首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In response to excess light, the xanthophyll violaxanthin (V) is deepoxidized to zeaxanthin (Z) via antheraxanthin (A) and the degree of this deepoxidation is strongly correlated with dissipation of excess energy and photoprotection in PS II. However, little is known about the site of V deepoxidation and the localization of Z within the thylakoid membranes. To gain insight into this problem, thylakoids were isolated from cotton leaves and bundle-sheath strands of maize, the pigment protein-complexes separated on Deriphat gels, electroeluted, and the pigments analyzed by HPLC. In cotton thylakoids, 30% of the xanthophyll cycle pigments were associated with the PS I holocomplex, including the PS I light-harvesting complexes and PS I core complex proteins (CC I), and about 50% with the PS II light-harvesting complexes (LHC II). The Chl was evenly distributed between PS I and PS II. Less than 2% of the neoxanthin, about 18% of the lutein, and as much as 76% of the -carotene of the thylakoids were associated with PS I. Exposure of pre-darkened cotton leaves to a high photon flux density for 20 min prior to thylakoid isolation caused about one-half of the V to be converted to Z. The distribution of Z among the pigment-protein complexes was found to be similar to that of V. The distribution of the other carotenoids was unaffected by the light treatment. Similarly, in field-grown maize leaves and in the bundle-sheath strands isolated from them, about 40% of the V present at dawn had been converted to Z at solar noon. Light treatment of isolated bundle-sheath strands which initially contained little Z caused a similar degree of conversion of V to Z. As in cotton thylakoids, about 30% the V+A+Z pool in bundle-sheath thylakoids from maize was associated with the PS I holocomplex and the CC I bands and 46% with the LHC II bands, regardless of the extent of deepoxidation. These results demonstrate that Z is present in PS I as well as in PS II and that deepoxidation evidently takes place within the pigment-protein complexes of both photosystems.Abbreviations A antheraxanthin - CC I, CC II Core or reaction center complex of PS I, PS II - CP Chl protein - EPS epoxidation state - Fm Chl fluorescence at closed PS II reaction centers - IEF isoelectric focussing gels - LHC I, LHC II light-harvesting complex of PS I, PS II - OE oxygen evolving polypeptide - PFD photon flux density - PS I* PS I holocomplex - V violaxanthin - Z zeaxanthin - antibody against C.I.W.-D.P.B. Publication No. 1127.  相似文献   

2.
The green alga Chlamydomonas reinhardtii is a facultative heterotroph and, when cultured in the presence of acetate, will synthesize chlorophyll (Chl) and photosystem (PS) components in the dark. Analysis of the thylakoid membrane composition and function in dark grown C. reinhardtii revealed that photochemically competent PS II complexes were synthesized and assembled in the thylakoid membrane. These PS II centers were impaired in the electron-transport reaction from the primary-quinone electron acceptor, QA, to the secondary-quinone electron acceptor, QB (QB-nonreducing centers). Both complements of the PS II Chl a–b light harvesting antenna (LHC II-inner and LHC II-peripheral) were synthesized and assembled in the thylakoid membrane of dark grown C. reinhardtii cells. However, the LHC II-peripheral was energetically uncoupled from the PS II reaction center. Thus, PS II units in dark grown cells had a -type Chl antenna size with only 130 Chl (a and b) molecules (by definition, PS II units lack LHC II-peripheral). Illumination of dark grown C. reinhardtii caused pronounced changes in the organization and function of PS II. With a half-time of about 30 min, PS II centers were converted froma QB-nonreducing form in the dark, to a QB-reducing form in the light. Concomitant with this change, PS II units were energetically coupled with the LHC II-peripheral complement in the thylakoid membrane and were converted to a PS II form. The functional antenna of the latter contained more than 250 Chl(a+b) molecules. The results are discussed in terms of a light-dependent activation of the QA-QB electron-transfer reaction which is followed by association of the PS II unit with a LHC II-peripheral antenna and by inclusion of the mature form of PS II (PS II) in the membrane of the grana partition region.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - F0 non-variable fluorescence yield - Fplf intermediate fluorescence yield plateau leyel - Fmax maximum fluorescence yield - Fi initial fluorescence yield increase from F0 to Fpl (Fpl–F0) - Fv total variable fluorescence yield (Fm–F0) - DCMU dichlorophenyl-dimethylurea  相似文献   

