bound to different chromosomal proteins. A combination of the results of fluorescence and decondensation revealed at least 14 types of heterochromatin; 4-7 of which are simultaneously present in the same species. Since closely related species (i.e. D. melanogaster and D. simulans; D. virilis and D. texana) show marked differences in the heterochromatic types they contain, it can be suggested that within the genus Drosophila qualitative variations of heterochromatin have played an important role in speciation.  相似文献   

20.
The energetics associated with the photoequilibrium (Formula: see text) are measured at 77 K by using pulsed-laser photocalorimetry and a range of excitation wavelengths and relative starting concentrations. Enthalpies for the photochemical transformations R hv----B and I hv----B are measured to be delta HRB = 32.2 +/- 0.9 kcal mol-1 and delta HIB = 27.1 +/- 3.2 kcal mol-1, respectively. Although the value of delta HRB is slightly lower than that reported previously by Cooper of 34.7 +/- 2.2 kcal mol-1 [Cooper, A. (1979) Nature (London) 282, 531-533], the two values are in agreement within experimental error. The energy difference delta HRB - delta HIB = 5.1 +/- 3.3 kcal mol-1 is identical within experimental error with the difference in enthalpies of isorhodopsin and rhodopsin [5.2 +/- 2.3; Cooper, A. (1979) FEBS Lett. 100, 382-384]. We suggest that this result is consistent with the theory that bathorhodopsin is a single, common photochemical intermediate connecting rhodopsin and isorhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号