首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Kanai K  Yamada S  Inoue N 《Uirusu》2010,60(2):197-207
Varicella-zoster virus (VZV) causes varicella in primary infection and zoster after reactivation from latency. Both herpes simplex virus (HSV) and VZV are classified into the same alpha-herpesvirus subfamily. Although most VZV genes have their HSV homologs, VZV has many unique biological characteristics. In this review, we summarized recent studies on 1) animal models for VZV infection and outcomes from studies using the models, including 2) viral dissemination processes from respiratory mucosa, T cells, to skin, 3) cellular receptors for VZV entry, 4) functions of viral genes required uniquely for in vivo growth and for establishment of latency, 5) host immune responses and viral immune evasion mechanisms, and 6) varicella vaccine and anti-VZV drugs.  相似文献   

2.
Kawaguchi Y 《Uirusu》2010,60(2):187-196
Herpes simplex virus (HSV), the prototype of the herpesvirus family, causes a variety of diseases in human. In this review, I focus on the molecular mechanism of HSV infection including recent advance on this research field.  相似文献   

3.
Human papova (wart) virus   总被引:10,自引:0,他引:10  
  相似文献   

4.
5.
6.
Iridoviruses (IVs) are classified into five genera: Iridovirus and Chloriridovirus, whose members infect invertebrates, and Ranavirus, Lymphocystivirus, and Megalocytivirus, whose members infect vertebrates. Until now, Chloriridovirus was the only IV genus for which a representative and complete genomic sequence was not available. Here, we report the genome sequence and comparative analysis of a field isolate of Invertebrate iridescent virus type 3 (IIV-3), also known as mosquito iridescent virus, currently the sole member of the genus Chloriridovirus. Approximately 20% of the 190-kbp IIV-3 genome was repetitive DNA, with DNA repeats localized in 15 apparently noncoding regions. Of the 126 predicted IIV-3 genes, 27 had homologues in all currently sequenced IVs, suggesting a genetic core for the family Iridoviridae. Fifty-two IIV-3 genes, including those encoding DNA topoisomerase II, NAD-dependent DNA ligase, SF1 helicase, IAP, and BRO protein, are present in IIV-6 (Chilo iridescent virus, prototype species of the genus Iridovirus) but not in vertebrate IVs, likely reflecting distinct evolutionary histories for vertebrate and invertebrate IVs and potentially indicative of genes that function in aspects of virus-invertebrate host interactions. Thirty-three IIV-3 genes lack homologues in other IVs. Most of these encode proteins of unknown function but also encode IIV3-053L, a protein with similarity to DNA-dependent RNA polymerase subunit 7; IIV3-044L, a putative serine/threonine protein kinase; and IIV3-080R, a protein with similarity to poxvirus MutT-like proteins. The absence of genes present in other IVs, including IIV-6; the lack of obvious colinearity with any sequenced IV; the low levels of amino acid identity of predicted proteins to IV homologues; and phylogenetic analyses of conserved proteins indicate that IIV-3 is distantly related to other IV genera.  相似文献   

7.
8.
9.
10.
《Cytotherapy》2023,25(3):254-260
Adeno-associated virus (AAV) is one of the most exciting and most versatile templates for engineering of gene-delivery vectors for use in human gene therapy, owing to the existence of numerous naturally occurring capsid variants and their amenability to directed molecular evolution. As a result, the field has witnessed an explosion of novel “designer” AAV capsids and ensuing vectors over the last two decades, which have been isolated from comprehensive capsid libraries generated through technologies such as DNA shuffling or peptide display, and stratified under stringent positive and/or negative selection pressures. Here, we briefly highlight a panel of recent, innovative and transformative methodologies that we consider to have exceptional potential to advance directed AAV capsid evolution and to thereby accelerate AAV vector revolution. These avenues comprise original technologies for (i) barcoding and high-throughput screening of individual AAV variants or entire capsid libraries, (ii) selection of transduction-competent AAV vectors on the DNA level, (iii) enrichment of expression-competent AAV variants on the RNA level, as well as (iv) high-resolution stratification of focused AAV capsid libraries on the single-cell level. Together with other emerging AAV engineering stratagems, such as rational design or machine learning, these pioneering techniques promise to provide an urgently needed booster for AAV (r)evolution.  相似文献   

11.
12.
Human papova (wart) virus.   总被引:6,自引:0,他引:6       下载免费PDF全文
  相似文献   

13.
14.
15.
Zwei Kernpolyedervirus‐Isolate der Kohleule aus Deutschland (MbKPV‐D) und Moldawien (MbKPV‐Ki) wurden im Biotest geprüft und der Genotyp mit Hilfe der Restriktionsenzym‐Fragmentanalyse (REN) untersucht. Beide Isolate ergaben eine gleiche biologische Aktivität. Die REN‐Profile zeigten weitestgehende Übereinstimmung in der DNA‐Struktur. Geringe Unterschiede wurden in den Profilen der Eco RI‐ und Hind III‐ Schnitte gefunden. Die erhaltenen REN‐Profile stimmen im wesentlichen mit den für ein niederländisches MbKPV‐Isolate beschriebenen Bandenmustern überein.  相似文献   

16.
Susceptibility of 33 Lycopersicon species and varieties to Tobacco mosaic virus (TMV) and Cucumber mosaic virus (CMV) were studied. Plants were mechanically inoculated with the C/U1 strain of TMV and U/246 strain of CMV. Virus infection was checked by symptomatology, DAS ELISA and back inoculation (biotest). All the studied Lycopersicon species and varieties were susceptible to TMV-C/U1. L. esculentum Mill. convar. infiniens Lehm. var. flammatum Lehm., L. esculentum Mill. convar. fruticosum Lehm. var. speciosum Lehm. and L. esculentum Mill. convar. infiniens Lehm. var. validum Bail. showed extreme resistance to CMV-U/246. The other 30 species and varieties were susceptible to CMV-U/246. New compatible and incompatible host-virus relations have been reported. The extreme resistant Lycopersicon varieties could be used as resistance sources in tomato breeding.  相似文献   

17.
18.
19.
20.
Vesicular stomatitis virus (VSV) is an essentially nonpathogenic negative-stranded RNA virus, the replication of which is extremely sensitive to the antiviral effects of interferon (IFN). We demonstrate here that VSV selectively induces the cytolysis of numerous transformed human cell lines in vitro, with all the morphological characteristics of apoptotic cell death. Importantly, VSV can also potently inhibit the growth of p53-null C6 glioblastoma tumors in vivo without infecting and replicating in normal tissue. With our previous findings demonstrating that primary cells containing the double-stranded RNA-activated protein kinase PKR and a functional IFN system are not permissive to VSV replication, these results suggest that signaling by IFN may be defective in many malignancies. Thus VSV might be useful in novel therapeutic strategies for targeting neoplastic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号