3.
Photosystem II (PS II) chlorophyll (Chl) a fluorescence lifetimes were measured in thylakoids and leaves of barley wild-type and chlorina f104 and f2 mutants to determine the effects of the PS II Chl a+b antenna size on the deexcitation of absorbed light energy. These barley chlorina mutants have drastically reduced levels of PS II light-harvesting Chls and pigment-proteins when compared to wild-type plants. However, the mutant and wild-type PS II Chl a fluorescence lifetimes and intensity parameters were remarkably similar and thus independent of the PS II light-harvesting antenna size for both maximal (at minimum Chl fluorescence level, Fo) and minimal rates of PS II photochemistry (at maximum Chl fluorescence level, Fm). Further, the fluorescence lifetimes and intensity parameters, as affected by the trans-thylakoid membrane pH gradient (pH) and the carotenoid pigments of the xanthophyll cycle, were also similar and independent of the antenna size differences. In the presence of a pH, the xanthophyll cycle-dependent processes increased the fractional intensity of a Chl a fluorescence lifetime distribution centered around 0.4–0.5 ns, at the expense of a 1.6 ns lifetime distribution (see Gilmore et al. (1995) Proc Natl Acad Sci USA 92: 2273–2277). When the zeaxanthin and antheraxanthin concentrations were measured relative to the number of PS II reaction center units, the ratios of fluorescence quenching to [xanthophyll] were similar between the wild-type and chlorina f104. However, the chlorina f104, compared to the wild-type, required around 2.5 times higher concentrations of these xanthophylls relative to Chl a+b to obtain the same levels of xanthophyll cycle-dependent fluorescence quenching. We thus suggest that, at a constant pH, the fraction of the short lifetime distribution is determined by the concentration and thus binding frequency of the xanthophylls in the PS II inner antenna. The pH also affected both the widths and centers of the lifetime distributions independent of the xanthophyll cycle. We suggest that the combined effects of the xanthophyll cycle and pH cause major conformational changes in the pigment-protein complexes of the PS II inner or core antennae that switch a normal PS II unit to an increased rate constant of heat dissipation. We discuss a model of the PS II photochemical apparatus where PS II photochemistry and xanthophyll cycle-dependent energy dissipation are independent of the Peripheral antenna size.Abbreviations Ax antheraxanthin - BSA bovine serum albumin - cx lifetime center of fluorescence decay component x - CP chlorophyll binding protein of PS II inner antenna - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DTT dithiothreitol - fx fractional intensity of fluorescence lifetime component x - Fm, Fm maximal PS II Chl a fluorescence intensity with all QA reduced in the absence, presence of thylakoid membrane energization - Fo minimal PS II Chl a fluorescence intensity with all QA oxidized - Fv=Fm–Fo variable level of PS II Chl a fluorescence - HPLC high performance liquid chromatography - kA rate constant of all combined energy dissipation pathways in PS II except photochemistry and fluorescence - kF rate constant of PS II Chl a fluorescence - LHCIIb main light harvesting pigment-protein complex (of PS II) - Npig mols Chl a+b per PS II - NPQ=(Fm/Fm–1) nonphotochemical quenching of PS II Chl a fluorescence - PAM pulse-amplitude modulation fluorometer - PFD photon-flux density, mols photons m–2 s–1 - PS II Photosystem II - P680 special-pair Chls of PS II reaction center - QA primary quinone electron acceptor of PS II - Vx violaxanthin - wx width at half maximum of Lorentzian fluorescence lifetime distribution x - Zx zeaxanthin - pH trans-thylakoid proton gradient - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad2gaaeqaaaaa!4989!\[< \tau > _{Fm}\],% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakeaacqGH8aapcqaHepaDcqGH% +aGpdaWgaaWcbaGaamOraiaad+gaaeqaaOGaeyypa0Zaaabqaeaaca% WGMbWaaSbaaSqaaiaadIhaaeqaaOGaam4yamaaBaaaleaacaWG4baa% beaaaeqabeqdcqGHris5aaaa!50D3!\[< \tau > _{Fo} = \sum {f_x c_x }\] average lifetime of Chl a fluorescence calculated from a multi-exponential model under Fm, Fo conditions  相似文献   

4.
Adaptive responses to excess (supraoptimal) level of cobalt supplied to the growth medium were studied in the cyanobacterium Synechocystis PCC 6803. Growth of cells in the medium containing 10 M CoCl2 led to a large stimulation (50%) in O2-evolution and an overall increase (30%) in the photosynthetic electron transport rates. Analysis of variable Chl a fluorescence yield of PS II and immuno-detection of Photosystem II (PS II) reaction-center protein D1, showed a small increase (15–20%) in the number of PS II units in cobalt-grown cells. Cobalt-grown cells, therefore, had a slightly elevated PS II/PS I ratio compared to control.We observed alteration in the extent of energy distribution between the two photosystems in the eobalt grown cells. Energy was preferentially distributed in favour of PS II accompanied by a reduction in the extent of energy transfer from PS II to PS I in cobalt-grown cells. These cells also showed a smaller PS I absorption cross-section and a smaller size of intersystem electron pool than the control cells. Thus, our results suggest that supplementation of 10 M CoCl2, to the normal growth medium causes multiple changes involving small increase in PS II to PS I ratio, enhanced funneling of energy to PS II and an increase in PS I electron transport, decrease PS I cross section and reduction in intersystem pool size. The cumulative effects of these alterations cause stimulation in electron transport and O2 evolution.Abbreviations BCIP 5-bromo-4-chloro-3-indolylphosphate - Chl a Chlorophyll a - Cyt blf Cytochrome blf - DCBQ 2,6-dichlorobenzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - DCPIP 2,6-dichlorophenol indophenol - DPC Diphenyl carbazide - Fo fluorescence when all reaction centers are open - FM fluorescence yield when all reaction centers are closed - Fv variable chlorophyll fluorescence - HEPES N-2-hydroxyethyl piperazine-N'-2-ethanesulphonic acid - MV methyl viologen - NBT nitro-blue tetrazolium - pBQ para-benzoquinone - PB somes phycobilisomes - PC Phycocyanin - PQ plastoquinone - PS I Photosystem I - PS II Photosystem II - P700 reaction center Chl a of PS 1 - ST-and MT-flash single turnover and multiple turnover flash  相似文献   

5.
Thylakoids isolated from cells of the red alga Porphyridium cruentum exhibit an increased PS I activity on a chlorophyll basis with increasing growth irradiance, even though the stoichiometry of Photosystems I and II in such cells shows little change (Cunningham et al. (1989) Plant Physiol 91: 1179–1187). PS I activity was 26% greater in thylakoids of cells acclimated at 280 mol photons · m–2 · s–1 (VHL) than in cells acclimated at 10 mol photons · m–2 · s–1 (LL), indicating a change in the light absorbance capacity of PS I. Upon isolating PS I holocomplexes from VHL cells it was found that they contained 132±9 Chl/P700 while those obtained from LL cells had 165±4 Chl/P700. Examination of the polypeptide composition of PS I holocomplexes on SDS-PAGE showed a notable decrease of three polypeptides (19.5, 21.0 and 22 kDa) in VHL-complexes relative to LL-complexes. These polypeptides belong to a novel LHC I complex, recently discovered in red algae (Wolfe et al. (1994a) Nature 367: 566–568), that lacks Chl b and includes at least six different polypeptides. We suggest that the decrease in PS I Chl antenna size observed with increasing irradiance is attributable to changes occurring in the LHC I-antenna complex. Evidence for a Chl-binding antenna complex associated with PS II core complexes is lacking at this point. LHC II-type polypeptides were not observed in functionally active PS II preparations (Wolfe et al. (1994b) Biochimica Biophysica Acta 1188: 357–366), nor did we detect polypeptides that showed immunocross-reactivity with LHC II specific antisera (made to Chlamydomonas and Euglena LHC II).Abbreviations Bis-Tris bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane - DCPIP 2,6-dichlorophenol indophenol - -dm dodecyl--d-maltoside - HL high light of 150 mol photons · m–2 · s–1 - LGB lower green band - LHC I light-harvesting complex of PS I - LHC II light-harvesting complex of PS II - LL low light of 10 mol photons · m–2 · s–1 - ML medium light of 50 mol photons · m–2 · s–1 - MES 2-(N-morpholino) ethanesulfonic acid - P700 reaction center of PS I - PFD photon flux density - Trizma tris(hydroxymethyl)aminomethane - UGB upper green band - VHL very high light of 280 mol photons · m–2 · s–1  相似文献   

6.
Wheat leaves were exposed to light treatments that excite preferentially Photosystem I (PS I) or Photosystem II (PS II) and induce State 1 or State 2, respectively. Simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PS II and PS I photochemistry during State transitions. State transitions were found to be associated with changes in the efficiency with which an absorbed photon is transferred to an open PS II reaction centre, but did not correlate with changes in the quantum efficiencies of PS II photochemistry or CO2 assimilation. Studies of the phosphorylation status of the light harvesting chlorophyll protein complex associated with PS II (LHC II) in wheat leaves and using chlorina mutants of barley which are deficient in this complex demonstrate that the changes in the effective antennae size of Photosystem II occurring during State transitions require LHC II and correlate with the phosphorylation status of LHC II. However, such correlations were not found in maize leaves. It is concluded that State transitions in C3 leaves are associated with phosphorylation-induced modifications of the PS II antennae, but these changes do not serve to optimise the use of light absorbed by the leaf for CO2 assimilation.Abbreviations Fm, Fo, Fv maximal, minimal and variable fluorescence yields - Fm, Fv maximal and variable fluorescence yields in a light adapted state - LHC II light harvesting chlorophyll a/b protein complex associated with PS II - qP photochemical quenching - A820 light-induced absorbance change at 820 nm - PS I, PS II relative quantum efficiencies of PS I and PS II photochemistry - CO 2 quantum yield of CO2 assimilation  相似文献   

7.
Zhang  Hai-Bo  Xu  Da-Quan 《Photosynthetica》2003,41(3):383-391
The protective role of light-harvesting complex 2 (LHC2) dissociation from photosystem 2 (PS2) complex was explored by the 5-p-fluorosulfonylbenzoyl adenosine (FSBA, an inhibitor of protein kinase) treatment at saturating irradiance (SI) in soybean leaves and thylakoids. The dissociation of some LHC2s from PS2 complex occurred after SI treatment, but FSBA treatment inhibited the dissociation as demonstrated by analysis of sucrose density gradient centrifugation of thylakoid preparation and low-temperature (77 K) chlorophyll (Chl) fluorescence. A significant increase in F0 and decrease in Fv/Fm occurred after SI, and the two parameters could largely recover to the levels of dark-adapted leaves after subsequent 3 h in the dark, but they could not recover in the FSBA-treated leaves at SI. Neither the electron transport activity of PS2 nor the D1 protein amount in vivo had significant change after SI without FSBA, whereas FSBA treatment at SI could result in significant decreases in both the PS2 electron transport activity and the D1 protein amount. When thylakoids instead of leaves were used, the PS2 electron transport activity and the D1 protein amount declined more after SI with FSBA than without FSBA. The phosphorylation level of PS2 core proteins increased, while the phosphorylation level of LHC2 proteins was reduced after SI. Also, the phosphorylation of PS2 core proteins could be greatly inhibited by the FSBA treatment at SI. Hence in soybean leaf the LHC2 dissociation is an effective strategy protecting PS2 reaction centres against over-excitation and photodamage by reducing the amount of photons transferred to the centres under SI, and the phosphorylation of PS2 core proteins plays an important role in the dissociation.  相似文献   

8.
Methyl viologen (MV) is a well-known electron mediator that works on the acceptor side of photosystem I. We investigated the little-known, MV-induced inhibition of linear electron flow through photosystem II (PS II) in spinach-leaf discs. Even a low [MV] decreased the (1) average, light-adapted photochemical efficiency of PS II traps, (2) oxidation state of the primary quinone acceptor QA in PS II during illumination, (3) photochemical efficiency of light-adapted open PS II traps, (4) fraction of absorbed light energy dissipated constitutively in a light-independent manner or as chlorophyll (Chl) a fluorescence emission, (5) Chl a fluorescence yield corresponding to dark-adapted open reaction-center traps (F o) and closed reaction-center traps (F m), and (6) half-time for re-oxidation of QA in PS II after a single-turnover flash. These effects suggest that the presence of MV accelerates various “downhill” electron-transfer steps in PS II. Therefore, when using the MV to quantify cyclic electron flow, the inhibitory effect of MV on PS II should be taken into account.  相似文献   

9.
Zhu  X.Y.  Wang  S.M.  Zhang  C.L. 《Photosynthetica》2003,41(1):97-104
As compared with the swamp reed (SR) ecotype of Phragmites communis growing in the desert region of northwest China, plants of the dune reed (DR) ecotype from the same region possessed lower chlorophyll (Chl) content in leaves, and less thylakoids and grana stacks in chloroplasts. Tube gel electrophoresis without stain showed that the contents of Chl-protein (Pro) components related to photosystem 2 (PS2) were markedly lower in the DR thylakoid membranes than in the SR thylakoid membranes, while the contents of Chl-Pro components associated with PS1 were almost the same in both types. SDS-PAGE analysis indicated that the content of polypeptides of the light-harvesting Chl a/b complex of PS2 (LHC2) was lower in the DR thylakoids. Besides, the conformation of LHC2 within the DR thylakoid membranes was also altered as indicated by circular dichroism spectra. Hence in the DR, reduced energy harvesting by declining the size of LHC2 might be responsible for the down-regulated PS2 activity. Chl fluorescence parameters. Fv/Fm and quantum efficiency of PS2 (PS2), were lower in the DR leaves than in the SR ones. However, non-photochemical quenching coefficient (qN) was greater in DR than that in SR, implying other energy dissipation way exists in the DR photosynthetic membranes.  相似文献   

10.
Three light intensity-dependent Chl b-deficient mutants, two in wheat and one in barley, were analyzed for their xanthophyll cycle carotenoids and Chl fluorescence characteristics under two different growth PFDs (30 versus 600 mol photons·m–2 s–1 incident light). Mutants grown under low light possessed lower levels of total Chls and carotenoids per unit leaf area compared to wild type plants, but the relative proportions of the two did not vary markedly between strains. In contrast, mutants grown under high light had much lower levels of Chl, leading to markedly greater carotenoid to Chl ratios in the mutants when compared to wild type. Under low light conditions the carotenoids of the xanthophyll cycle comprised approximately 15% of the total carotenoids in all strains; under high light the xanthophyll cycle pool increased to over 30% of the total carotenoids in wild type plants and to over 50% of the total carotenoids in the three mutant strains. Whereas the xanthophyll cycle remained fairly epoxidized in all plants grown under low light, plants grown under high light exhibited a considerable degree of conversion of the xanthophyll cycle into antheraxanthin and zeaxanthin during the diurnal cycle, with almost complete conversion (over 90%) occurring only in the mutants. 50 to 95% of the xanthophyll cycle was retained as antheraxanthin and zeaxanthin overnight in these mutants which also exhibited sustained depressions in PS II photochemical efficiency (Fv/Fm), which may have resulted from a sustained high level of photoprotective energy dissipation activity. The relatively larger xanthophyll cycle pool in the Chl b-deficient mutant could result in part from the reported concentration of the xanthophyll cycle in the inner antenna complexes, given that the Chl b-deficient mutants are deficient in the peripheral LHC-II complexes.Abbreviations A antheraxanthin - Chl chlorophyll - Fo and Fm minimal yield (at open PS II reaction centers) and maximal yield (at closed centers) of chlorophyll fluorescence in darkness - F level of fluorescence during illumination with photosynthetically active radiation - Fm maximal yield (at closed centers) of chlorophyll fluorescence during illumination with photosynthetically active radiation - (Fm–F)/Fm actual efficiency of PS II during illumination with photosynthetically active radiation - Fv/Fm+(Fm–Fo)/Fm intrinsic efficiency of PS II in darkness - LHC_II light-harvesting chlorophyll-protein complex of Photosystem II - PFD photon flux density (between 400 and 700 nm) - PS I Photosystem I - PS II Photosystem II - V violaxanthin - Z zeaxanthin  相似文献   

11.
To understand the origins of the different lifetime components of photosystem 2 (PS2) chlorophyll (Chl) fluorescence we have studied their susceptibility to potassium iridic chloride (K2IrCl6) which has been shown to bleach antenna pigments of photosynthetic bacteria (Loach et al. 1963). The addition of K2IrCl6 to PS2 particles gives rise to a preferential quenching of the variable Chl fluorescence (Fv). At concentrations lower than 20 M, this is brought about mainly by a decrease in the yield, but not in the lifetime, of the slowest component when all the PS2 reaction centres are closed (FM). The yield of the middle and fast decays are not significantly altered. This type of quenching is not seen with DNB. The iridate-induced quenching of the initial fluorescence level (F0) is due to a proportional decrease in the yield and lifetime of the three components and correlates with the observed modification in the relative quantum yield of oxygen evolution. In this concentration range a bleaching of Chl a is seen. At higher iridate levels, greater than 20 M, a proportional decrease in the lifetimes and yields of the three kinetic components is seen at FM. These changes are associated with a carotenoid bleaching. In isolated light harvesting Chl a/b complexes of PS2 (LHC2), iridate addition converts a 4 ns decay into a 200 ps emission and both types of bleaching are observed. By also measuring the rate of PS2 trap closure versus iridate concentration, we have discussed the results in terms of excitation energy transfer.Abbreviations DNB m-dinitrobenzene - FM maximum Chl fluorescence - F0 initial fluorescence - Fv variable fluorescence - I pheophytin a primary electron acceptor of PS2 - P680 chlorophyll a of photochemical centre - PS2 photosystem 2 - QA primary stable electron acceptor of PS2 - Chl chlorophyll - LHC2 light harvesting Chl a/b complex of PS2 - MES 2(N-morpholino) ethanesulfonic acid - DCMU 3-(3-4-dichlorophenyl) 1-1 dimethylurea - PPBQ phenyl-p-benzo-quinone - BBY PS2-enriched membranes prepared as in Berthold et al. (1981) - Q400 PS2 electron acceptor with a midpoint potential of 400 mV  相似文献   

12.
Under conditions of iron-stress, the Photosystem II associated chlorophyll a protein complex designated CP 43, which is encoded by the isiA gene, becomes the major pigment-protein complex in Synechococcus sp. PCC 7942. The isiB gene, which is located immediately downstream of isiA, encodes the protein flavodoxin, which can functionally replace ferredoxin under conditions of iron stress. We have constructed two cyanobacterial insertion mutants which are lacking (i) the CP 43 apoprotein (designated isiA ) and (ii) flavodoxin (designated isiB ). The function of CP 43 was studied by comparing the cell characteristics, PS II functional absorption cross-sections and Chl a fluorescence parameters from the wild-type, isiA and isiB strains grown under iron-stressed conditions. In all strains grown under iron deprivation, the cell number doubling time was maintained despite marked changes in pigment composition and other cell characteristics. This indicates that iron-starved cells remained viable and that their altered phenotype suggests an adequate acclimation to low iron even in absence of CP 43 and/or flavodoxin. Under both iron conditions, no differences were detected between the three strains in the functional absorption crossection of PS II determined from single turnover flash saturation curves of Chl a fluorescence. This demonstrates that CP 43 is not part of the functional light-harvesting antenna for PS II. In the wild-type and the isiB strain grown under iron-deficient conditions, CP 43 was present in the thylakoid membrane as an uncoupled Chl-protein complex. This was indicated by (1) an increase of the yield of prompt Chl a fluorescence (Fo) and (2) the persistence after PS II trap closure of a fast fluorescence decay component showing a maximum at 685 nm.Abbreviations Chl chlorophyll - CP 43, CP 47 and CP 43 Chl a binding protein complexes of indicated molecular mass - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Fm and Fm fluorescence when all PS II reaction centers are dosed in dark- and light-acclimated cells, respectively - Fo fluorescence when all PS II reaction centers are open in dark acclimated cells - Fv variable fluorescence after dark acclimation (Fm–Fo)  相似文献   

13.
The role of the xanthophyll cycle in regulating the energy flow to the PS II reaction centers and therefore in photoprotection was studied by measurements of light-induced absorbance changes, Chl fluorescence, and photosynthetic O2 evolution in sun and shade leaves of Hedera canariensis. The light-induced absorbance change at 510 nm (A510) was used for continuous monitoring of zeaxanthin formation by de-epoxidation of violaxanthin. Non-radiative energy dissipation (NRD) was estimated from non-photochemical fluorescence quenching (NPQ).High capacity for zeaxanthin formation in sun leaves was accompanied by large NRD in the pigment bed at high PFDs as indicated by a very strong NPQ both when all PS II centers are closed (F'm) and when all centers are open (F'o). Such Fo quenching, although present, was less pronounced in shade leaves which have a much smaller xanthophyll cycle pool.Dithiothreitol (DTT) provided through the cut petiole completely blocked zeaxanthin formation. DTT had no detectable effect on photosynthetic O2 evolution or the photochemical yield of PS II in the short term but fully inhibited the quenching of Fo and 75% of the quenching of Fm, indicating that NRD in the antenna was largely blocked. This inhibition of quenching was accompanied by an increased closure of the PS II reaction centers.In the presence of DTT a photoinhibitory treatment at a PFD of 200 mol m-2 s-1, followed by a 45 min recovery period at a low PFD, caused a 35% decrease in the photon yield of O2 evolution, compared to a decrease of less than 5% in the absence of DTT. The Fv/Fm ratio, measured in darkness showed a much greater decrease in the presence than in the absence of DTT. In the presence of DTT Fo rose by 15–20% whereas no change was detected in control leaves.The results support the conclusion that the xanthophyll cycle has a central role in regulating the energy flow to the PS II reaction centers and also provide direct evidence that zeaxanthin protects against photoinhibitory injury to the photosynthetic system.Abbreviations F, Fm, Fo, Fv Fluorescence yield at actual degree of PS II center closure, when all centers are closed, when all centers are open, variable fluorescence - NPQ non-photochemical fluorescence quenching - NRD non-radiative energy dissipation - PFD photon flux density - QA primary acceptor PS II  相似文献   

14.
Pure and active oxygen-evolving PS II core particles containing 35 Chl per reaction center were isolated with 75% yield from spinach PS II membrane fragments by incubation with n-dodecyl--D-maltoside and a rapid one step anion-exchange separation. By Triton X-100 treatment on the column these particles could be converted with 55% yield to pure and active PS II reaction center particles, which contained 6 Chl per reaction center.Abbreviations Bis-Tris bis[2-hydroxyethyl]imino-tris[hydroxymethyl]methane - Chl chlorophyll - CP29 Chl a/b protein of 29 kDa - Cyt b 559 cytochrome b 559 - DCBQ 2,5-dichloro-p-benzo-quinone - LHC II light-harvesting complex II, predominant Chl a/b protein - MES 2-[N-Morpholino]ethanesulfonic acid - Pheo pheophytin - PS H photosystem II - QA bound plastoquinone, serving as the secondary electron acceptor in PS II (after Pheo) - SDS sodiumdodecylsulfate  相似文献   

15.
The light-harvesting chlorophyll a/b proteins associated with PS II (LHC II) are often considered to have a regulatory role in photosynthesis. The photosynthetic responses of four chlorina mutants of barley, which are deficient in LHC II to varying degrees, are examined to evaluate whether LHC II plays a regulatory role in photosynthesis. The efficiencies of light use for PS I and PS II photochemistry and for CO2 assimilation in leaves of the mutants were monitored simultaneously over a wide range of photon flux densities of white light in the presence and absence of supplementary red light. It is demonstrated that the depletions of LHC II in these mutants results in a severe imbalance in the relative rates of excitation of PS I and PS II in favour of PS I, which cannot be alleviated by preferential excitation of PS II. Analyses of xanthophyll cycle pigments and fluorescence quenching in leaves of the mutants indicated that the major LHC II components are not required to facilitate the light-induced quenching associated with zeaxanthin formation. It is concluded that LHC II is important to balance the distribution of excitation energy between PS I and PS II populations over a wide range of photon flux densities. It appears that LHC II may also be important in determining the quantum efficiency of PS II photochemistry by reducing the rate of quenching of excitation energy in the PS II primary antennae.Abbreviations Fm, Fv maximal and variable fluorescence yields in a light adapted state - LHC II light harvesting chlorophyll a/b protein complex associated with PS II - qp photochemical quenching - A820 light-induced absorbance change at 820 nm - øPSI, øPSII relative quantum efficiencies of PS I and PS II photochemistry - øCO2 quantum yield of CO2 assimilation  相似文献   

16.
Husen  Jia  Dequan  Li 《Photosynthetica》2002,40(1):139-144
The responses to irradiance of photosynthetic CO2 assimilation and photosystem 2 (PS2) electron transport were simultaneously studied by gas exchange and chlorophyll (Chl) fluorescence measurement in two-year-old apple tree leaves (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd). Net photosynthetic rate (P N) was saturated at photosynthetic photon flux density (PPFD) 600-1 100 (mol m-2 s-1, while the PS2 non-cyclic electron transport (P-rate) showed a maximum at PPFD 800 mol m-2 s-1. With PPFD increasing, either leaf potential photosynthetic CO2 assimilation activity (Fd/Fs) and PS2 maximal photochemical activity (Fv/Fm) decreased or the ratio of the inactive PS2 reaction centres (RC) [(Fi – Fo)/(Fm – Fo)] and the slow relaxing non-photochemical Chl fluorescence quenching (qs) increased from PPFD 1 200 mol m-2 s-1, but cyclic electron transport around photosystem 1 (RFp), irradiance induced PS2 RC closure [(Fs – Fo)/Fm – Fo)], and the fast and medium relaxing non-photochemical Chl fluorescence quenching (qf and qm) increased remarkably from PPFD 900 (mol m-2 s-1. Hence leaf photosynthesis of young apple leaves saturated at PPFD 800 mol m-2 s-1 and photoinhibition occurred above PPFD 900 mol m-2 s-1. During the photoinhibition at different irradiances, young apple tree leaves could dissipate excess photons mainly by energy quenching and state transition mechanisms at PPFD 900-1 100 mol m-2 s-1, but photosynthetic apparatus damage was unavoidable from PPFD 1 200 mol m-2 s-1. We propose that Chl fluorescence parameter P-rate is superior to the gas exchange parameter P N and the Chl fluorescence parameter Fv/Fm as a definition of saturation irradiance and photoinhibition of plant leaves.  相似文献   

17.
The F 0 and F M level fluorescence from a wild-type barley, a Chl b-less mutant barley, and a maize leaf was determined from 430 to 685 nm at 10 nm intervals using pulse amplitude-modulated (PAM) fluorimetry. Variable wavelengths of the pulsed excitation light were achieved by passing the broadband emission of a Xe flash lamp through a birefringent tunable optical filter. For the three leaf types, spectra of F V/F M (=(F M − F 0)/F M) have been derived: within each of the three spectra of F V/F M, statistically meaningful variations were detected. Also, at distinct wavelength regions, the F V/F M differed significantly between leaf types. From spectra of F V/F M, excitation spectra of PS I and PS II fluorescence were calculated using a model that considers PS I fluorescence to be constant but variable PS II fluorescence. The photosystem spectra suggest that LHC II absorption results in high values of F V/F M between 470 and 490 nm in the two wild-type leaves but the absence of LHC II in the Chl b-less mutant barley leaf decreases the F V/F M at these wavelengths. All three leaves exhibited low values of F V/F M around 520 nm which was tentatively ascribed to light absorption by PS I-associated carotenoids. In the 550–650 nm region, the F V/F M in the maize leaf was lower than in the barley wild-type leaf which is explained with higher light absorption by PS I in maize, which is a NADP-ME C4 species, than in barley, a C3 species. Finally, low values of F V/F M at 685 in maize leaf and in the Chl b-less mutant barley leaf are in agreement with preferential PS I absorption at this wavelength. The potential use of spectra of the F V/F M ratio to derive information on spectral absorption properties of PS I and PS II is discussed.  相似文献   

18.
After seven weeks of a combined magnesium and sulphur deficiency, spinach (Spinacea oleracea L.) plants showed a substantial accumulation of inactivated photosystem II (PSII) centres as indicated by a 40% decrease of the chlorophyll (Chl) fluorescence parameter Fv/Fm (Fv being the yield of variable fluorescence and Fm the yield of maximal fluorescence when all reaction centres are closed) together with a severe loss of leaf Chl content of 75%. The responses of the photosynthetic apparatus were examined when the deficient plants were transferred back to a rich nutrient medium. During the first 24 h of the recovery phase, thylakoid protein synthesis measured as incorporation of [14C]leucine per unit of Chl increased substantially. The synthesis rate of the D1 reaction-centre polypeptide of PSII, which in the deficient plants was reduced to 50% of the non-deficient control, was stimulated eight- to ninefold. D1-protein content, which in the deficient plants was reduced to 40% of the non-deficient control, started to increase 2 d later. Thus, D1-protein degradation was also enhanced. The increased D1-protein turnover led to a rapid repair of the existing PSII centres as indicated by the rise of Fv/Fm. It was completed at day 7 of the recovery phase. At day 2 of the recovery phase, the synthesis of other thylakoid proteins such as the D2 protein, cytochrome b 559, CP 47 and the 33-kDa polypeptide of the water-splitting system, became stimulated. This process resulted in an accumulation of new PSII centres. During the first week, formation of new PSII centres was not associated with an increase in leaf Chl content. The Chl content of the recovering leaves only started to increase when the ratio of PSII polypeptides versus LHCII (light-harvesting complex of PSII), which was substantially diminished in the deficient plants, became comparable to that of the control. The recovery process was accompanied by substantial changes in thylakoid protein phosphorylation. Their relevance to thylakoid protein turnover and stability is discussed.Abbreviations Chl chlorophyll - cyt cytochrome - Fo yield of intrinsic fluorescence when all PSII centres are open in the dark - Fm yield of maximal fluorescence when all reaction centres are closed - Fm fluorescence yield when all reaction centres are closed (after a saturating flash) under steady-state conditions - Fv yield of variable fluorescence, (difference between Foand Fm) - F yield of variable fluorescence under steady state conditions - LHC light-harvesting complex - PQ plastoquinone - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII - qP photochemical quenching - qn non-photochemical quenching The authors like to thank Dipl. Biol. Britta Untereiser for determining the chlorophyll fluorescence quenching factors. This work was supported by grants from the Bundesminister für Forschung und Technologie, the Project Europäisches Forschungszentrum and the German Israeli Foundation in cooperation with Prof. I. Ohad, Hebrew University, Jerusalem, Israel.  相似文献   

19.
Low temperature (77 K) linear dichroism spectroscopy was used to characterize pigment orientation changes accompanying the light state transition in the cyanobacterium, Synechococcus sp. PCC 6301 and those accompanying chromatic acclimation in Porphyridium cruentum in samples stabilized by glutaraldehyde fixation. In light state 2 compared to light state 1 intact cells of Synechococcus showed an increased alignment of allophycocyanin parallel to the cells' long axis whereas the phycobilisomethylakoid membrane fragments exhibited an increased allophycocyanin alignment parallel to the membrane plane. The phycobilisome-thylakoid membrane fragments showed less alignment of a short wave-length chlorophyll a (Chl a) Qy transition dipole parallel to the membrane plane in state 2 relative to state 1.To aid identification of the observed Chl a orientation changes in Synechococcus, linear dichroism spectra were obtained from phycobilisome-thylakoid membrane fragments isolated from red light-grown (increased number of PS II centres) and green light-grown (increased number of PS I centres) cells of the red alga Porphyridium cruentum. An increased contribution of short wavelength Chl a Qy transition dipoles parallel to the long axis of the membrane plane was directly correlated with increased levels of PS II centres in red light-grown P. cruentum.Our results indicate that the transition to state 2 in cyanobacteria is accompanied by an increase in the orientation of allophycocyanin and a decrease in the orientation of Chl a associated with PS II with respect to the thylakoid membrane plane.Abbreviations APC - allophycocyanin - Chl a - chlorophyll a - DCMU - 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LD - linear dichroism - LD/A - linear dichroism divided by absorbance - LHC - light-harvesting complex - PBS - phycobilisome - PC - phycocyanin - PS - Photosystem  相似文献   

20.
The marine chlorophyte Dunaliella tertiolecta Butcher responds to a one-step transition from a high growth irradiance level (700 micromoles quanta per square meter per second) to a low growth irradiance level (70 micromoles quanta per square meter per second) by increasing the total amount of light-harvesting chlorophyll (Chl) a/b binding protein associated with photosystem II (LHC II), and by modifying the relative abundance of individual LHC II apoproteins. When high light-adapted cells were incubated with gabaculine, which inhibits Chl synthesis, and transferred to low light, the LHC II apoproteins were still synthesized and the 35S-labeled LHC II apoproteins remained stable after a 24 hour chase. These results suggest that Chl synthesis is not required for stability of the LHC II apoproteins in this alga. However, when the control cells are transferred from high light to low light, the amount of the four LHC II apoproteins per cell increases, whereas it does not in the presence of gabaculine. These results suggest that Chl synthesis is required for a photoadaptive increase in the cellular level of LHC II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号